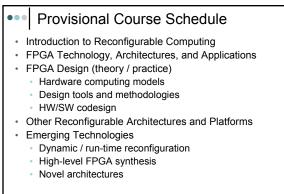
CprE / ComS 583 Reconfigurable Computing

Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University

Lecture #2 - Comparing Computing Machines

Quick Points

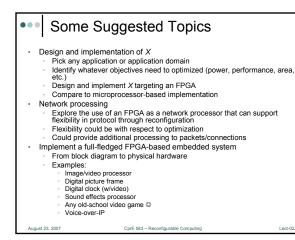

- Course survey posted on WebCT
 - Not very anonymous
 - · Will do again around the middle of term
- HW #1 will be out by tonight
 - Due 1 week from Tuesday (September 4)
 - · Will require a couple of concepts introduced next week to be completed

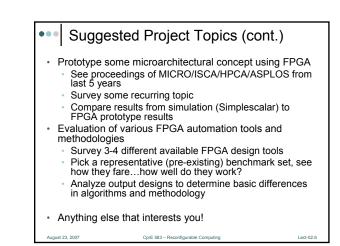
Lect-02.2

· Don't stress out!

August 23, 2007

· Next week Thursday - online only class CprE 583 - Reconfig




Weekly schedule: <u>http://class.ece.iastate.edu/cpre583</u>

CprE 583 - Reconf

- **Course Project**
- · Perform an in-depth exploration of some area of reconfigurable computing
- Whatever topic you choose, you must include a strong experimental element in your project
- Work in groups of 2+ (3 if very lofty proposal)
- · Deliverables:
 - Project proposal (2-3 pages, middle of term)
 - Project presentation (25 minutes, week 15)
 - Project report (10-15 pages, end of term)

CprE 583 - Reconfigurable Computin

••• Previous Year's Topics
 Fall 2006 projects: "FPGA Implementation of Frequency-Domain Audio Filter Bank" (2 students) "Transparent FPGA-Based Network Analyzer" (2 students) "FPGA-Based Library Design for Linear Algebra Applications" (2 students) "An Improved Approach of Configuration Compression for FPGA-based Embedded Systems" (2 students) "Analysis of Sobel Edge Detection Implementations" (1 student) "Artificial Neural Networks on Dynamically Reconfigurable FPGAs" (3 students)
 Papers and presentations for these are available upon request
• We can do better!

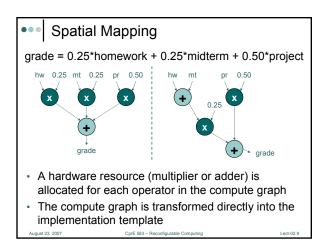
CprE 583 - Reconfi

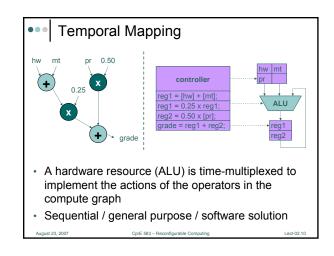
We can do better!

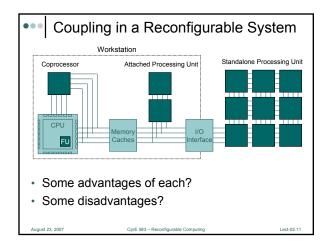
August 23, 2007

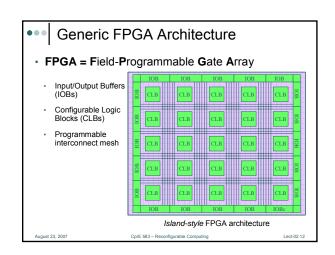
Recap

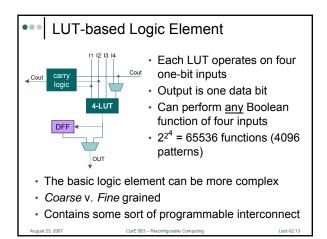
ust 23, 2007

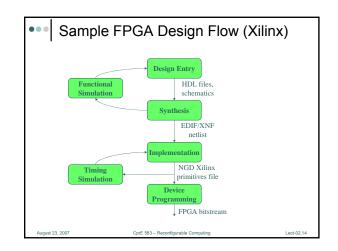

Reconfigurable Computing:

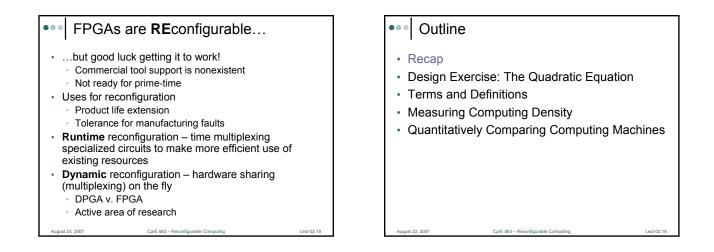

- (1) systems incorporating some form of hardware programmability – customizing how the hardware is used using a number of physical control points [Compton, 2002]
- (2) computing via a post-fabrication and spatially programmed connection of processing elements [Wawrzynek, 2004]


Lect-02.


