
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #20 – Retiming

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.2

Quick Points

• HW #4 due today at 12:00pm
• Midterm, HW #3 graded by Wednesday

• Upcoming deadlines:
• November 15 – project status updates
• December 4,6 – project final presentations
• December 14 – project write-ups due

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.3

Recap – Variables

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Numbits IS
PORT (X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : OUT INTEGER RANGE 0 TO 3) ;
END Numbits ;

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.4

Variables – Example
ARCHITECTURE Behavior OF Numbits IS

BEGIN
PROCESS(X) – count the number of bits in X equal to 1

VARIABLE Tmp: INTEGER;
BEGIN

Tmp := 0;
FOR i IN 1 TO 3 LOOP

IF X(i) = ‘1’ THEN
Tmp := Tmp + 1;

END IF;
END LOOP;
Count <= Tmp;

END PROCESS;

END Behavior ;

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.5

Variables – Features

• Can only be declared within processes and
subprograms (functions & procedures)

• Initial value can be explicitly specified in the
declaration

• When assigned take an assigned value
immediately

• Variable assignments represent the desired
behavior, not the structure of the circuit

• Should be avoided, or at least used with
caution in a synthesizable code

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.6

Variables vs. Signals

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY test_delay IS
PORT(

clk : IN STD_LOGIC;
in1, in2 : IN STD_LOGIC;
var1_out, var2_out : OUT STD_LOGIC;
sig1_out : BUFFER STD_LOGIC;
sig2_out : OUT STD_LOGIC

);
END test_delay;

2

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.7

Variables vs. Signals (cont.)

ARCHITECTURE behavioral OF test_delay IS
BEGIN

PROCESS(clk) IS
VARIABLE var1, var2: STD_LOGIC;

BEGIN
if (rising_edge(clk)) THEN

var1 := in1 AND in2;
var2 := var1;

sig1_out <= in1 AND in2;
sig2_out <= sig1_out;

END IF;

var1_out <= var1;
var2_out <= var2;

END PROCESS;

END behavioral;
CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.8

Simulation Result

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.9

Assert Statements

• Assert is a non-synthesizable statement whose
purpose is to write out messages on the screen when
problems are found during simulation

• Depending on the severity of the problem, the
simulator is instructed to continue simulation or halt

• Syntax:
• ASSERT condition [REPORT “message”]

[SEVERITY severity_level];
• The message is written when the condition is

FALSE
• Severity_level can be: Note, Warning, Error

(default), or Failure
CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.10

Array Attributes

A’left(N) left bound of index range of dimension N of A

A’right(N) right bound of index range of dimension N of A

A’low(N) lower bound of index range of dimension N of A

A’high(N) upper bound of index range of dimension N of A

A’range(N) index range of dimension N of A

A’reverse_range(N) index range of dimension N of A

A’length(N) length of index range of dimension N of A

A’ascending(N) true if index range of dimension N of A

is an ascending range, false otherwise

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.11

Subprograms

• Include functions and procedures
• Commonly used pieces of code
• Can be placed in a library, and then reused and

shared among various projects
• Use only sequential statements, the same as

processes
• Example uses:

• Abstract operations that are repeatedly performed
• Type conversions

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.12

Functions – Basic Features

• Always return a single value as a result
• Are called using formal and actual parameters the same

way as components
• Never modify parameters passed to them
• Parameters can only be constants (including generics)

and signals (including ports);
• Variables are not allowed; the default is a CONSTANT
• When passing parameters, no range specification

should be included (for example no RANGE for
INTEGERS, or TO/DOWNTO for
STD_LOGIC_VECTOR)

• Are always used in some expression, and not called on
their own

3

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.13

Function Syntax and Example
FUNCTION function_name (<parameter_list>)
RETURN data_type IS

[declarations]
BEGIN

(sequential statements)
END function_name;

FUNCTION f1
(a, b: INTEGER; SIGNAL c: STD_LOGIC_VECTOR)
RETURN BOOLEAN IS
BEGIN

(sequential statements)
END f1;

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.14

Procedures – Basic Features

• Do not return a value
• Are called using formal and actual parameters the

same way as components
• May modify parameters passed to them
• Each parameter must have a mode: IN, OUT, INOUT
• Parameters can be constants (including generics),

signals (including ports), and variables
• The default for inputs (mode in) is a constant, the

default for outputs (modes out and inout) is a variable
• When passing parameters, range specification should

be included (for example RANGE for INTEGERS, and
TO/DOWNTO for STD_LOGIC_VECTOR)

