
Revisiting the Cascade Circuit in Logic Cells

of Lookup Table Based FPGAs

Nam-Sung Woo

AT&T Bell Laboratories, 2A-230

600 Mountain Ave., Murray Hill, New Jersey, 07974

nswoo@research.att.com

This paper shows that cascade circuits in the
logic cells of all current lookup table based FP-
GAs support only linear cascading chain and, as
a result, contribute to long cascading delay. We
present an enhanced cascade circuit that will re-
duce cascading delay signi�cantly: from linear
time to log time in terms of the number of logic
cells cascaded. We show that the additional area
for the new cascade circuit is very small. We dis-
cuss an interaction between architecture design
decision and CAD (in particular, placement) for
the design of dedicated routing structure for cas-
cade signals between logic cells. We illustrate the
advantage of the new cascade circuit with an ex-
ample of 32-bit equality checking circuit.

1 Introduction

FPGA is an o�-the-shelf VLSI chip that contains
programmable logic cells and programmable
routing resource. FPGAs can be divided into two
classes | coarse-grain and �ne-grain | based on
the logic capacity of each logic cell. The coarse-
grain FPGA contains logic cells each of which

has rich functionality, while the �ne-grain
FPGA contains logic cells with limited func-
tionality. Coarse-grain FPGAs include AT&T's
ORCA [1, 2, 3], Xilinx's XC4000 [4, 5], Altera's
Flex 8000 [6], and XC/ATT 3000 [7, 8]. As an ex-
ample, Figure 1 shows the combinational portion
of a logic cell, called PLC (programmable logic
cell), of the ORCA FPGA. (We omitted four
ipops and some logic associated with them.)
It contains four lookup tables, T0 { T3, each of
which is a 16-bit memory, along with a fast carry
circuit, multiplexers and gates.

Most of the coarse-grain FPGAs contain a cas-
cade circuit in each logic cell to collect partial re-
sults. However, all existing FPGAs provide only
the linear cascade circuit which results in long
cascading delay: see the next section.

The design technique of collecting partial re-
sults by cascading is frequently used for im-
plementing both datapath modules and control
(i.e., random) circuits in FPGAs. Reducing cas-
cading delays in FPGA implementations is im-
portant to speed up the implemented (applica-
tion) circuits.

In this paper, we present a new cascade cir-
cuit that supports a tree structure in collecting
partial results. The new circuit reduces the cas-
cading delay signi�cantly: from linear to \log"
in the number of logic cells cascaded. We show
the advantage of the new cascade circuit by an

1

T1

T0

pfunand

pfumux

xor
pfuxor
xor

f3

f2

f1

f0

c0in
(invertable)

 fast
carry circuit

carry−in

carry−out

T3

T2

Figure 1: Combinational Portion of A Logic Cell
of ORCA FPGA

example, 32-bit equality checking circuit. We
also discuss an interaction between FPGA archi-
tecture design and FPGA CAD in terms of the
dedicated routing wires for cascading signals.

2 A Survey of Cascading Cir-

cuits in Current FPGAs

Let us consider the cascade circuit in the logic
cells of three commercial lookup table-based FP-
GAs: ORCA, XC4000 and Flex 8000.

The ORCA FPGA contains a 3-input NAND
gate, called \pfunand", in each logic cell: see Fig-
ure 1. Two inputs of the pfunand gate come from
internal lookup tables of the same logic cell, and
the other input comes from an external source
(through c0in port). The pfunand gate and its

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

A7, A6
B7, B6

A5, A4
B5, B4

A3, A2
B3, B2

A1, A0
B1, B0

c0in (inv)

cell−1

cell−2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

c0in (inv)

Y

cell−8

B29, B28
A29, A28

B31,B30
A31,A30

 c0in (unused)

eq1’

eq2’

pfunand

pfunand

pfunand

Five more
logic cells

Figure 2: An area-optimal implementation of 32-
bit equality checking circuit in ORCA

direct input from c0in are used as a cascade cir-
cuit as explained below.

Suppose we have two 32-bit data, A[31:0] and
B[31:0], and we want to produce an active-low

signal, Y, when the two data are equal. The
best ORCA implementation in terms of area is
shown in Figure 2, in which eight logic cells are
used. In each logic cell, four lookup tables are
divided into two groups and each group compares
a pair of two bits (e.g., A1, A0 and B1, B0).
Each lookup table produces \1" output if the
input pair is equal. The pfunand gate in cell-1
produces an active-low equal signal , eq1', for the
least signi�cant four-bit pair. The eq1' signal is
inverted when it goes through the c0in port
of cell-2. (This inversion comes for free in the
ORCA FPGA.)

