
Memory/Logic Interconnect Flexibility in FPGAs with
Large Embedded Memory Arrays

Steven J.E. Wilton, Jonathan Rose, and Zvonko G. Vranesic

Department of Electrical and Computer Engineering

University of Toronto

Toronto, Ontario, Canada, M5S 1A4

fwilton,jayar,zvonkog@eecg.toronto.edu �

Abstract

As the capacities of �eld-programmable gate arrays
(FPGAs) grow, it becomes desirable to create FPGAs
with embedded memory arrays. This paper examines the
exibility of the interconnect structure that joins mem-
ory and logic. For architectures with only a few memory
arrays, we �nd that both the routability and the delay
of circuits are insensitive to the memory/logic intercon-
nect exibility, which implies that this interconnection
can be made very inexible. This is in contrast to the
logic connection block exibility, which has been shown
to require high exibility [1]. For architectures with more
arrays, the memory/logic interconnect exibility require-
ments increase and approach those of logic interconnect.

1 Introduction

As FPGAs grow to encompass entire systems, it is
becoming clear that an e�cient way to implement large
blocks of memory is needed. FPGAs with embed-
ded memory blocks are now available from several ven-
dors [2, 3], in contrast to the �ne-grain LUT RAM avail-
able earlier [4, 5]. Both types of memory provide higher
integration, faster memory access and reduce the demand
for FPGA I/O pins compared to o�-chip memory imple-
mentations.

In our previous work [6, 7], we examined FPGA mem-
ory architectures in isolation and showed how to provide
the ability to implement many di�erent numbers and
shapes of user memories. This paper explores the struc-
ture of the interconnection between memory and logic.
We are interested in �nding the minimum memory/logic
interconnect exibility (the cost of the interconnect) that
provides both routability and high speed. To do this we
employ an experimental approach in which benchmark
circuits are implemented on many di�erent interconnect
architectures. The following section describes our base
architectural assumptions. Section 3 describes how we
created enough circuits to test the architecture, and the

�This work was supported by the Natural Sciences and Engi-

neering Research Council of Canada, MICRONET, and the Walter

C. Sumner Foundation.

Logic Block

Memory Array

Figure 1: FPGA with Embedded Memory

implementation procedure. The subsequent sections give
results and conclusions.

2 Architectural Framework

We assume that an FPGA with embedded memory
consists of distinct logic and memory resources, as il-
lustrated in Figure 1. The memory resources consist of
a set of identical arrays that can be combined to im-
plement the required user memory con�guration, similar
to [6]. The number of bits in each array is �xed, but the
aspect ratio can be con�gured by the user. In the results
presented in Section 4, we have assumed that each array
has two kilobits, and has a con�gurable data width of
1, 2, 4, or 8 (similar to [2] and [7]). Unlike [6], here we
assume that each memory array has separate input and
output data ports (as well as an address port).

The logic resources of the FPGA are assumed to
consist of �ve-input lookup tables, interconnected us-
ing symmetric horizontal and vertical channels like those
of [1] and [4]. At the intersection of each horizontal and
vertical channel is a switch block. The exibility of each
switch block, Fs, is de�ned as the total number of pos-
sible connections o�ered to each incoming wire [1]. In
this paper, we assume Fs = 3, which is consistent with
previous work. All segments are of length 1; that is, seg-
ments only connect neighbouring switch blocks. Each
pin of each lookup table can be connected to two chan-
nels; within each channel, each pin can be connected to



Logic Block
Switch Block

Memory
Block

Figure 2: Memory/Logic Routing Structures

Fc tracks. In Section 4, we vary Fc between W and W

2
,

where W is the number of routing tracks per channel.

The memory arrays are assumed to be positioned in a
single row in the middle of the chip, as shown in Figure 1,
with logic blocks above and below the memory arrays.
This is similar to the Altera FLEX10K architecture [2]
and the Actel 3200DX architecture [3].

Figure 2 shows the assumed interconnect structure be-
tween the logic and memory portions of the FPGA. In
the �gure, each solid line is a channel ofW parallel rout-
ing tracks. The vertical tracks in the top half of the logic
are connected to those in the bottom half, and the pins
on each memory array are connected to one or more of
these vertical tracks. Note that in Figure 2, the vertical
tracks are shown to \bend" around the memory blocks;
in multi-metal layer implementations, the vertical tracks
might simply cross on top of the arrays.

We de�ne the exibility of the memory/logic intercon-
nect, Flm, as the number of vertical tracks to which each
memory pin can connect. If there are r logic blocks per
memory block in the horizontal dimension, the maximum
possible Flm is rW (in Figure 2, r = 4). In Section 4, we
will vary Flm from 1 to its maximum value and examine
the e�ects on routability and delay.

3 Architecture Evaluation Method

This section describes how we investigate the e�ect
of varying the amount of exibility in the memory/logic
interconnect structure, Flm. The general approach is to
map, place and route benchmark circuits on FPGAs with
di�erent architectural parameters. We measure the ef-
fect on routing demand (the number of tracks needed to
route, W ) and the speed of the resulting circuits. The
following subsections describe the development of appro-
priate benchmark circuits, and the implementation pro-
cedure.

