

$\bullet \bullet$	Quick Points

- HW \#1 is out
- Due Thursday, September 6 (12pm)
- Submission via WebCT
- Possible strategies

$\bullet \bullet$ Outline
- Recap
- FPGA Taxonomy
- Lookup Tables and Digital Logic
- Interconnect / Routing Structures
- FPGA Architectural Issues
- Can be quantitatively measured and compared
- Capacity, cost, ease of programming still important issues
- Numerous challenges to reconfiguration

August 28, 2007
CPrE 583-Reconfigurable Computing
Lect-03.3

| FPGA TaXOMOMy |
| :--- | :--- |
| - Programming technology - how is the FPGA programmed? Where |
| does it store configuration bits? |
| - SRAM |
| - Anti-fuse |
| - EPROM |
| - Flash memory (EEPROM) |
| Logic cell architecture - what is the granularity of configurable |
| component? Tradeoff between complexity and versitility |
| - Transistors |
| - Gates |
| - PAL/PLAs |
| - LUTs |
| - CPUs |
| Interconnect architecture - how do the logic cells communicate? |
| - Tiled |
| - Hierarchical |
| - Local |
| August 28, 2007 |

Anti-Fuse Technology

- Dielectric that prevents current flow
- Applying a voltage melts the dielectric

- One time programmable - not really reconfigurable computing

August 28, 2007
Cpre 583 - Reconfigurable Computing

$\bullet \bullet$ E(E)PROM Technology

- To program a transistor, a voltage differential between the access/floating gates accelerates electrons from the source fast enough to travel across the insulator to the floating gate
- Electrons prevent the access gate from closing
- EPROM - Erasable Programmable Read-Only Memory Nonvolatile
Can be erased using UV light
- EEPROM - Electrically Erasable Programmable Read-Only Memory

Removes the electrons by reversing the voltage differential
Limited number of erases possible
Precursor to Flash technology

Lookup Tables (LUTs)

- What is a Lookup Table (LUT)?
- In most generic terms, a pre-loaded memory

- Great way of implementing some function without calculation - a cheat sheet

- Each k-LUT operates on k one-bit inputs
- Output is one data bit
- Can perform any Boolean function of k inputs

August 28.2007
CPrE 583-Reconfigurable Computing

-•• LUT Mapping (cont.)

- Implement the following logic function with k LUTs, for $\mathrm{k}=\{2,3,4\}$:

$$
\mathrm{F}=\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{3}+\mathrm{A}_{1} \mathrm{~A}_{2} \overline{\mathrm{~A}}_{3}+\overline{\mathrm{A}}_{0} \overline{\mathrm{~A}}_{1} \overline{\mathrm{~A}}_{2}
$$

$\bullet \bullet$ LUTs and Digital Logic (cont.)

- k inputs $\rightarrow 2^{k}$ possible input values
- k-LUT corresponds to $2^{k} \times 1$ bit memory
- How many different functions?
- Two-input $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ case
$\mathrm{F}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)=\left\{0, \mathrm{~A}_{1}\right.$ nor $\mathrm{A}_{2}, \overline{\mathrm{~A}}_{1}$ and $\mathrm{A}_{2}, \overline{\mathrm{~A}}_{1}, \mathrm{~A}_{1}$ and $\overline{\mathrm{A}}_{2}, \overline{\mathrm{~A}}_{2}, \mathrm{~A}_{1}$ xor $\mathrm{A}_{2}, \mathrm{~A}_{1}$ nand $\mathrm{A}_{2}, \mathrm{~A}_{1}$ and $\mathrm{A}_{2}, \mathrm{~A}_{1}$ xnor $\mathrm{A}_{2}, \mathrm{~A}_{2}, \overline{\mathrm{~A}}_{1}$ or A_{2}, A_{1}, A_{1} or \bar{A}_{2}, A_{1} or $\left.A_{2}, 1\right\}=16$ different possibilities
- What to store in the LUT?

August 28.2007
Cpre 583-Reconfigurable Computing
Lect-03.14

$\bullet \bullet$ Logic Block Granularity

- Each k-LUT requires 2^{k} configuration bits:
- The 2-LUT implementation requires $2^{2} \times 7=28$ bits
- The 3-LUT needs $2^{3} \times 3=24$ bits

The 4-LUT needs just $2^{4} \times 1=16$ bits

- Using configuration bits as area measure (area cost), the 4-LUT implementation achieves minimum logic area

- \quad General Routing Architecture

- A wire segment is a wire unbroken by programmable switches
- Typically one switch is attached to each end of a wire segment
- A track is a sequence of one or more wire segments in a line
- A routing channel is a group of parallel tracks
- A connection block provides connectivity from the inputs and outputs of a logic block to the wire segments in the channels

August 28, 2007
Cpre 583 - Reconfigurable Computing
Lect-03.21

-• Interconnect Design Issues

- Flexibility - route anything (within reason?)
- Bisection bandwidth
- Simultaneous routes
- Area
- Bisection bandwidth
- Switches
- Delay (and Power)
- Switches in path
- Wire length
- Routability - difficulty of finding a route

August 28, 2007
CreE 583-Reconfigurable Computing
Lect-03.20

Attempt 1 - Crossbar

- Any operator may want to take as input the output of any other operator
- Let n be the number of LUTs, and $/$ the length of wire
Delay:
Parasitic loads $=k n$
Switches/path = 1
Wire length $=O(k n)$
Delay $=O(k n)$
- Area:

Bisection BW $=n$
Switches $=k n^{2}$
Area $=O\left(n^{2}\right)$

$\bullet \bullet$	Summary

- Three basic types of FPGA devices
- Antifuse
- EEPROM
- SRAM
- Key issues for SRAM FPGA are logic cluster, connection box, and switch box.
- Most tasks have structure, which can be exploited by LUT arrays with programmable interconnect (FPGAs)
- Cannot afford full interconnect, or make all interconnects local

