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Recap – FPGA-Based Router (FPX)

• FPX module contains two FPGAs
• NID – network interface device

• Performs data queuing
• RAD – reprogrammable application device

• Specialized control sequences
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Recap – Classification Architecture
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Recap – The Wrapper Concept

App
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Wrapper
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Outline

• Recap
• Cryptography on FPGA Platforms

• Introduction to cryptography
• Motivation

• Applications
• Secure hashing
• Symmetric-key cryptography
• Random number generation
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Introduction to Cryptography

• Encryption is the process of encoding a 
message such that its meaning is not obvious

• Decryption is the reverse process, i.e., 
transforming an encrypted message to its 
original form

• We denote plaintext by P and ciphertext by C
• C = E(P),  P = D(C) and P = D(E(P)), where E() 

is the encryption function (algorithm) and D() 
the decryption function

Encryption Decryption
Plaintext PlaintextCiphertext
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Terminology

• Encrypt, encode, encipher are interchangeable in the 
context of cryptography

• Same with decrypt, decode, and decipher
• Cryptographer – goal is to use encryption to conceal 

information
• Cryptanalyst – goal is to break the encryption
• Cryptologist – researches into both encryption and 

decryption (both cryptography and cryptanalysis)
• An encryption algorithm is breakable if given enough 

time/memory a cryptanalyst can determine the algorithm
• Algorithm in this context includes the key
• Is all encryption breakable?
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Kerckhoff’s Principle

• How do you prevent an eavesdropper from computing 
P, given C?
• Keep the encryption algorithm E() secret

• Is this a good idea?
• Choose E() (and corresponding D()) from a large 

collection, based on secret key
• Kerckhoff’s principle: assume that the potential cryptanalyst 

knows everything but the key

C = E(K, P) and P = D(K, C)

Encryption Decryption
Plaintext PlaintextCiphertext

Secret Key
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Motivation

• Cryptography is a powerful tool for protecting systems 
against many types of security threats

• Cryptographic functionality is needed for almost every 
type of computing platform:
• From embedded devices to parallel machines
• Wide range of area and performance requirements

• FPGA technology has become a popular target for 
implementing cryptographic ciphers
• Hardware can greatly accelerate the performance of the 

individual operations required
• More effective development process than that for ASICs

(faster, cheaper)
• Reconfigurable nature offers additional advantages 

(algorithmic agility, upload, modification)

CprE 583 – Reconfigurable ComputingSeptember 18, 2007 Lect-09.10

Application – Authentication Codes

• Authentication codes provide assurance that message has not 
been tampered with and has indeed originated from a specific 
source
• Independent of encryption

• Impersonation Attack: Oscar introduces a message into the 
channel, hoping to have it accepted as authentic by Bob

• Substitution Attack: Oscar observes a message Y’ in the 
channel which he intercepts and replaces by another message 
Z’ hoping to have it accepted as authentic by Bob 
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Signing With Message Digests

• A message digest (or hash) function is a one-way 
function which produces a fixed length vector of an 
input block x of arbitrary length
• A fixed length “fingerprint” of a message

• Instead of signing message, sign the message digest
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Hash Algorithm Structure
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Secure Hash Algorithm (SHA)

• SHA originally designed by NIST & NSA in 1993
• Revised in 1995 as SHA-1 (NIST FIPS 180-1)
• Based on design of MD4
• Produces 160-bit hash values 
• Recent 2005 analysis on security of SHA-1 have 

raised concerns on its use in future applications

• NIST issued revision FIPS 180-2 in 2002
• Adds 3 additional versions of SHA (SHA-256, SHA-384, 

SHA-512)
• Designed for compatibility with increased security 

provided by the AES cipher
• Structure and detail is similar to SHA-1
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SHA-512 Overview
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SHA-512 Compression Function

• Heart of the algorithm
• Processing message in 1024-bit blocks
• Consists of 80 rounds

• Updating a 512-bit buffer 
• Using a 64-bit value Wt derived from the current 

message block
• A round constant Kt that represents the first 64 

bits of the fractional parts of the cube root of 
first 80 prime numbers
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SHA-512 Round Function
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1 Gbps SHA-512 Implementation

• Partial unrolling (5 
rounds), pipelining

• 1 Gbps on Virtex-E 
FPGAs

• See [LieGre04A] for 
details
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Application – Private-Key Crypto

