
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #14 – FPGA Design Automation

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.2

Quick Points
• Course Deadlines

• Project proposals – Sunday, September 30
• Not all groups accounted for

• HW #3 – Tuesday, October 9
• Midterm – Tuesday, October 16

• Assigned next week Tuesday (following conceptual
review in class)

• Short, not a homework
• Work individually

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.3

Synthesis

syn·the·sis (sin’thu-sis) n. – the combining of
the constituent elements of separate material
or abstract entities into a single or unified entity

• For hardware, the “abstract entity” is a circuit
description

• “Unified entity” is a hardware implementation
• Hardware compilation (but not really)

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.4

FPGA Synthesis

• The term “synthesis” has become overloaded
in the FPGA world

• Examples:
• System synthesis
• Behavioral / high-level / algorithmic synthesis
• RT-level synthesis
• Logic synthesis
• Physical synthesis

• Our usage: FPGA synthesis = behavioral
synthesis + logic synthesis + physical synthesis

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.5

Logic Synthesis

• Input – Boolean description
• Goal – to develop an optimized circuit

representation based on the logic design
• Boolean expressions are converted into a circuit

representation (gates)
• Takes into consideration speed/area/power

requirements of the original design

• For FPGA, need to map to LUTs instead of
logic gates (technology mapping)

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.6

Behavioral Synthesis

• Inputs
• Control and data flow graph (CDFG)
• Cell library

• Ex: fast adder, slow adder, multiplier, etc.
• Speed/area/power characteristics

• Constraints
• Total speed/area/power

• Output
• Datapath and control to implement

2

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.7

Outline

• Quick Points
• Introduction
• FPGA Design Flow
• FPGA Synthesis

• Logic Synthesis
• Behavioral Synthesis

• FPGA Placement and Routing
• Metrics
• Placement Techniques
• Routing Techniques

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.8

FPGA Design Translation

• CAD to translate circuit from text description to
physical implementation well understood

• Most current FPGA designers use register-
transfer level specification (allocation and
scheduling)

• Same basic steps as ASIC design

RTL

.

.
C = A+B

.

Circuit

A
B

+ C

Array

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.9

Register Transfer-Level Design

• A register-transfer machine has combinational
logic connecting registers:

DQ Combinational
Logic

D QD Q Combinational
Logic

Combinational
Logic

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.10

FPGA Circuit Compilation
• Technology Mapping

• Placement

• Routing

LUT

LUT

Assign a logical LUT to a physical location

Select wire segments and
switches for interconnection

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.11

Standard FPGA Design Flow

• Design Entry
• Synthesis

• Design abstracted as a list of operations and dependencies
• Transformed into state diagrams and then logic networks

(netlist)
• Design Implementation

• Translate – merges multiple design files into a single netlist
• Map – groups logical components from netlist into IOBs and

CLBs
• Place & Route – place components on the FPGA and

connect them
• Device File Programming

• Generates a bitstream containing CLB/IOB configuration and
routing information to be directly loaded onto the FPGA

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.12

FPGA Design Flow (Xilinx)

Design Entry

Synthesis

Implementation

Device
Programming

Functional
Simulation

Timing
Simulation

HDL files,
schematics

EDIF/XNF
netlist

NGD Xilinx
primitives file

FPGA bitstream

3

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.13

Design Flow with Test
Design and implement a simple unit permitting to speed
up encryption with RC5-similar cipher with fixed key set
on 8031 microcontroller. Unlike in the experiment 5, this
time your unit has to be able to perform an encryption
algorithm by itself, executing 32 rounds…..

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

VHDL
description

Functional simulation

Post-synthesis simulationSynthesized
Circuit

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.14

Design Flow with Test (cont.)

Implementation

Configuration

Timing simulation

On chip testing

Post-synthesis simulationSynthesized
Circuit

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.15

Synthesis Tools
• Interpret RTL code
• Produce synthesized circuit netlist in a standard EDIF

format
• Give preliminary performance estimates
• Display circuit schematic corresponding to EDIF netlist

Performance Summary

Worst slack in design: -0.924

Requested Estimated Requested Estimated
Clock Clock

Starting Clock Frequency Frequency Period Period
Slack Type Group

exam1|clk 85.0 MHz 78.8 MHz 11.765 12.688 -0.924
inferred Inferred_clkgroup_0

System 85.0 MHz 86.4 MHz 11.765 11.572 0.193
system default_clkgroup

===

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.16

Implementation

Implementation

UCF

NGD

EDIF NCF

Native Generic Database file

Constraint Editor

User Constraint File

Native
Constraint

File

Electronic Design
Interchange Format

Circuit netlist Timing Constraints

Synthesis

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.17

Circuit Netlist and Mapping

LUT2

LUT3

LUT4

LUT5
FF1

FF2

LUT1

LUT0

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.18

Placing and Routing

Programmable Connections

FPGA

4

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.19

Place and Route Report

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

--
Constraint | Requested | Actual | Logic

| | | Levels
--
TS_clk = PERIOD TIMEGRP "clk" 11.765 ns | 11.765ns | 11.622ns | 13
HIGH 50% | | |

