CprE / ComS 583 Reconfigurable Computing

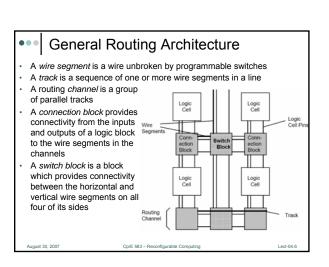
Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University

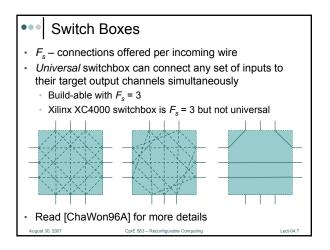
Lecture #4 - FPGA Technology Mapping

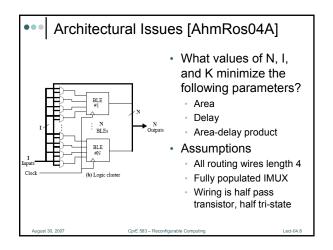
• • Quick Points

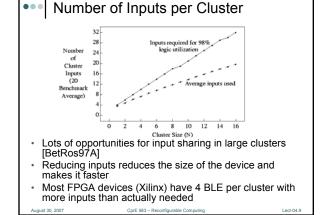
- · Lectures are viewable for students via WebCT
 - Quality is higher
 - Use discussion forums
- Class e-mail list created: cpre583@iastate.edu
- · Less focus on interconnect theory
 - · More on interconnects in actual devices
 - Read [AggLew94], [ChaWon96A], [Deh96A] for more details

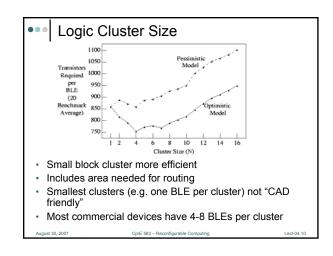
uguet 20, 2007

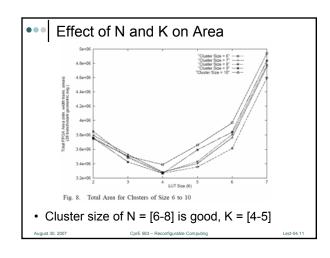

CarE E93 Reconfigurable Computing

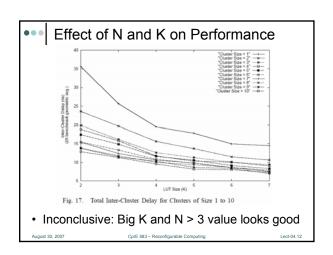

.

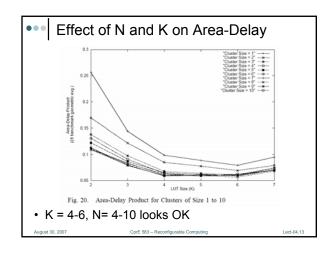

Recap Various FPGA programming technologies (Anti-fuse, (E)EPROM, Flash, SRAM): Polysilicon N+ diffusion ONO Diselectric Priedd Oxide Oxide SRAM most popular

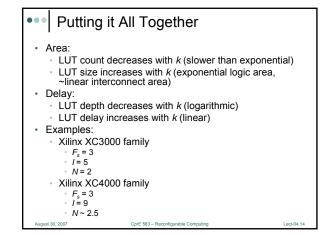


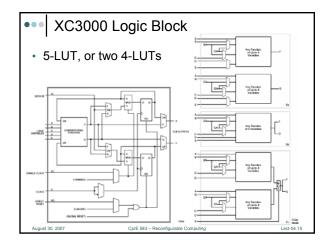

Outline Recap General Routing Architectures FPGA Architectural Issues Early Commercial FPGAs Xilinx XC3000 Xilinx XC4000 Technology Mapping using LUTs August 30, 2007 CprE 983 - Reconfigurable Computing Lect-04.5