• The Advanced Encryption Standard (AES) is 
becoming the block cipher of choice for private-key 
cryptography

• Implementing AES on FPGA hardware has been 
looked at in some depth:
• Approximately 50 unique research implementations!
• Various commercial cores (Actel, Helion Tech, 

Amphion, etc.)
• Approach taken – an exploration of the decisions that 

lead to area/delay tradeoffs in an AES FPGA 
implementation

• End result – pareto optimal designs in terms of 
throughput, latency, and area efficiency 
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Area Efficiency
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General Approach [ZamNgu04A]

• Top-down design methodology 
incorporates decisions at several 
levels:
• Inter-round layout
• Intra-round layout
• Technology mapping
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General Approach (cont.)

• General approach applied to an AES FPGA design 
targeting the Xilinx Virtex-II architecture
• Familiarity with architecture and toolflow
• All designs fit on Xilinx XC2V4000 or better

• Implemented using a single VHDL core with user 
directives driving the optimizations

• Results presented for AES-128E
• Longer keys only require additional rounds
• Decryption algorithm very similar to encryption
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Overview of AES

• In 1997 NIST announced an open competition for 
cipher designers to replace the aging Data Encryption 
Standard (DES)
• 15 submissions
• Publicly evaluated based on security, simplicity, and 

suitability for implementing in hardware and software
• Rijndael algorithm developed by Vincent Rijmen and 

Joan Daemen – selected as winner in 2000
• AES is Rijndael restricted to 128-bit blocks and keys 

of 128, 192, or 256 bits
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AES-128E Algorithm
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Overview of AES (cont.)

• 128-bit input is copied into a two-dimensional (4x4) 
byte array referred to as the state
• Round transformations operate on the state array
• Final state copied back into 128-bit output

• AES makes use of a non-linear substitution function 
that operates on a single byte
• Can be simplified as a look-up table (S-box)
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AES-128E Modules: SubBytes
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• S-box transformation performed independently on each 
byte of the state

S-box
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AES-128E Modules: ShiftRows
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• Bytes in the last three rows of the state are shifted 
cyclically over variable offsets
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AES-128E Modules: MixColumns
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• Modulo polynomial-basis multiplication performed on each column 
of the state

• Can be simplified as series of AND and XOR operations

state[i] state'[i]
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AES-128E Modules: AddRoundKey
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AES-128E Modules: KeyExpansion
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• Initial 128-bit key is converted into separate keys for each of the 10 
required rounds

• Consists of Sbox transformations and some XORs
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Design Decisions

• Online/offline key generation
• Inter-round layout decisions

• Round unrolling
• Round pipelining

• Intra-round layout decisions
• Transformation pipelining
• Transformation partitioning

• Technology mapping decisions
• S-box synthesis as Block SelectRAM, 

distributed ROM primitives, or logic gates
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Round Unrolling / Pipelining

• Unrolling replaces a loop body (round) with N copies 
of that loop body

• AES-128E algorithm is a loop that iterates 10 times 
– N є [1, 10]
• N = 1 corresponds to original looping case
• N = 10 is a fully unrolled implementation

• Pipelining is a technique that increases the number 
of blocks of data that can be processed concurrently
• Pipelining in hardware can be implemented by 

inserting registers
• Unrolled rounds can be split into a certain number of 

pipeline stages
• These transformations will increase throughput but 

increase area and latency
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Unrolling factor = 10Unrolling factor = 2Unrolling factor = 1Unrolling factor = 5

Round Unrolling / Pipelining (cont.)
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Transformation Partitioning

• FPGA maximum clock frequency depends on 
critical logic path
• Inter-round transformations can’t improve 

critical path
• Individual transformations can be pipelined with 

registers similar to the rounds
• Transformations that are part of the maximum 

delay path can be partitioned and pipelined as 
well

• Can result in large gains in throughput with 
only minimal area increases
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Transformation pipelining = ON

Partitioning / Pipelining (cont.)

