
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #19 –VHDL for Synthesis II

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.2

Recap – Moore FSM Example

• Moore FSM that recognizes sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

S2: “10”
observed

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.3

Recap – Mealy FSM Example

• Mealy FSM that recognizes sequence “10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.4

Moore FSM Example – VHDL

TYPE state IS (S0, S1, S2);
SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Moore_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Moore_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Moore_state <= S1;
ELSE

Moore_state <= S0;
END IF;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.5

Moore FSM Example – VHDL (cont.)
WHEN S1 =>

IF input = ‘0’ THEN
Moore_state <= S2;

ELSE
Moore_state <= S1;

END IF;
WHEN S2 =>

IF input = ‘0’ THEN
Moore_state <= S0;

ELSE
Moore_state <= S1;

END IF;
END CASE;

END IF;
END PROCESS;

Output <= ‘1’ WHEN Moore_state = S2 ELSE ‘0’;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.6

Mealy FSM Example – VHDL

TYPE state IS (S0, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Mealy_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Mealy_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Mealy_state <= S1;
ELSE

Mealy_state <= S0;
END IF;

2

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.7

Mealy FSM Example – VHDL (cont.)
WHEN S1 =>
IF input = ‘0’ THEN

Mealy_state <= S0;
ELSE

Mealy_state <= S1;
END IF;

END CASE;
END IF;

END PROCESS;

Output <= ‘1’ WHEN (Mealy_state = S1 AND input = ‘0’) ELSE ‘0’;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.8

Finite State Machine Design

• A more “fair” bus arbiter
• 5 resources contending for the bus

• Inputs r1 -> r5, Outputs g1 -> g5
• Tuesday’s arbiter

• Resource r(i) has precedence over r(j>i)
when bus is idle

• Once granted access, resources can hold
on to the bus as long as they want to

• Group 1 – same precedence, but now
resource r(i) can only have bus for i
cycles at a time

• Group 2 – if multiple requests for bus,
tie goes to least recently used
resource

• Group 3 – each resource can also
“interrupt” the bus if necessary and
gain instant access

Idle

000

1xx

Reset

gnt1 g 1 ⁄ 1 =

x1x

gnt2 g 2 ⁄ 1 =

xx1

gnt3 g 3 ⁄ 1 =

0xx 1xx

01x x0x

001xx0

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.9

Outline

• Recap
• Memories

• Modeling RAM
• Modeling ROM

• Writing Synthesizable Code
• Additional VHDL Features

• Functions
• Procedures
• Attributes
• Variables
• Constants

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.10

Generic RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ram IS

GENERIC (bits: INTEGER:=8; -- # of bits per word
words: INTEGER := 16); -- # of words in the memory

PORT (wr_ena, clk: IN STD_LOGIC;
addr: IN INTEGER RANGE 0 to words-1;

data_in: IN STD_LOGIC_VECTOR(bits -1 downto 0);
data_out: OUT STD_LOGIC_VECTOR(bits – 1 downto 0)

);
END ram;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.11

Generic RAM (cont.)

ARCHITECTURE behavioral OF ram IS
TYPE vector_array IS ARRAY (0 TO words-1) OF

STD_LOGIC_VECTOR(bits – 1 DOWNTO 0);
SIGNAL memory: vector array;

BEGIN
PROCESS(clk)
BEGIN

IF(wr_ena=‘1’) THEN
IF (clk’EVENT AND clk=‘1’) THEN

memory(addr) <= data_in;
END_IF;

END IF;
END PROCESS;
data_out <= memory(addr);

END ram;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.12

Generic ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY rom IS

GENERIC (bits: INTEGER:=8; -- # of bits per word
words: INTEGER := 8); -- # of words in the memory

PORT (addr: IN INTEGER RANGE 0 to words-1;
data: OUT STD_LOGIC_VECTOR(bits – 1 downto 0)

);
END rom;

3

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.13

Syntax:

CONSTANT name : type := value;

Examples:

CONSTANT high : STD_LOGIC := ‘1’;
CONSTANT datamemory : memory := ((X"00", X"02");

Constants

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.14

• Constants can be declared in a PACKAGE,
ENTITY, or ARCHITECTURE

• When declared in a PACKAGE, the constant is
truly global, for the package can be used in
several entities

• When declared in an ARCHITECTURE, the
constant is local, i.e., it is visible only within this
architecture

• When declared in an ENTITY, the constant can
be used in all architectures associated with this
entity

Constants – Features

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.15

Generic ROM (cont.)

