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Quick Points
• Course Deadlines

• Project proposals – Sunday, September 30
• Not all groups accounted for

• HW #3 – Tuesday, October 9
• Midterm – Tuesday, October 16

• Assigned next week Tuesday (following conceptual 
review in class)

• Short, not a homework
• Work individually
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Synthesis

syn·the·sis (sin’thu-sis) n. – the combining of 
the constituent elements of separate material 
or abstract entities into a single or unified entity

• For hardware, the “abstract entity” is a circuit 
description

• “Unified entity” is a hardware implementation
• Hardware compilation (but not really)
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FPGA Synthesis

• The term “synthesis” has become overloaded 
in the FPGA world

• Examples:
• System synthesis
• Behavioral / high-level / algorithmic synthesis
• RT-level synthesis
• Logic synthesis
• Physical synthesis

• Our usage: FPGA synthesis = behavioral 
synthesis + logic synthesis + physical synthesis
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Logic Synthesis

• Input – Boolean description
• Goal – to develop an optimized circuit 

representation based on the logic design
• Boolean expressions are converted into a circuit 

representation (gates)
• Takes into consideration speed/area/power 

requirements of the original design

• For FPGA, need to map to LUTs instead of 
logic gates (technology mapping)
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Behavioral Synthesis

• Inputs
• Control and data flow graph (CDFG)
• Cell library

• Ex: fast adder, slow adder, multiplier, etc.
• Speed/area/power characteristics

• Constraints
• Total speed/area/power 

• Output
• Datapath and control to implement
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Outline

• Quick Points
• Introduction
• FPGA Design Flow
• FPGA Synthesis

• Logic Synthesis
• Behavioral Synthesis

• FPGA Placement and Routing
• Metrics
• Placement Techniques
• Routing Techniques
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FPGA Design Translation

• CAD to translate circuit from text description to 
physical implementation well understood

• Most current FPGA designers use register-
transfer level specification (allocation and 
scheduling)

• Same basic steps as ASIC design

RTL

.

.
C = A+B

.

Circuit

A
B

+ C

Array
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Register Transfer-Level Design

• A register-transfer machine has combinational 
logic connecting registers:

DQ Combinational
Logic

D QD Q Combinational
Logic

Combinational
Logic
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FPGA Circuit Compilation
• Technology Mapping

• Placement

• Routing

LUT

LUT

Assign a logical LUT to a physical location

Select wire segments and 
switches for interconnection
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Standard FPGA Design Flow

• Design Entry
• Synthesis

• Design abstracted as a list of operations and dependencies
• Transformed into state diagrams and then logic networks 

(netlist)
• Design Implementation

• Translate – merges multiple design files into a single netlist
• Map – groups logical components from netlist into IOBs and 

CLBs
• Place & Route – place components on the FPGA and 

connect them
• Device File Programming

• Generates a bitstream containing CLB/IOB configuration and 
routing information to be directly loaded onto the FPGA
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FPGA Design Flow (Xilinx)

Design Entry

Synthesis

Implementation

Device
Programming

Functional
Simulation

Timing
Simulation

HDL files,
schematics

EDIF/XNF
netlist

NGD Xilinx 
primitives file

FPGA bitstream
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Design Flow with Test
Design and implement a simple unit permitting to speed 
up encryption with RC5-similar cipher with fixed key set 
on 8031 microcontroller. Unlike in the experiment 5, this 
time your unit has to be able to perform an encryption 
algorithm by itself, executing 32 rounds…..

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

VHDL
description

Functional simulation

Post-synthesis simulationSynthesized
Circuit
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Design Flow with Test (cont.)

Implementation

Configuration

Timing simulation

On chip testing

Post-synthesis simulationSynthesized
Circuit
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Synthesis Tools
• Interpret RTL code
• Produce synthesized circuit netlist in a standard EDIF 

format
• Give preliminary performance estimates
• Display circuit schematic corresponding to EDIF netlist

Performance Summary 
*******************

Worst slack in design: -0.924

Requested     Estimated     Requested Estimated 
Clock              Clock          

Starting Clock    Frequency     Frequency     Period            Period        
Slack      Type                 Group              

---------------------------------------------------------------------------------
----------------------

exam1|clk          85.0 MHz      78.8 MHz      11.765        12.688        -0.924    
inferred     Inferred_clkgroup_0

System             85.0 MHz       86.4 MHz      11.765        11.572        0.193   
system       default_clkgroup   

===========================================================
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Implementation