Transformation partitioning = ON

SubBytes ShiftRows MixColumns

KeyExpansion

AddRoundKey

KeyExpansionB KeyExpansionCKeyExpansionA
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S-box Technology Mapping

• With synthesis primitives, can map the S-box 
lookup tables to different hardware 
components

• Two S-boxes can fit on a single Block 
SelectRAM

constant SSYNROMSTYLE: string := “select_rom”; -- {logic, select_rom}
entity Sbox is

port(BYTE_IN : in std_logic_vector(7 downto 0);
BYTE_OUT : out std_logic_vector(7 downto 0));

attribute syn_romstyle : string;
attribute syn_romstyle of BYTE_OUT : signal is SSYNROMSTYLE;

end Sbox;
...

Sample VHDL code
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Experimental Setup

• FPGA target – Xilinx XC2V4000
• Medium-sized member of the Virtex-II device 

family
• 5760 CLBs (equivalent to 23040 slices)
• 120 Block SelectRAM modules, each can hold 

up to 18 Kbits of data
• Synplify Pro 7.2.1 from Synplicity used for 

synthesis
• ISE 5.2i from Xilinx used for the place-and-

route and timing analysis
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Experimental Setup (cont.)

• For each design we measured:
• Maximum possible clock rate – fclk
• Number of utilized slices – Nslice
• Number of utilized SelectRAMs – Nbram

• From these base statistics we calculated maximum 
throughput (Tput) and the latency to encrypt a 
single block (Lat)

• Some idea about the area efficiency can be 
obtained by analyzing the following metric:

Eff = Tput / Nslice , 

measured in throughput rate (bps) per slice
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Area and Performance Results

• Each design is labeled UFX-PPYZ:
• X – unrolling factor, X є {1, 2, 5, 10}
• Y – amount of transformation partitioning and 

pipelining:
• For Y = 0 the design has no pipelining
• For Y = 1 each unrolled round is pipelined
• For Y = 2 each round is split into two stages
• For Y = 3 each round is split into three stages

• Z – the S-box technology mapping
• Z = [B] uses Block SelectRAMs
• Z = [D] uses distributed ROM primitives
• Z = [L] instantiates logic gates
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Results: Observed Trends

• Unrolling increases the number of slices by a 
significant amount

• For the S-boxes, Block SelectRAMs perform slightly 
worse than the distributed ROM primitives, but there 
is a considerable savings in slice usage

• Aggressive transformation partitioning is effective in 
increasing throughput  
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SubBytes ShiftRows MixColumns
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Application – Random Number Generation

• Cryptographic applications often require good sources 
of random numbers:
• Key generation
• Initialization vectors

• Types of random number generators:
• Pseudo-Random Number Generators (PRNG) – appear 

to be random, initialized with an externally generated 
sequence (deterministic)

• Cryptographically Secure PRNGs (CSPRNG) – a PRNG 
where prediction of the next input bit given a previously-
generated sequence is computationally intractable

• True Random Number Generators (TRNG) – output is 
based on some underlying physical random process
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The Method [KohGaj04A]

• Make use of the clock jitter in a circuit:
• Variation of the significant instants of the clock
• Nondeterministic, may have many sources:

• Semiconductor noise
• Crosstalk
• Power supply variations
• Electro-magnetic fields
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Overall Design

CprE 583 – Reconfigurable ComputingSeptember 18, 2007 Lect-09.46

Ring Oscillators

Uses Propagation Delay – 130 MHz
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Sampler Circuit

One of the clock
signals is used
to sample the 
other signal
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Sampler Output

• Clock Skew (jitter) in between two clock signals is 
used (e.g. sampled) to generate a totally random bit

• The output clock skew:
• Will never be uniform
• Is not simple out-out-phase behavior
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Good Speed Ratios

• Ring oscillators with closely matched frequencies 
require that a desired speed ratio must be achieved

• What factors affect this achievement?
• Variation in CLB speed

• 7% difference between the slowest CLB and the fastest one
• Sensitive to temperature and difficult for measurement 

• Variation in the frequency of an oscillator with the chip 
temperature

• Close placement
• To use a large number of oscillators
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CLB Speed / Temperature Variation
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Summary

• FPGA platforms are a popular choice for implementing 
cryptographic applications
• High throughputs
• Relatively low design cost
• Algorithmic agility / upload

• Many other algorithms have been implemented that 
we haven’t discussed today:
• Public-key cryptography (e.g. RSA, ECC)
• Private-key cryptography (e.g. DES, 3DES)
• Cryptographic hash functions (e.g. MD5, RIPEMD)

• Security issues as they pertain to using FPGAs have 
not been fully addressed