ARCHITECTURE behavioral OF rom IS
TYPE vector_array IS ARRAY (0 TO words-1) OF

STD_LOGIC_VECTOR(bits – 1 DOWNTO 0);

CONSTANT memory: vector_array :=
("0000_0000",
"0000_0010",
"0000_0100",
"0000_1000",
"0001_0000",

"0010_0000",
"0100_0000",
"1000_0000");

BEGIN
data <= memory(addr);

END rom;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.16

RAM16X1S

O

D
WE

WCLK
A0
A1
A2
A3

RAM32X1S

O

D
WE
WCLK
A0
A1
A2
A3
A4

RAM16X2S

O1

D0

WE
WCLK
A0
A1
A2
A3

D1

O0

=

=
LUT

LUT or

LUT

RAM16X1D

SPO

D
WE

WCLK
A0
A1
A2
A3
DPRA0 DPO
DPRA1
DPRA2
DPRA3

or

Distributed RAM

• CLB LUT configurable as
Distributed RAM
• A LUT equals 16x1 RAM
• Implements Single and Dual-

Ports
• Cascade LUTs to increase

RAM size
• Synchronous write
• Synchronous/Asynchronous

read
• Accompanying flip-flops used

for synchronous read

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.17

RAM 16x1
library IEEE;
use IEEE.STD_LOGIC_1164.all;

library UNISIM;
use UNISIM.all;

entity RAM_16X1_DISTRIBUTED is
port(

CLK : in STD_LOGIC;
WE : in STD_LOGIC;
ADDR : in STD_LOGIC_VECTOR(3 downto 0);
DATA_IN : in STD_LOGIC;
DATA_OUT : out STD_LOGIC

);
end RAM_16X1_DISTRIBUTED;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.18

RAM 16x1 (cont.)

architecture RAM_16X1_DISTRIBUTED_STRUCTURAL of RAM_16X1_DISTRIBUTED is

-- part used by the synthesis tool, Synplify Pro, only; ignored during simulation
attribute INIT : string;
attribute INIT of RAM16X1_S_1: label is "0000";

--

component ram16x1s
generic(

INIT : BIT_VECTOR(15 downto 0) := X"0000");
port(

O : out std_ulogic;
A0 : in std_ulogic;
A1 : in std_ulogic;
A2 : in std_ulogic;
A3 : in std_ulogic;
D : in std_ulogic;
WCLK : in std_ulogic;
WE : in std_ulogic);

end component;

4

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.19

RAM 16x1 (cont.)

begin

RAM_16X1_S_1: ram16x1s generic map (INIT => X”0000")
port map

(O => DATA_OUT,
A0 => ADDR(0),
A1 => ADDR(1),
A2 => ADDR(2),
A3 => ADDR(3),
D => DATA_IN,
WCLK => CLK,
WE => WE

);

end RAM_16X1_DISTRIBUTED_STRUCTURAL;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.20

Writing Synthesizable Code

• For combinational logic, use only concurrent
statements
• Concurrent signal assignment (⇐)
• Conditional concurrent signal assignment

(when-else)
• Selected concurrent signal assignment (with-

select-when)
• Generate scheme for equations (for-generate)

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.21

Writing Synthesizable Code (cont.)

• For circuits composed of
• Simple logic operations (logic gates)
• Simple arithmetic operations (addition,

subtraction, multiplication)
• Shifts/rotations by a constant

• Use concurrent signal assignment (⇐)

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.22

Writing Synthesizable Code (cont.)

• For circuits composed of
• Multiplexers
• Decoders, encoders
• Tri-state buffers

• Use
• Conditional concurrent signal assignment

(when-else)
• Selected concurrent signal assignment (with-

select-when)

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.23

• Internal signals (defined
in a given architecture)

• Ports of the mode
- out
- inout
- buffer

Expressions including:
• Internal signals (defined

in a given architecture)
• Ports of the mode

- in
- inout
- buffer

Left-Side v. Right-Side of Assignment

<=
<= when-else
with-select <=

Left side Right side

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.24

Arithmetic Operations

• Synthesizable arithmetic operations:
• Addition, +
• Subtraction, -
• Comparisons, >, >=, <, <=
• Multiplication, *
• Division by a power of 2, /2**6 (equivalent to

right shift)
• Shifts by a constant, SHL, SHR

5

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.25

Arithmetic Operations (cont.)