Implementation

UCF

NGD

EDIF NCF

Native Generic Database file

Constraint Editor

User Constraint File

Native 
Constraint 

File

Electronic Design 
Interchange Format

Circuit netlist Timing Constraints

Synthesis
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Circuit Netlist and Mapping

LUT2

LUT3

LUT4

LUT5
FF1

FF2

LUT1

LUT0
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Placing and Routing

Programmable Connections

FPGA
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Place and Route Report

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

--------------------------------------------------------------------------------
Constraint                                | Requested  | Actual     | Logic 

|            |      | Levels
--------------------------------------------------------------------------------
TS_clk = PERIOD TIMEGRP "clk" 11.765 ns | 11.765ns   | 11.622ns   | 13   
HIGH 50%                                  |            |         |      

--------------------------------------------------------------------------------
OFFSET = OUT 11.765 ns AFTER COMP "clk"   | 11.765ns   | 11.491ns   | 1    

--------------------------------------------------------------------------------
OFFSET = IN 11.765 ns BEFORE COMP "clk"   | 11.765ns   | 11.442ns   | 2    

--------------------------------------------------------------------------------
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Configuration

• Once a design is implemented, you must create a file 
that the FPGA can understand
• This file is called a bit stream: a BIT file (.bit extension)

• The BIT file can be downloaded directly to the FPGA, 
or can be converted into a PROM file which stores the 
programming information
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Logic Synthesis

• Syntax-based translation
• Translate HDL into logic directly (ab + ac)
• Generally requires optimization

• Macros
• Pre-designed logic
• Generally identified by language features

• Hard macro: includes placement
• Soft macro: no placement
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Logic Synthesis Phases

• Technology-independent optimizations
• Works on Boolean expression equivalent
• Estimates size based on number of literals
• Uses factorization, resubstitution, minimization to 

optimize logic
• Technology-independent phase uses simple delay 

models
• Technology-dependent optimizations 

• Maps Boolean expressions into a particular cell library
• Mapping may take into account area, delay
• Allows more accurate delay models

• Transformation from technology-independent to 
technology-dependent is called library binding
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LUT-based Logic Synthesis
• Cost metric for static gates is literal

• ax + bx’ has four literals, requires 8 transistors
• Cost metric for FPGAs is logic element
• All functions that fit in an LE have the same 

cost

r = q + s’

q = g’ + h s = d’

d = a + b
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Behavioral Synthesis

• Sequential operation is not the most abstract 
description of behavior

• We can describe behavior without assigning 
operations to particular clock cycles

• High-level synthesis (behavioral synthesis) 
transforms an unscheduled behavior into a 
register-transfer behavior
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Tasks in Behavioral Synthesis

• Scheduling – determines clock cycle on which 
each operation will occur

• Allocation – chooses which function units will 
execute which operations

• Data dependencies describe relationships 
between operations:
• x <= a + b; value of x depends on a, b

• High-level synthesis must preserve data 
dependencies
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Data Flow Graphs

• Data flow graph (DFG) models data dependencies
• Does not require that operations be performed in a 

particular order
• Models operations in a basic block of a functional 

model—no conditionals
• Requires single-assignment form

original code
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

single-assignment form
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;
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Data Flow Graphs (cont.)

• Data flow forms directed acyclic graph (DAG):
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Binding Values to Registers

• Registers fall on clock cycle boundaries
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Choosing Functional Units

• Muxes allow for 
same unit used for 
different values at 
different times

• Multiplexer controls 
which value has 
access to the unit
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Building the Sequencer

Sequencer requires three states,
even with no conditionals
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Class Exercise

• How do the quadratic equation designs now 
compare? (total area usage including 
control)

+

x

y

x

B

Ax

C+

A

xx

B C

+

y
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Choices During Behavioral Synthesis

• Scheduling determines number of clock cycles 
required

• Binding determines area, cycle time
• Area tradeoffs must consider shared function 

units vs. multiplexers, control
• Delay tradeoffs must consider cycle time vs. 

number of cycles
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Finding Schedules

• Two simple schedules:
• As-soon-as-possible (ASAP) schedule puts 

every operation as early in time as possible
• As-late-as-possible (ALAP) schedule puts 

every operation as late in schedule as possible
• Many schedules exist between ALAP and 

ASAP extremes
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ASAP and ALAP schedules

ASAP

ALAP
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Critical Path

• Longest path through data flow 
determines minimum schedule length

• Operator chaining:
• May execute several operations in 

sequence in one cycle
• Delay through function units may not 

be additive, such as through several 
adders
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FPGA Synthesis Summary

• Synthesis is an overloaded term in the FPGA 
design world

• Start from VHDL/Verilog/etc. or other system 
description

• Generate bitstream, netlist, logic gates

• Relevant steps:
1. Behavioral code to RTL code (.v)
2. RTL code to logic netlist (.edn)
3. Netlist to primitives file (.ngc)
4. Primitives file to implementation file (.bit) 
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Placement and Routing

• Two critical phases of layout design:
• Placement of components on the chip
• Routing of wires between components

• Placement and routing interact, but separating 
layout design into phases helps us understand 
the problem and find good solutions
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Placement Metrics

• Quality metrics for layout:
• Area
• Delay
• Power

• Area and delay determined partly by wiring
• How do we judge a placement without wiring?