--
OFFSET = OUT 11.765 ns AFTER COMP "clk" | 11.765ns | 11.491ns | 1

--
OFFSET = IN 11.765 ns BEFORE COMP "clk" | 11.765ns | 11.442ns | 2

--

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.20

Configuration

• Once a design is implemented, you must create a file
that the FPGA can understand
• This file is called a bit stream: a BIT file (.bit extension)

• The BIT file can be downloaded directly to the FPGA,
or can be converted into a PROM file which stores the
programming information

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.21

Logic Synthesis

• Syntax-based translation
• Translate HDL into logic directly (ab + ac)
• Generally requires optimization

• Macros
• Pre-designed logic
• Generally identified by language features

• Hard macro: includes placement
• Soft macro: no placement

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.22

Logic Synthesis Phases

• Technology-independent optimizations
• Works on Boolean expression equivalent
• Estimates size based on number of literals
• Uses factorization, resubstitution, minimization to

optimize logic
• Technology-independent phase uses simple delay

models
• Technology-dependent optimizations

• Maps Boolean expressions into a particular cell library
• Mapping may take into account area, delay
• Allows more accurate delay models

• Transformation from technology-independent to
technology-dependent is called library binding

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.23

LUT-based Logic Synthesis
• Cost metric for static gates is literal

• ax + bx’ has four literals, requires 8 transistors
• Cost metric for FPGAs is logic element
• All functions that fit in an LE have the same

cost

r = q + s’

q = g’ + h s = d’

d = a + b

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.24

Behavioral Synthesis

• Sequential operation is not the most abstract
description of behavior

• We can describe behavior without assigning
operations to particular clock cycles

• High-level synthesis (behavioral synthesis)
transforms an unscheduled behavior into a
register-transfer behavior

5

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.25

Tasks in Behavioral Synthesis

• Scheduling – determines clock cycle on which
each operation will occur

• Allocation – chooses which function units will
execute which operations

• Data dependencies describe relationships
between operations:
• x <= a + b; value of x depends on a, b

• High-level synthesis must preserve data
dependencies

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.26

Data Flow Graphs

• Data flow graph (DFG) models data dependencies
• Does not require that operations be performed in a

particular order
• Models operations in a basic block of a functional

model—no conditionals
• Requires single-assignment form

original code
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

single-assignment form
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.27

Data Flow Graphs (cont.)

• Data flow forms directed acyclic graph (DAG):

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.28

Binding Values to Registers

• Registers fall on clock cycle boundaries

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.29

Choosing Functional Units

• Muxes allow for
same unit used for
different values at
different times

• Multiplexer controls
which value has
access to the unit

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.30

Building the Sequencer

Sequencer requires three states,
even with no conditionals

6

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.31

Class Exercise

• How do the quadratic equation designs now
compare? (total area usage including
control)

+

x

y

x

B

Ax

C+

A

xx

B C

+

y

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.32

Choices During Behavioral Synthesis

• Scheduling determines number of clock cycles
required

• Binding determines area, cycle time
• Area tradeoffs must consider shared function

units vs. multiplexers, control
• Delay tradeoffs must consider cycle time vs.

number of cycles

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.33

Finding Schedules

• Two simple schedules:
• As-soon-as-possible (ASAP) schedule puts

every operation as early in time as possible
• As-late-as-possible (ALAP) schedule puts

every operation as late in schedule as possible
• Many schedules exist between ALAP and

ASAP extremes

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.34

ASAP and ALAP schedules

ASAP

ALAP

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.35

Critical Path

• Longest path through data flow
determines minimum schedule length

• Operator chaining:
• May execute several operations in

sequence in one cycle
• Delay through function units may not

be additive, such as through several
adders

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.36

FPGA Synthesis Summary

• Synthesis is an overloaded term in the FPGA
design world

• Start from VHDL/Verilog/etc. or other system
description

• Generate bitstream, netlist, logic gates

• Relevant steps:
1. Behavioral code to RTL code (.v)
2. RTL code to logic netlist (.edn)
3. Netlist to primitives file (.ngc)
4. Primitives file to implementation file (.bit)

7

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.37

Placement and Routing

• Two critical phases of layout design:
• Placement of components on the chip
• Routing of wires between components

• Placement and routing interact, but separating
layout design into phases helps us understand
the problem and find good solutions

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.38

Placement Metrics

• Quality metrics for layout:
• Area
• Delay
• Power

• Area and delay determined partly by wiring
• How do we judge a placement without wiring?