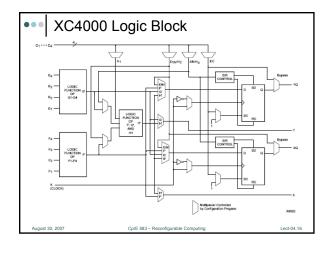


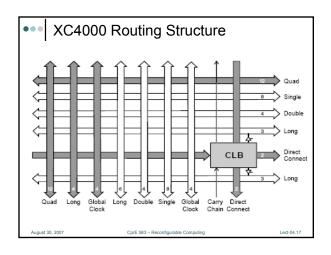


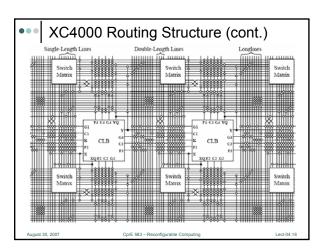












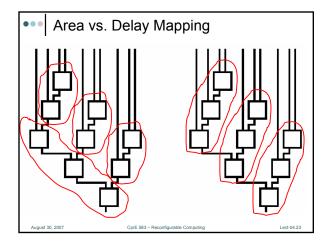
LUT Computational Limits • k-LUT can implement 22k functions • Given *n* such *k*-LUTs, can implement $(2^{2^k})^n$ Since 4-LUTs are efficient, want to find n such that $(2^{2^4})^n >= 2^{2^M}$ • Example – implementing a 7-LUT with 4-LUTs:

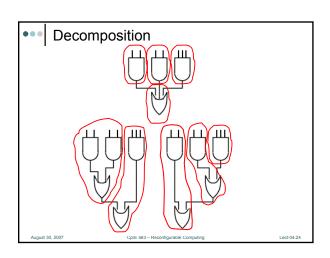
LUT Computational Limits (cont.)

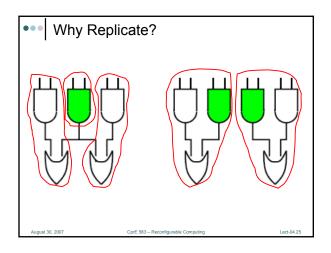
- · How much computation can be performed in a table lookup?
- Upper bound (from previous) n <= 2^{M-3}
- Need n 4-LUTs to cover a M-LUT:

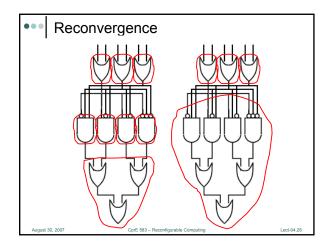
$$(2^{2^4})^n >= 2^{2^M}$$

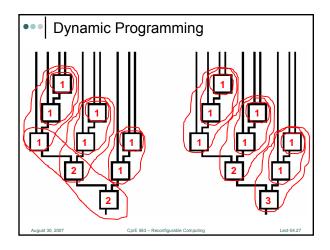
 $n\log(2^{2^4}) >= \log(2^{2^M})$
 $n2^4\log(2) >= 2^M\log(2)$
 $n2^4 >= 2^M$
 $n >= 2^{M-4}$


• Adding upper bound $-2^{M-4} \le n \le 2^{M-3}$


LUTs Versus Memories


- Can also implement $(2^{2^k})^w$ as a single large memory with k inputs
- Large memory advantage no need for interconnect and only one input decoder required
- Consider a 32K x 8bit memory (170M λ², 21ns latency)
 - w = 8
- k = 16 (or 2 8-bit inputs to address 2^{16} locations)
- Can implement an 8-bit addition or subtraction
- Xilinx XC3042 288 4-LUTs (180M λ², 13ns CLB delay)
- 15-bit parity calculation:
 - 5 4-LUTs (<2% of XC4032) 3.125M λ²)
 - Entire SRAM 170M λ^2
- 7-bit addition:
 - 14 4-LUTs (<5% of XC4032) 8.75M λ²)
 - Entire SRAM 170M λ^2


LUT Technology Mapping


- · Task: map netlist to LUTs, minimizing area and/or delay
 - Similar to technology mapping for traditional
 - Library approach not feasible O(2^{2^k} / k!) elements in library
 - · In general it is NP-hard

Summary

- FPGA design issues involve number of logic blocks per cluster, number of inputs per logic block, routing architecture, and k-LUT size
- Can build *M*-LUT with *n k*-LUTs where $2^{M-3} \le n \le 2^{M-4}$
- Large LUTs generally inefficient
 Technology mapping is simplified because of 4-LUT properties
 - Techniques decomposition, replication, reconvergence, dynamic programming
 Area- or delay-optimal mapping still NP hard