• Procedure calls are statements on their own

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.15

Procedure Syntax and Example
PROCEDURE procedure_name (<parameter_list>) IS

[declarations]
BEGIN

(sequential statements)
END procedure_name;

PROCEDURE p1
(a, b: in INTEGER; SIGNAL c: out STD_LOGIC)

[declarations]
BEGIN

(sequential statements)
END p1;

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.16

Outline

• Recap
• Retiming

• Performance Analysis
• Transformations
• Optimizations

• Covering + Retiming

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.17

Problem

• Given: clocked circuit
• Goal: minimize clock period without changing

(observable) behavior
• I.e. minimize maximum delay between any pair

of registers
• Freedom: move placement of internal registers

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.18

Other Goals

• Minimize number of registers in circuit
• Achieve target cycle time
• Minimize number of registers while achieving

target cycle time

4

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.19

Simple Example

Path Length (L) = 4

Can we do better?

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.20

Legal Register Moves

• Retiming Lag/Lead

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.21

Separate arch for each path
Weight edges by number of registers
(weight nodes by delay through node)

Canonical Graph Representation

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.22

Critical Path: Length of longest path of zero weight nodes

Compute in O(|E|) time by levelizing network:
Topological sort, push path lengths forward until find register.

Critical Path Length

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.23

Retiming: Assign a lag to every vertex

weight(e′) = weight(e) + lag(head(e))-lag(tail(e))

Retiming Lag/Lead

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.24

Valid Retiming

• Retiming is valid as long as:
• ∀e in graph

• weight(e′) = weight(e) + lag(head(e))-lag(tail(e)) ≥ 0

• Assuming original circuit was a valid
synchronous circuit, this guarantees:
• Non-negative register weights on all edges

• No traveling backward in time :-)
• All cycles have strictly positive register counts
• Propagation delay on each vertex is non-

negative (assumed 1 for today)

5

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.25

• Move registers ≡ assign lags to nodes
• Lags define all locally legal moves

• Preserving non-negative edge weights
• (previous slide)
• Guarantees collection of lags remains

consistent globally

Retiming Task

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.26

Optimal Retiming

• There is a retiming of
• graph G
• w/ clock cycle c
• iff G-1/c has no cycles with negative edge

weights

• G-α ≡ subtract α from each edge weight

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.27

G-1/c

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.28

Intuition

• Must have at most c delay between every pair
of registers

• So, count 1/c’th charge against register for
every delay without out
• (G provides credit of 1 register every time one

passed)

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.29

Compute Retiming

• Lag(v) = shortest path to I/O in G-1/c

• Compute shortest paths in O(|V||E|)
• Bellman-Ford
• also use to detect negative weight cycles when

c too small

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.30

Apply to Example

6

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.31

Apply: Find Lags

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.32

weight(e′) = weight(e) + lag(head(e))-lag(tail(e))

Apply: Move Registers

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.33

Apply: Retimed

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.34

Apply: Retimed Design

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.35

Pipelining

• Can use this retiming to pipeline
• Assume have enough (infinite supply) of

registers at edge of circuit
• Retime them into circuit
• See [WeaMar03A] for details

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.36

Cover + Retiming – Example

7

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.37

Cover + Retiming – Example (cont.)

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.38

Example: Retimed

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.39

Note: only 4 signals here
(2 w/ 2 delays each)

Example: Retimed (cont.)

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.40

Basic Observation

• Registers break up circuit, limiting coverage
• fragmentation
• prevent grouping

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.41

Phase Ordering Problem

• General problem we’ve seen before
• E.g. placement – don’t know where connected

neighbors will be if unplaced
• Don’t know effect/results of other mapping step

• In this case
• Don’t know delay (what can be packed into

LUT) if retime first
• If not retime first

• fragmention: forced breaks at bad places

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.42

Observation #1

• Retiming flops to input of (fanout free)
subgraph is trivial (and always doable)
• Can cover ignoring flop placement
• Then retime LUTs to input

8

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.43

Fanout Problem?

Can I use the
same trick
here?

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.44

Cannot retime without
replicating

Replicating increase
I/O (so cut size)

Fanout Problem? (cont.)

CprE 583 – Reconfigurable ComputingOctober 30, 2007 Lect-20.45

Summary

• Can move registers to minimize cycle time
• Formulate as a lag assignment to every node
• Optimally solve cycle time in O(|V||E|) time

• Can optimally solve
• LUT map for delay
• Retiming for minimum clock period
• Solving separately does not give optimal

solution to problem