• The result of synthesis of an arithmetic operation is a
• Combinational circuit
• Without pipelining

• The exact internal architecture used (and thus delay
and area of the circuit) may depend on the timing
constraints specified during synthesis (e.g., the
requested maximum clock frequency)

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.26

Operations on Numbers

• For operations on unsigned numbers
• USE ieee.std_logic_unsigned.all
• Signals (inputs/outputs) of the type STD_LOGIC_VECTOR
• Or, USE ieee.std_logic_arith.all
• Signals (inputs/outputs) of the type UNSIGNED

• For operations on signed numbers
• USE ieee.std_logic_signed.all
• signals (inputs/outputs) of the type STD_LOGIC_VECTOR
• Or, USE ieee.std_logic_arith.all
• Signals (inputs/outputs) of the type SIGNED

• Signed / Unsigned types behave exactly like
STD_LOGIC_VECTOR
• Also determine whether the number should be treated as a signed

or unsigned number

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.27

Representing Integers

• Operations on signals (variables) of the integer
types (INTEGER, NATURAL) and their
sybtypes are synthesizable in the range:
• [-(231-1) ... 231-1] for INTEGERs and their

subtypes
• [0 ... 231-1] for NATURALs and their subtypes

• Operations on the integer types are less
flexible and more difficult to control than
operations STD_LOGIC_VECTOR and are
recommened to be avoided by beginners

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.28

Addition of Signed Numbers

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adder16 IS
PORT (Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Cout, Overflow : OUT STD_LOGIC) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS
SIGNAL Sum : STD_LOGIC_VECTOR(16 DOWNTO 0) ;

BEGIN
Sum <= ('0' & X) + Y + Cin ;
S <= Sum(15 DOWNTO 0) ;
Cout <= Sum(16) ;
Overflow <= Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ;

END Behavior ;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.29

Addition of Signed Numbers (cont.)
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;

ENTITY adder16 IS
PORT (Cin : IN STD_LOGIC ;

X, Y : IN SIGNED(15 DOWNTO 0) ;
S : OUT SIGNED(15 DOWNTO 0) ;
Cout, Overflow : OUT STD_LOGIC) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS
SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN
Sum <= ('0' & X) + Y + Cin ;
S <= Sum(15 DOWNTO 0) ;
Cout <= Sum(16) ;
Overflow <= Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ;

END Behavior ;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.30

Addition of Signed Numbers (cont.)

ENTITY adder16 IS
PORT (X, Y : IN INTEGER RANGE -32768 TO 32767 ;

S : OUT INTEGER RANGE -32768 TO 32767) ;
END adder16 ;

ARCHITECTURE Behavior OF adder16 IS
BEGIN

S <= X + Y ;
END Behavior ;

6

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.31

Rules that need to be followed:

1. All inputs to the combinational circuit should be included
in the sensitivity list

2. No other signals should be included
in the sensitivity list

3. None of the statements within the process
should be sensitive to rising or falling edges

4. All possible cases need to be covered in the internal
IF and CASE statements in order to avoid
implied latches

Combinational Logic using Processes

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.32

Using ELSE

Using default values

AeqB <= '0' ;
IF A = B THEN

AeqB <= '1' ;

IF A = B THEN
AeqB <= '1' ;

ELSE
AeqB <= '0' ;

Covering the IF Statement

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.33

Using WHEN OTHERS

Using default values

CASE y IS
WHEN S1 => Z <= "10";
WHEN S2 => Z <= "01";
WHEN OTHERS => Z <= "00";

END CASE;

Z <= "00";
CASE y IS

WHEN S1 => Z <= "10";
WHEN S2 => Z <= "10";

END CASE;

CASE y IS
WHEN S1 => Z <= "10";
WHEN S2 => Z <= "01";
WHEN S3 => Z <= "00";
WHEN OTHERS => Z <= “--”;

END CASE;

Covering the CASE Statement

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.34

Initializations

• Declarations of signals (and variables) with initialized
values, such as

SIGNAL a : STD_LOGIC := ‘0’;
• Cannot be synthesized, and thus should be avoided
• If present, they will be ignored by the synthesis tools

• Use set and reset signals instead

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.35

Variables – Example

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Numbits IS
PORT (X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : OUT INTEGER RANGE 0 TO 3) ;
END Numbits ;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.36