2

The pfunand gate in cell-2 cascades the
above equal signal with two equal signals for the
next four bits (i.e., A7-A4 and B7-B4) produced
by the lookup tables in the same cell. The out-
put of the pfunand gate, eq2', is an active-low
signal that shows the equality of a pair of 8 bits
(A7-A0 and B7-B0). Finally, the pfunand gate
in cell-8 combines the equal signal for low order
28-bit pair with two equal signals for the most
signi�cant 4-bit pair to produce the �nal equality
signal, Y. Note that the pfunand gates in cell-2
through cell-8 collect (or cascade) partial results
to produce the �nal result. 1

The cascading pattern in Figure 2 is \linear"
because one needs N-1 cascading stages to collect
partial results from N logic cells.

Now, let us consider the XC4000 FPGA. The
combinational circuit portion of a logic cell,
called CLB (con�gurable logic block), of the
XC4000 FPGA is shown in Figure 3. (We omit-
ted two ipops in this �gure.) There are three
lookup tables (LUTs): F, G and H. The �rst
two are 16-bit RAMs, while the last one is an 8-
bit RAM. The H-LUT can be used for cascading
partial results; see p. 5 of XC4000 data book [5].
Note that the H-LUT has three input signals,
two of which come from internal (i.e., F and G)
LUTs and the other input comes from outside of
the logic cell. That is, the input structure of the
H-LUT is the same as that of the pfunand gate
in ORCA. Therefore, the H-LUT also provides
only the linear cascading capability.

An area optimal implementation of the 32-bit
equality checking circuit using XC4000 FPGA
would require eight CLBs with the same circuit
structure as the one in Figure 2. The only dif-
ference would be the polarity of the signals gen-
erated from the CLBs, i.e., the equal signal from

1Of course, one can combine intermediate results by

using an extra logic cell; however, this solution uses more

logic cells and requires more routing resource than the

above solution.

F−LUT

G−LUT

H−LUT

g

 carry
 circuit

carry−in

carry−out

external input

f

Figure 3: Combinational Portion of XC4000
Logic Cell (CLB)

each CLB can have either active-high or active-
low polarity.

A logic cell, called logic element (LE), of
the Flex 8000 FPGA contains a cascade circuit
which is either a 2-input AND gate or a 2-input
OR gate. One input comes from the internal
LUT, a 16-bit RAM, and the other comes from
outside of the logic cell. (The latter input comes
from a neighboring logic cell through a dedicated
wire.) As a result, this logic cell also provides
only the linear cascading capability.

In summary, the logic cells of the above three
lookup table-based FPGAs contain cascade cir-
cuits that support only linear cascading.

3 Tree-structured Cascade

Circuit

After giving a motivation, we will describe the
new cascade circuit and its advantage. We will
use the ORCA FPGA in Figure 1 for our discus-
sion.

3

3.1 Motivation

When an FPGA implementation of an applica-
tion circuit contains cascaded circuit(s), the de-
lay of the cascading chain usually determines the
speed of the implemented circuit.

For instance, consider the circuit in Figure 2.
Let Dt denote the delay of a lookup table, Dc

the delay of the cascade circuit inside a logic
cell. (Dc is the delay from either the output
of a lookup table or the c0in input port to the
output of the pfunand gate, i.e., cascade circuit
element). Also, let Dr denote the routing delay
of a cascade signal between two logic cells; for
simplicity, we assume that Dr is the same for
every cascade signal. Assuming all input signals
(A[31:0] and B[31:0]) arrive at the same time, we
get the total delay from input to output, T8, as
follows: T8 = Dt +Dc + 7(Dc +Dr).
The �rst two terms are for the lookup table and
the pfunand gate, respectively, in cell-1. The
third term is for cascading in the other seven
cells.

In general, for a linear cascaded circuit of N
logic cells, the total delay, TN , is
TN = Dt +Dc + (N � 1)(Dc +Dr)
Thus, the total delay is dominated by the delay
of the cascading path.

We will describe a way of reducing TN by re-
ducing the co-e�cient of the third term (i.e.,
N � 1) into a \log" term. We will also describe
a way of reducing Dr.

3.2 A Balanced-Tree Cascade Circuit

We propose that the cascade circuit element in
each logic cell have two or more inputs from ex-
ternal source (i.e., from outside of the logic cell).
Considering the area overhead associated with a
new (input) port, we think two external inputs to
a cascade circuit element are reasonable. Having
two external inputs to the cascade element, we
can build a balanced tree instead of linear chain

pfunand

f3

f2

f1

f0

c1in (invertible)

c0in
(invertible)

T3
output

T2
outputs

T1
output

T0
output

Figure 4: An Enhanced Cascade Circuit for
ORCA Logic Cell

for cascading, which will reduce cascading delay
signi�cantly.