• (3) general-purpose custom hardware [Goldstein, 1998]

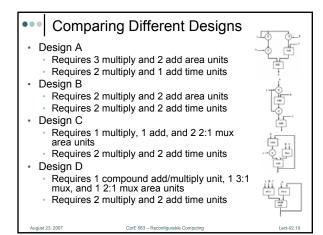

CprE 583 - Reco

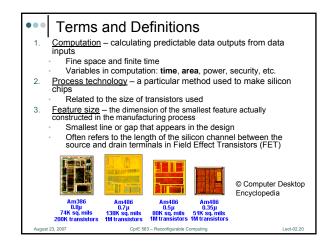


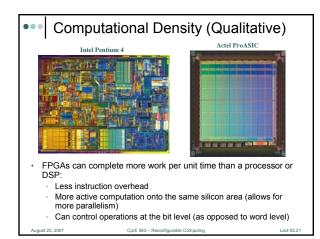


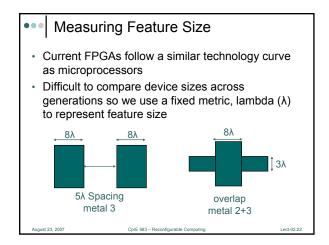
Lect-02.

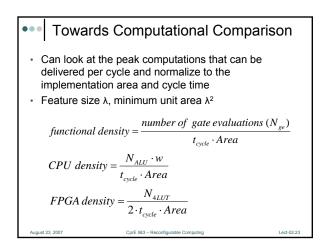
••• Design Exercise

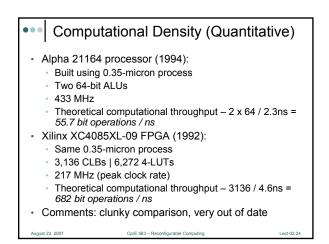

• Consider the function: $y = Ax^2 + Bx + C$


CprE 583 - Reconf


- In groups of 2, design an architecture for this function
 - · Building blocks adders, multipliers, muxes
 - Don't worry too much about control or timing
- · Best circuit design wins a prize

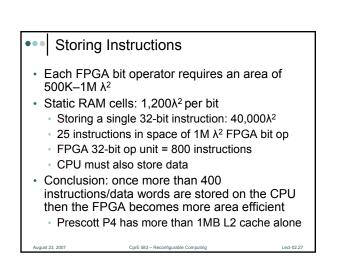

August 23, 2007

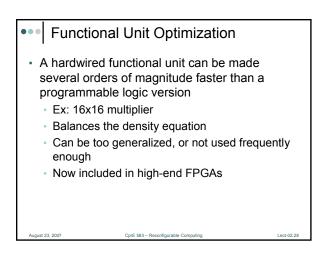

••• Various Possible Designs				
Design A	Design B	Design C		
		Design D		
August 23, 2007 CprE 583 – Reconfigurable Computing Lect-02.18				



••• Computational Density (Quantitative)		
 Intel Pentium 4 "Prescott" processor (2004): Built using 90-nm process 2 simple double-speed ALUs, 1 complex single-speed ALU = approx. 5 32-bit ALUs 		
 3.2 GHz Theoretical computational throughput – 5 x 32 / .3125 ns = 512 bit operations / ns Xilinx XC4VLX200 FPGA (2004): 		
 Same 90-nm process 22,272 CLBs 178,176 4-LUTs 500 MHz (peak clock rate) Theoretical computational throughput – 89,088 / 2.0ns = 44,544 bit operations / ns Too good to be true? 		

••• Notes


- XC4V200 is 87 times faster than Pentium 4?
- · Only simple integer arithmetic
 - Division, sqrt, etc.
 - Microprocessors have dedicated FP logic
- · How efficiently are resources used?
 - Ex: if only 8-bit operations being used, FPGA is an additional 4x more computationally dense than 32-bit CPU
 - Challenges making FPGAs run consistently at their peak rate


CprE 583 - Reconfigurable Com

Lect-02.2

· What about cost?

August 23, 2007

Summary

August 23, 2007

- FPGAs spatial computation
- CPU temporal computation
- FPGAs are by their nature more computationally "dense" than CPU
 - In terms of number of computations / time / area
 Can be quantitatively measured and compared
- Capacity, cost, ease of programming still important issues

CprE 583 - Reconfigurable Computing

Lect-02.29

Numerous challenges to reconfiguration