Variable – Example (cont.)
ARCHITECTURE Behavior OF Numbits IS

BEGIN
PROCESS(X) – count the number of bits in X equal to 1

VARIABLE Tmp: INTEGER;
BEGIN

Tmp := 0;
FOR i IN 1 TO 3 LOOP

IF X(i) = ‘1’ THEN
Tmp := Tmp + 1;

END IF;
END LOOP;
Count <= Tmp;

END PROCESS;

END Behavior ;

7

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.37

Variables – Features

• Can only be declared within processes and
subprograms (functions & procedures)

• Initial value can be explicitly specified in the
declaration

• When assigned take an assigned value
immediately

• Variable assignments represent the desired
behavior, not the structure of the circuit

• Should be avoided, or at least used with
caution in a synthesizable code

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.38

Variables vs. Signals

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY test_delay IS
PORT(

clk : IN STD_LOGIC;
in1, in2 : IN STD_LOGIC;
var1_out, var2_out : OUT STD_LOGIC;
sig1_out : BUFFER STD_LOGIC;
sig2_out : OUT STD_LOGIC

);
END test_delay;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.39

Variables vs. Signals (cont.)

ARCHITECTURE behavioral OF test_delay IS
BEGIN

PROCESS(clk) IS
VARIABLE var1, var2: STD_LOGIC;

BEGIN
if (rising_edge(clk)) THEN

var1 := in1 AND in2;
var2 := var1;

sig1_out <= in1 AND in2;
sig2_out <= sig1_out;

END IF;

var1_out <= var1;
var2_out <= var2;

END PROCESS;

END behavioral;
CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.40

Simulation Result

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.41

Assert Statements

• Assert is a non-synthesizable statement whose
purpose is to write out messages on the screen when
problems are found during simulation

• Depending on the severity of the problem, the
simulator is instructed to continue simulation or halt

• Syntax:
• ASSERT condition [REPORT “message”]

[SEVERITY severity_level];
• The message is written when the condition is

FALSE
• Severity_level can be: Note, Warning, Error

(default), or Failure
CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.42

Array Attributes

A’left(N) left bound of index range of dimension N of A

A’right(N) right bound of index range of dimension N of A

A’low(N) lower bound of index range of dimension N of A

A’high(N) upper bound of index range of dimension N of A

A’range(N) index range of dimension N of A

A’reverse_range(N) index range of dimension N of A

A’length(N) length of index range of dimension N of A

A’ascending(N) true if index range of dimension N of A

is an ascending range, false otherwise

8

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.43

Subprograms

• Include functions and procedures
• Commonly used pieces of code
• Can be placed in a library, and then reused and

shared among various projects
• Use only sequential statements, the same as

processes
• Example uses:

• Abstract operations that are repeatedly performed
• Type conversions

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.44

Functions – Basic Features

• Always return a single value as a result
• Are called using formal and actual parameters the same

way as components
• Never modify parameters passed to them
• Parameters can only be constants (including generics)

and signals (including ports);
• Variables are not allowed; the default is a CONSTANT
• When passing parameters, no range specification

should be included (for example no RANGE for
INTEGERS, or TO/DOWNTO for
STD_LOGIC_VECTOR)

• Are always used in some expression, and not called on
their own

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.45

Function Syntax and Example
FUNCTION function_name (<parameter_list>)
RETURN data_type IS

[declarations]
BEGIN

(sequential statements)
END function_name;

FUNCTION f1
(a, b: INTEGER; SIGNAL c: STD_LOGIC_VECTOR)
RETURN BOOLEAN IS
BEGIN

(sequential statements)
END f1;

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.46

Procedures – Basic Features

• Do not return a value
• Are called using formal and actual parameters the

same way as components
• May modify parameters passed to them
• Each parameter must have a mode: IN, OUT, INOUT
• Parameters can be constants (including generics),

signals (including ports), and variables
• The default for inputs (mode in) is a constant, the

default for outputs (modes out and inout) is a variable
• When passing parameters, range specification should

be included (for example RANGE for INTEGERS, and
TO/DOWNTO for STD_LOGIC_VECTOR)

• Procedure calls are statements on their own

CprE 583 – Reconfigurable ComputingOctober 25, 2007 Lect-19.47

Procedure Syntax and Example
PROCEDURE procedure_name (<parameter_list>) IS

[declarations]
BEGIN

(sequential statements)
END procedure_name;

PROCEDURE p1
(a, b: in INTEGER; SIGNAL c: out STD_LOGIC_VECTOR)

[declarations]
BEGIN

(sequential statements)
END p1;