As a concrete example of the proposed circuit,
we show an enhanced cascade circuit of ORCA
logic cell in Figure 4: compare it with the corre-
sponding portion of Figure 1. The new pfunand

gate is a 4-input NAND gate: two inputs come
from internal LUTs and the other two come from
external sources (c0in and c1in).

Other FPGAs can also be equipped with the
proposed cascade circuit in a similar way. For
example, a logic cell of XC4000 FPGA can be
upgraded to have a 16-bit H-LUT and an extra
input connection to it. As another example, a
logic cell of Flex 8000 FPGA can be upgraded
to have 3-input gate (instead of 2-input gate) in
its cascade circuit portion and a new connection
to the gate.

Another way of reducing TN in Section 3.1 is to
reduce Dr by using \dedicated routing wires" for
cascading signals between logic cells. While the
Flex 8000 FPGA uses such dedicated cascading

4

T3+
T2

T1+
T0

2
2
2
2

A19,A18
B19,B18

A17,A16
B17,B16

T3+
T2

T1+
T0

2
2
2
2

A15,A14
B15,B14

A13,A12
B13,B12

T3+
T2

T1+
T0

2
2
2
2

A19,A18
B19,B18

A17,A16
B17,B16

T3+
T2

T1+
T0

2
2
2
2

A15,A14
B15,B14

A13,A12
B13,B12

T3+
T2

T1+
T0

2
2
2
2

A19,A18
B19,B18

A17,A16
B17,B16

T3+
T2

T1+
T0

2
2
2
2

A15,A14
B15,B14

A13,A12
B13,B12

T3+
T2

T1+
T0

2
2
2
2

A3, A2
B3, B2

A1, A0
B1, B0

c0in (inv)

cell−1

cell−4

c1in (inv)cell−5

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

c0in (inv)

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

c0in (inv)

c1in (inv)

cell−2

B5, B4
A5, A4

A7, A6
B7, B6

cell−3

A9, A8
B9, B8

A11,A10
B11,B10

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

c0in (inv)

c1in (inv)

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

T3+
T2

T1+
T0

2
2
2
2

A21,A20
B21,B20

A23,A22
B23,B22

cell−6

cell−7

cell−8

A25,A24
B25,B24

A27,A26
B27,B26

A29,A28
B29,B28

A31,A30
B31,B30

Y

c1in

c0in

c1in

c1in

c0in
c0in

Figure 5: An Implementation of 32-bit Equality Checking by Proposed New Logic Cells of ORCA

wires, ORCA and XC4000 FPGAs do not. More
details of the dedicated cascading wires are de-
scribed in Sections 4 and 3.3.

3.3 An Analysis

The proposed cascade circuit allows us to have
a cascading tree rather than a cascading chain.
The total delay of cascaded circuit with N logic
cells, UN , is
UN = Dt +Dc + log2N(Dc +Dr)
Comparing UN with TN , we can see that the
former grows much slowly than the latter as N
grows.

As an example, let us reimplement the 32-bit
equality circuit described in Section 2. Figure 5

shows a new implementation using the logic cell
structure in Figure 4. The longest path consists
of cell-1, cell-2's pfunand gate, cell-3's pfunand
gate, and cell-5's pfunand gate. The total delay
of this implementation is
U8 = Dt +Dc + 3(Dc +Dr)
Comparing this delay with the above T8, we can
see the coe�cient of the third term is reduced
from 7 to 3.

Considering the current technology, we can as-
sign values to the above variables as follows : Dt

= 4 ns, Dc = 2 ns, and Dr = 1.5 ns. (The Dc

contains not only the delay of the pfunand gate,
but also the delay from either LUT output or
c0in to the input of the gate.) Replacing these
numbers to T8 and U8, we get,

5

T8 = 4 + 2 + 7(2 + 1:5) = 30:5ns
U8 = 4 + 2+ 3(2 + 1:5) = 16:5ns
Therefore, the proposed cascade circuit con-
tributes to 46% speed-up in an implementation
of the 32-bit equality checking circuit.
Now, let us assume that we use dedicated wires

for the cascading signals between logic cells, as
described in Section 3.2. This will reduce the
value of Dr; let us say the new Dr = 0.5 ns.
Then, the updated value of U8 is 13.5 ns; we got
56% speed-up compared to the above T8.

3.4 Cost of the New Cascade Circuit

The additional (silicon) area introduced by the
proposed cascade circuit consists of two parts:

1. Additional area for the new cascade circuit
element (e.g., pfunand gate of ORCA or
H-LUT of XC4000),

2. Additional area for an extra input line to
the cascade circuit element.

The �rst part varies with the architecture of
FPGA. For ORCA, it is an increase from a 3-
input NAND gate to a 4-input NAND gate: a
very small increase. The second part would vary
with the routing architecture of FPGA. If we
use regular routing resource or existing dedicated
routing resource (e.g., carry wires) for cascading
signals, the cost of the second part is close to
zero. If we use new dedicated routing resource,
the cost of the second part would include the
area for two multiplexers and a few bits of con-
�guration RAM. (See the next section for more
details.)

