CprE / ComS 583

° Outline

« HW/SW Codesign
Motivation
Specification
Partitioning
Automation

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.2

[]
Reconfigurable Computing
Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
lowa State University
Lecture #21 — HW/SW Codesign
°

Hardware/Software Codesign

Definition 1 — the concurrent and co-operative
design of hardware and software components
of an embedded system

Definition 2 — A design methodology supporting
the cooperative and concurrent development of
hardware and software (co-specification, co-
development, and co-verification) in order to
achieve shared functionality and performance
goals for a combined system [MicGup97A]

November 1, 2007 CprEE 583 — Reconfigurable Computing Lect-21.3

. Motivation

Not possible to put everything in
hardware due to limited resources

« Some code more appropriate for
sequential implementation

Desirable to allow for parallelization,
serialization

Possible to modify existing compilers to
perform the task

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.4

Why put CPUs on FPGAs?

Shrink a board to a chip
What CPUs do best:
Irregular code

Code that takes advantage of a highly optimized
datapath

What FPGAs do best:
Data-oriented computations
Computations with local control

jovember 1, 2007 CprE 583 - Reconfigurable Computing Lect21.5

e=“| Computational Model

Memory

Memory|
bus

FPGA

Most recent work addressing this problem
assumes relatively slow bus interface

FPGA has direct interface to memory in this
model

November 1, 2007 CprE 583 - Reconfigurable Computing Lect-21.6

° | Hardware/Software Partitioning

if (foo < 8) {
for (i=0; i<N; i++)

/ x[i1 = y[il*z[i1;
’ \
\
HW
CPU Accelerator

November 1, 2007

CprEE 583 - Reconfigurable Computing

Lect21.7

System-Level Methodology

prmnennsens | Informal Specification,
: Constraints

Component
profiling
Forannannannes Performance pre=*==* Architecture design
evaluation

>| HW/SW implementation |

Success

Implementation
November 0 CprE 583 — Reconfigurable Computing

Lect-21.9

Partitioning

- Can divide the application into several
processes that run concurrently

 Process partitioning exposes opportunities
for parallelism

if (i>b) ... Process 1 ‘

for (i=0; i<N; i++) ... Process 2

for (j=0; j<N; j++) ... Process 3

November 1, 2007 CprE 583 - Reconfigurable Computing Lect-21.11

Methodology

- Separation between function, and communication
- Unified refinable formal specification model
Facilitates system specification
Implementation independent

Eases HW/SW trade-off evaluation and partitioning

- From a more practical perspective:
Measure the application

Identify what to put onto the accelerator
Build interfaces

November 1, 2007

CprE 583 — Reconfigurable Computing Lect-21.8

e““[Concurrency
» Concurrent applications provide the most
speedup
No data dependencies
et X[l = y{il * 2[i]
CPU

accelerator

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.10

e | Automating System Partitioning

process (a, b, ¢)

Line () Interface
in port a, b; O { /
out port c; Partition a=..
{ .
read(a); detach
write(c); Capture
AP Synthesize
Specification Processor

» Good partitioning mechanism:
1)Minimize communication across bus

2)Allows parallelism - both hardware (FPGA)
and processor operating concurrently

3)Near peak processor utilization at all times
(performing useful work)

November 1, 2007 CprE 583 - Reconfigurable Computing Lect-21.12

e | Partitioning Algorithms

Software 1 Hardware

List of tasks List of tasks

< Assume everything initially in software
« Select task for swapping
- Migrate to hardware and evaluate cost
Timing, hardware resources, program and data storage,
synchronization overhead
- Cost evaluation and move evaluation similar to what
we've seen regarding mincut and simulated annealing

November 1, 2007 CprEE 583 - Reconfigurable Computing Lect-21.13

e | Multi-threaded Systems

+ Single thread:

z
é —

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.14

+ Multi-thread:

;] ;]
BRSSP BN
)]

e Performance Analysis

» Single threaded: » Multi-threaded with no
Find longest possible synchronization:
execution path Find the longest of

several execution paths
+ Multi-threaded with
synchronization:
Find the worst-case

synchronization
conditions

November 1, 2007 CprEE 583 — Reconfigurable Computing Lect-21.15

*<| Multi-threaded Performance Analysis

- Synchronization causes the delay along one
path to affect the delay along another

t, l t,
[] synchronization point
tc td

Delay = max(t,, t,) + ty

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.16

° Control

- Need to signal between CPU and accelerator
Data ready
Complete
» Implementations:
Shared memory
Handshake

- If computation time is very predictable, a
simpler communication scheme may be
possible

November 1, 2007 CprEE 583 - Reconfigurable Computing Lect-21.17

° Communication Levels

. Send, Receive, Wait
Application
Program
Operating
System
Register reads/writes
1/ driver -
Interrupt service
110 bus Bus transactions
Interrupts

- Easier to program at application level
(send, receive, wait) but difficult to predict
- More difficult to specify at low level

Difficult to extract from program but timing and
resources easier to predict

November 1, 2007 CprE 583 - Reconfigurable Computing Lect-21.18

November 1, 2007

Other Interface Models

« Synchronization through a FIFO
« FIFO can be implemented either in hardware or in

software

- Effectively reconfigure hardware (FPGA) to allocate

buffer space as needed

« Interrupts used for software version of FIFO

pl p2 p3
? — T
di Control/Data FIFO
d2 ds

CprEE 583 - Reconfigurable Computing Lect-21.19

¢“| Debugging

- Hard to test a CPU/accelerator system:

Hard to control and observe the accelerator
without the CPU

Software on CPU may have bugs
- Build separate test benches for CPU code,
accelerator
- Test integrated system after components have
been tested

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.20

| POLIS Codesign Methodology

Graphical EFSM ESTEREL | | oo

Lo
—

Formal

Verification

Partitioning

Sw Synthesis) Hw Synthesiy

Intfc + RTOS
l Synthesis l

n ye——1 Sw Code + Logic Netlist

Simulatio:
RTOS \ /

Rapid prototyping

November 1, 2007 CprE 583 — Reconfigural Lect-21.21

*“| Codesign Finite State Machines

» POLIS uses an FSM model for
Uncommitted
Synthesizable
Verifiable
Control-dominated HW/SW specification

- Translators from
State diagrams,
Esterel, ECL, ReactiveJava
HDLs
Into a single FSM-based language

November 1, 2007 CprE 583 — Reconfigurable Computing Lect-21.22

CFSM behavior

- Four-phase cycle:
Idle
Detect input events
Execute one transition
Emit output events

- Software response could take a long time:
Unbounded delay assumption

- Need efficient hw/sw communication primitive:
Event-based point-to-point communication

November 1, 2007 CprE 583 - Reconfigurable Computing Lect-21.23

° | Network of CFSMs

- Globally Asynchronous, Locally Synchronous
(GALS) model

O—\CTw
\4c:>c

O

crsm1 €A
h\ =
C=>B

CprE 583 - Reconfigurable Computing Lect-21.24

e O

—(

JFNG==1)

O CFSM2

o

4

J

O\

(A==0)=>B

CFSM3

November 1, 2007

ec*l Summary

Hardware/software codesign complicated
and limited by performance estimates
Algorithms not generally as good as
human partitioning

Other interesting issues include dual
processors, special memory interfaces

Will likely evolve at faster rate as
compilers evolve

mputing Lect-21.25

CprE 583 - Rect