• Estimate wire length without actually performing 
routing

• Design time may be important for FPGAs
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FPGA Issues

• Often want a fast answer
• May be willing to accept lower quality result for 

less place/route time
• May be interested in knowing wirability without 

needing the final configuration
• Fast placement: constructive placement, 

iterative improvement through simulated 
annealing
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Wire Length as a Quality Metric

Bad Placement Good Placement
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Wire Length Measures

• Estimate wire length by distance between 
components

• Possible distance measures:
• Euclidean distance (sqrt(x2 + y2))
• Manhattan distance (x + y)

• Multi-point nets must be broken up into 
trees for good estimates

Euclidean

Manhattan
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Placement

• Placement has a set of competing goals
• Can’t optimize locally and globally 

simultaneously

C D F

A
B

E
1 2

LUT1 LUT2
A
B
C
D

E• Use heuristic 
approaches to 
evaluate quality
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Placement Techniques

• Can construct an initial solution, improve an 
existing solution

• Pairwise interchange is a simple improvement 
metric:
• Interchange a pair, keep the swap if it helps 

wire length
• Some heuristic determines which two 

components to swap
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Placement by Partitioning

• Works well for components of fairly uniform 
size

• Partition netlist to minimize total wire length 
using min-cut criterion

• Partitioning may be interpreted as 1-D or 2-D 
layout
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Recursive Partitioning
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Min-Cut Bisecting Partitioning

Partition 1 Partition 2

A
B

C D

3 nets

1 net
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Min-Cut Partitioning (cont.)

• Swapping A and B:
• B drags 1 net
• A drags 3 nets
• total cut increase: 3 nets

• Conclusion: probably not a good swap, but 
must be compared with other pairs
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Imagine … (Routing)

• You have to plan transportation (i.e. roads and 
highways) for a new city the size of Chicago

• Many dwellings need direct roads that can’t be 
used by anyone else

• You can affect the layout of houses and 
neighborhoods but the architects and planners 
will complain

• And … you’re told that the time along any path 
can’t be longer than a fixed amount

• What are some of your considerations?
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Some Considerations

• How many levels do the roads need to go?
• Remember: higher is more expensive

• How to avoid congestion?
• What basic structure do I want for my roads?

• Manhattan?
• Chicago?
• Boston?

• Automated routing tools have to solve 
problems of comparable complexity on every 
leading-edge chip
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Routing Sub-Problems

• Shortest Path (two-pin nets – O(N3))
• Steiner Tree (easy for n-pin where n <= 5; NP-

complete in general)
• Compatibility (NP-complete)
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Routing Compatibility

• Example: satisfy three simultaneous net 
connections (A–A, B–B, C–C)

• A–A cannot use middle track
• Greedy approach will not be sufficient

B   

A

C   B  

A

C  
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Standard Approach
• Major phases in routing:

• Global routing assigns nets to routing areas
• Detailed routing designs the routing areas
• One phase routers – channel assignment and wire 

selection happens in one routing pass
• Two phase routers were initially popular

• Simpler to write and faster to execute
• More closely models ASIC routing techniques

• One phase routers shown to give MUCH better 
performance

• Net ordering is a major problem
• Order in which nets are routed determines quality of 

result
• Net ordering is a heuristic
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Global routing

• Choose a sequence of channels
• Not tracks within a channel

• Must take capacity into account
• Channel graph allows path algorithms to be 

used for global routing
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Channel Graph

LE LE

LE LE

channel channel

channel

channel

channel channel

channel

channelchannel

channel

channel channelswitch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box
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Placement and Routing Summary

• Placement
• Placement and clustering of modules critically important 

for subsequent routing step
• Often initial placement performed and then iteratively 

improved
• Mincut partitioning approaches sometimes used for 

initial placement
• Can benefit from simulated annealing approaches, 

given an accurate cost function
• Routing

• Routing a difficult problem based on device size, 
complexity

• Hard part of routing is the compatibility problem
• Can be attacked using iterative or simulated annealing 

approaches