4 Routing Structure for Dedi-

cated Cascading Wires

As mentioned above, the dedicated routing wires
for cascading signals between logic cells would

futher reduce the total cascading delay. In this
section, we will discuss a relationship between
routing architecture design and CAD. In partic-
ular, we will consider two routing structures for
dedicated cascading signals and their impact on
the placement (of logic cells).

logic
cell

c1in

mux

mux

c0in

pfunand

out

logic
cell

c1in

mux

mux

c0in

pfunand

out

(a) (b)
W N E

W S E W SW S SE E

(Fig. 4) (Fig. 4)

W NW N NE E

Figure 6: Two dedicated routing structures for
cascading signals

First, let us assume that c1in signal of a
logic cell comes from three neighbor logic cells
(North, East and West) and that c0in signal
comes from three neighbor logic cells (South,
East and West). Figure 6(a) shows this rout-
ing structure. We need two 3-to-1 multiplexers
for c0in and c1in ports. The number of fanout
of the pfunand gate of a logic cell is 6.
Second, let us assume that c1in signal comes

from �ve neighbor logic cells (North, East, West,
Northeast, Northwest) and that c0in signal
comes from �ve neighbor logic cells (South, East,
West, Southeast, Southwest). Figure 6(b) shows
this structure. We need two 5-to-1 multiplexers
for c0in and c1in ports. The number of fanout
of the pfunand gate of a logic cell is 10.
Comparing the above two routing structure,

we can tell that the former is more area e�cient.
However, the former may make placement (of

6

logic cells) impossible in some cases, as described
below.

Suppose that we want to place the eight logic
cells in Figure 5 into nine logic cells of 3x3 ar-
ray. Let us assume that the least signi�cant 12
bits of A and B data must be placed at the left-
most three logic cells because of a user's con-
straint (e.g., pin or routing constraint). Then,
we cannot �nd a valid placement with the rout-
ing structure of Figure 6(a). On the other hand,
if the routing structure of Figure 6(b) is used we
can �nd valid placements one of which is shown
in Figure 7.

cell−3

cell−2

cell−1

cell−4

c0in

c0in

c1in

cell−5

c1in

cell−6

cell−7

cell−8

c1in

Y

c0inc0in

Figure 7: Placement examples

5 Concluding Remarks

We presented a new cascade circuit that allows
tree-structured collection of partial results. The
main idea is to provide (at least) two external in-
puts to the cascade circuit element in each logic
cell. We showed how two existing FPGAs can be
changed to incorporate the new cascade circuit.
We also showed that the amount of speed-up by
the proposed circuit is signi�cant and that the
cost of the proposed circuit is very small. We
discussed an interaction between architecture de-

cisions of FPGA and CAD.
The new cascade circuit element (e.g., 4-

input NAND for ORCA, and 16-bit H-LUT for
XC4000) would also enhance the e�ciency of im-
plementing random logic circuits. The work of
measuring the amount of the enhancement is un-
der way.

References

[1] B. Britton, D. Hill, W. Oswald, N-S Woo,
and S. Singh. Optimized recon�gurable cell
array architecture for high-performance �eld
programmable gate arrays. Proc. of IEEE

Custom Integrated Circuits Conf. 1993, pages
7.2.1{7.2.5, 1993.

[2] D. Hill, B. Britton, B. Oswald, N-S Woo,
S. Singh, C-T Chen, and B. Krambeck.
ORCA : A New Architecture for High-

Performance FPGAs, pages 52{60. Springer-
Verlag, 1993.

[3] AT&T Microelectronics. Optimized Recon-

�gurable Cell Array (ORCA) Series Field-

Programmable Gate Arrays, 1993.

[4] H-C Hsieh, W. Carter, J. Ja, E. Che-
ung, S. Schreifels, C. Erickson, P. Frei-
din, and L. Tinkey. Third-generation ar-
chitecture boosts speed and density of �eld-
programmable gate arrays. In Proc. of IEEE

1990 Custom Integrated Circuits Conf., pages
31.2.1{31.2.7, 1990.

[5] Xilinx. XC4000 Data Book, 1991.

[6] Altera. FLEX 8000 Programmable Logic De-

vice Family, 1993.

[7] Xilinx. Technical Data Book: XC3000 Logic

Cell Array Family, 1990.

[8] AT&T Microelectronics. ATT3000 Series

Field Programmable Gate Arrays, 1991.

7

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