• Estimate wire length without actually performing
routing

• Design time may be important for FPGAs

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.39

FPGA Issues

• Often want a fast answer
• May be willing to accept lower quality result for

less place/route time
• May be interested in knowing wirability without

needing the final configuration
• Fast placement: constructive placement,

iterative improvement through simulated
annealing

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.40

Wire Length as a Quality Metric

Bad Placement Good Placement

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.41

Wire Length Measures

• Estimate wire length by distance between
components

• Possible distance measures:
• Euclidean distance (sqrt(x2 + y2))
• Manhattan distance (x + y)

• Multi-point nets must be broken up into
trees for good estimates

Euclidean

Manhattan
CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.42

Placement

• Placement has a set of competing goals
• Can’t optimize locally and globally

simultaneously

C D F

A
B

E
1 2

LUT1 LUT2
A
B
C
D

E• Use heuristic
approaches to
evaluate quality

8

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.43

Placement Techniques

• Can construct an initial solution, improve an
existing solution

• Pairwise interchange is a simple improvement
metric:
• Interchange a pair, keep the swap if it helps

wire length
• Some heuristic determines which two

components to swap

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.44

Placement by Partitioning

• Works well for components of fairly uniform
size

• Partition netlist to minimize total wire length
using min-cut criterion

• Partitioning may be interpreted as 1-D or 2-D
layout

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.45

Recursive Partitioning

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.46

Min-Cut Bisecting Partitioning

Partition 1 Partition 2

A
B

C D

3 nets

1 net

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.47

Min-Cut Partitioning (cont.)

• Swapping A and B:
• B drags 1 net
• A drags 3 nets
• total cut increase: 3 nets

• Conclusion: probably not a good swap, but
must be compared with other pairs

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.48

Imagine … (Routing)

• You have to plan transportation (i.e. roads and
highways) for a new city the size of Chicago

• Many dwellings need direct roads that can’t be
used by anyone else

• You can affect the layout of houses and
neighborhoods but the architects and planners
will complain

• And … you’re told that the time along any path
can’t be longer than a fixed amount

• What are some of your considerations?

9

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.49

Some Considerations

• How many levels do the roads need to go?
• Remember: higher is more expensive

• How to avoid congestion?
• What basic structure do I want for my roads?

• Manhattan?
• Chicago?
• Boston?

• Automated routing tools have to solve
problems of comparable complexity on every
leading-edge chip

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.50

Routing Sub-Problems

• Shortest Path (two-pin nets – O(N3))
• Steiner Tree (easy for n-pin where n <= 5; NP-

complete in general)
• Compatibility (NP-complete)

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.51

Routing Compatibility

• Example: satisfy three simultaneous net
connections (A–A, B–B, C–C)

• A–A cannot use middle track
• Greedy approach will not be sufficient

B

A

C B

A

C

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.52

Standard Approach
• Major phases in routing:

• Global routing assigns nets to routing areas
• Detailed routing designs the routing areas
• One phase routers – channel assignment and wire

selection happens in one routing pass
• Two phase routers were initially popular

• Simpler to write and faster to execute
• More closely models ASIC routing techniques

• One phase routers shown to give MUCH better
performance

• Net ordering is a major problem
• Order in which nets are routed determines quality of

result
• Net ordering is a heuristic

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.53

Global routing

• Choose a sequence of channels
• Not tracks within a channel

• Must take capacity into account
• Channel graph allows path algorithms to be

used for global routing

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.54

Channel Graph

LE LE

LE LE

channel channel

channel

channel

channel channel

channel

channelchannel

channel

channel channelswitch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box

switch
box

10

CprE 583 – Reconfigurable ComputingOctober 4, 2007 Lect-14.55

Placement and Routing Summary

• Placement
• Placement and clustering of modules critically important

for subsequent routing step
• Often initial placement performed and then iteratively

improved
• Mincut partitioning approaches sometimes used for

initial placement
• Can benefit from simulated annealing approaches,

given an accurate cost function
• Routing

• Routing a difficult problem based on device size,
complexity

• Hard part of routing is the compatibility problem
• Can be attacked using iterative or simulated annealing

approaches

