
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #21 – HW/SW Codesign

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.2

Outline

• HW/SW Codesign
• Motivation
• Specification
• Partitioning
• Automation

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.3

Hardware/Software Codesign

• Definition 1 – the concurrent and co-operative
design of hardware and software components
of an embedded system

• Definition 2 – A design methodology supporting
the cooperative and concurrent development of
hardware and software (co-specification, co-
development, and co-verification) in order to
achieve shared functionality and performance
goals for a combined system [MicGup97A]

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.4

Motivation

• Not possible to put everything in
hardware due to limited resources

• Some code more appropriate for
sequential implementation

• Desirable to allow for parallelization,
serialization

• Possible to modify existing compilers to
perform the task

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.5

Why put CPUs on FPGAs?

• Shrink a board to a chip
• What CPUs do best:

• Irregular code
• Code that takes advantage of a highly optimized

datapath
• What FPGAs do best:

• Data-oriented computations
• Computations with local control

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.6

• Most recent work addressing this problem
assumes relatively slow bus interface

• FPGA has direct interface to memory in this
model

General-
Purpose
Processor

Memory

FPGA

Memory
bus

Computational Model

2

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.7

Hardware/Software Partitioning

CPU
HW

Accelerator

if (foo < 8) {
for (i=0; i<N; i++)

x[i] = y[i]*z[i];
}

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.8

Methodology

• Separation between function, and communication

• Unified refinable formal specification model
• Facilitates system specification

• Implementation independent

• Eases HW/SW trade-off evaluation and partitioning

• From a more practical perspective:
• Measure the application
• Identify what to put onto the accelerator
• Build interfaces

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.9

Informal Specification,
Constraints

System model

Architecture design

HW/SW implementation

PrototypeTest

Implementation

Fail

Success

Component
profiling

Performance
evaluation

System-Level Methodology

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.10

Concurrency

• Concurrent applications provide the most
speedup

CPU accelerator

if (a > b) ... x[i] = y[i] * z[i]

No data dependencies

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.11

Process 2
Process 3

Process 1

Partitioning

• Can divide the application into several
processes that run concurrently

• Process partitioning exposes opportunities
for parallelism
if (i>b) …
for (i=0; i<N; i++) …
for (j=0; j<N; j++) ...

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.12

process (a, b, c)
in port a, b;
out port c;

{
read(a);
…
write(c);

}

Specification

Line ()
{

a = …
…
detach

}

Processor

Capture

Model FPGA

Partition

Synthesize

Interface

Automating System Partitioning

• Good partitioning mechanism:
1)Minimize communication across bus
2)Allows parallelism both hardware (FPGA)

and processor operating concurrently
3)Near peak processor utilization at all times

(performing useful work)

3

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.13

task

Software Hardware

List of tasks List of tasks

Partitioning Algorithms

• Assume everything initially in software
• Select task for swapping
• Migrate to hardware and evaluate cost

• Timing, hardware resources, program and data storage,
synchronization overhead

• Cost evaluation and move evaluation similar to what
we’ve seen regarding mincut and simulated annealing

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.14

Multi-threaded Systems

• Single thread:

• Multi-thread:

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.15

Performance Analysis

• Single threaded:
• Find longest possible

execution path

• Multi-threaded with no
synchronization:
• Find the longest of

several execution paths
• Multi-threaded with

synchronization:
• Find the worst-case

synchronization
conditions

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.16

Multi-threaded Performance Analysis

• Synchronization causes the delay along one
path to affect the delay along another

synchronization point

ta tb

tc td

Delay = max(ta, tb) + td

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.17

Control

• Need to signal between CPU and accelerator
• Data ready
• Complete

• Implementations:
• Shared memory
• Handshake

• If computation time is very predictable, a
simpler communication scheme may be
possible

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.18

Application
Program

Operating
System

I/O driver

I/O bus

Application
hardware
(custom)

I/O driver

I/O bus

Send, Receive, Wait

Register reads/writes

Interrupt service

Bus transactions
Interrupts

Communication Levels

• Easier to program at application level
• (send, receive, wait) but difficult to predict

• More difficult to specify at low level
• Difficult to extract from program but timing and

resources easier to predict

4

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.19

d1

d2 d3

p1 p2 p3

r2

r3

FPGAControl/Data FIFO

Other Interface Models

• Synchronization through a FIFO
• FIFO can be implemented either in hardware or in

software
• Effectively reconfigure hardware (FPGA) to allocate

buffer space as needed
• Interrupts used for software version of FIFO

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.20

Debugging

• Hard to test a CPU/accelerator system:
• Hard to control and observe the accelerator

without the CPU
• Software on CPU may have bugs

• Build separate test benches for CPU code,
accelerator

• Test integrated system after components have
been tested

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.21

Graphical EFSMGraphical EFSM ESTERELESTEREL

CompilersCompilers

PartitioningPartitioning

SwSw SynthesisSynthesis

FormalFormal
VerificationVerification

SwSw Code + Code +
RTOSRTOS

Logic Logic NetlistNetlistSimulationSimulation

Hw SynthesisHw SynthesisIntfcIntfc + RTOS+ RTOS
SynthesisSynthesis

CFSMsCFSMs

Rapid prototypingRapid prototyping

POLIS Codesign Methodology

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.22

Codesign Finite State Machines

• POLIS uses an FSM model for
• Uncommitted
• Synthesizable
• Verifiable
Control-dominated HW/SW specification

• Translators from
• State diagrams,
• Esterel, ECL, ReactiveJava
• HDLs
Into a single FSM-based language

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.23

CFSM behavior

• Four-phase cycle:
Idle
Detect input events
Execute one transition
Emit output events

• Software response could take a long time:
• Unbounded delay assumption

• Need efficient hw/sw communication primitive:
• Event-based point-to-point communication

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.24

CFSM2CFSM2

CFSM3CFSM3

C=>GC=>G

CFSM1CFSM1

C=>FC=>F
B=>CB=>C

F^(G==1)F^(G==1)

(A==0)=>B(A==0)=>B

C=>AC=>ACFSM1CFSM1 CFSM2CFSM2

C=>BC=>B

FF

GG

CC
CC

BB
AA

C=>GC=>G

C=>BC=>B

• Globally Asynchronous, Locally Synchronous
(GALS) model

Network of CFSMs

5

CprE 583 – Reconfigurable ComputingNovember 1, 2007 Lect-21.25

Summary

• Hardware/software codesign complicated
and limited by performance estimates

• Algorithms not generally as good as
human partitioning

• Other interesting issues include dual
processors, special memory interfaces

• Will likely evolve at faster rate as
compilers evolve