128x4 128x4

Logic Subcircuit

Memory

256x15

15

15

8

7

7
4 4

4 4 4

44
4

Figure 3: Example Generated Circuit

3.1 Benchmark Circuit Generation

It is di�cult to apply the traditional method of plac-
ing and routing 10 to 20 benchmark circuits [1, 8] in
this analysis because circuits typically have only a few
memories each, and so hundreds of such examples may
be required to properly exercise the memory-logic con-
nection architecture. Because it isn't feasible to gather
that many benchmark circuits, our approach is to study
the types of memory con�gurations found in systems,
and then to develop a stochastic memory con�guration
generator based on that study.

A memory con�guration is the set of all memories re-
quired by a circuit, and consists of the number of mem-
ory clusters (clusters are groups of memories which share
data input or data output subcircuits), the number of
memories within each cluster, and the width and depth
of each memory.

The generator chooses the memory con�guration pa-
rameters independently from probability distributions
based on statistics gathered from a set of 171 custom
ASIC designs. (Although we were able to obtain data on
the memories in these circuits, the detailed circuits were
not available).

Next, the logic sub-circuits needed to supply address
and data as well as consume the data are generated and
attached to the memories. The memory/logic intercon-
nect pattern is chosen from a set of commonly occurring
patterns in our example ASIC designs using measured
distributions. The sub-circuits are randomly chosen from
a collection of 38 MCNC circuits, which have been op-
timized using SIS [9] and technology-mapped to 5-input
lookup tables using FlowMap [10]. The actual construc-
tion of the circuits is non-trivial and beyond the scope of
this paper. Full details of the memory circuit study and
construction of the generator are described in [11].

Figure 3 illustrates an example generated circuit. It
has three memories, two of which receive data from a
single logic source and drive a common data bus. Inter-
connections between the various logic sub-circuits and
external input/output pins are not shown in this �gure.

The circuits are generated without accounting for the



Arch 5-LUTs Used Arrays Used Total Terminals Memory Terminals r Aspect Ratio
Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

2 382 192 1.63 0.48 2094 1033 28.7 11.7 10.4 3.43 1.00 0
4 502 307 2.61 1.13 2761 1649 47.4 23.3 5.98 2.28 1.01 0.05
8 574 340 3.93 2.27 3164 1838 69.3 41.6 3.50 0.85 1.53 0.96
16 638 360 5.46 3.97 3543 1968 97.8 73.8 3.05 0.23 4.64 3.44

Table 1: Circuit and Implementation Statistics

number of memory bits or number of independent arrays
in the FPGA architecture. Once generated, the circuits
that do not �t in the target architecture (in terms of
total number of bits or number of independent arrays)
are discarded. In the next section, we present results for
architectures with 2, 4, 8, and 16 memory arrays; for
each architecture we generate circuits until we have 200
circuits that �t. Table 1 shows statistics from the 200
circuits generated for each architecture (r and Aspect
Ratio will be discussed in Section 3.2).

This stochastic generation approach was also used
in [6] which studied only the memory portion of an
embedded-memory FPGA.

3.2 Circuit Implementation Procedure

Each benchmark circuit is \implemented" in each
FPGA using the following procedure: First, each mem-
ory in the memory con�guration must be implemented
using one or more of the physical memory arrays. For ex-
ample, a 4Kx2 user memory can be implemented using
four 2-kilobit arrays each con�gured as a 2Kx1 mem-
ory with appropriate decoding. We call this process the
logical-to-physical mapping. Because there can be many
ways to perform this mapping, it is an optimization prob-
lem. We use an algorithm described in [11].

Next, the mapped circuits are then placed on an
appropriately-sized FPGA using a simulated annealing-
based placement program, and the detailed routing is
performed using a multi-pass maze router (both tools
are described in [11]). The routing is repeated for di�er-
ent values of W (the number of tracks per channel) to
determine the minimum W that gives a 100% routable
solution. The router considers all input pins of a lookup-
table equivalent, as well as all address pins of a memory
array. Data pins are also considered equivalent with the
constraint that a pin assignment for a speci�c bit in the
data-out port �xes the corresponding assignment in the
data-in port (and vice versa).

The size of the FPGA used in the place and route step
depends on the number of lookup tables in the circuit to
be implemented, as well as the number of memory arrays
to be included. For a given number of arrays, we place
the required number of logic blocks above and below the
memory row, creating a roughly square chip. This will
result in di�erent values of r (the number of logic blocks
per memory block in the horizontal dimension) for dif-
ferent circuits. If, however, the resulting r is less than
3, we force r to be 3, resulting in a non-square aspect

ratio. For some circuits, the number of input/outputs
will determine the chip area; for these circuits, a square
array with the required number of input/output blocks
will be used. Table 1 shows the average values of r and
the average aspect ratio (ratio of horizontal logic blocks
to vertical logic blocks) for circuits implemented on the
four architectures.

Finally, a timing analyzer is used to measure the crit-
ical path through the circuit. The timing analyzer �nds
each net delay by constructing an RC-tree. The mem-
ory access time is measured from a modi�ed version of
CACTI, a detailed cache access time model [12]. The
CLB delay is assumed to be constant. A 0.5um CMOS
process was assumed throughout.

4 Experimental Results

4.1 E�ect of Flm on Routability

Figure 4-a shows the e�ect of changing Flm on the
minimum track count required for 100% routability (av-
eraged over 200 stochastically generated circuits). The
results are shown for architectures with 2, 4, 8, and 16
two-kilobit blocks. The right-most point on each line cor-
responds to architectures with Flm = rW ; as discussed
in Section 2, this is the maximum possible Flm. As the
graph shows, for architectures with fewer than 8 arrays,
the measured minimum W is not sensitive to Flm. This
is contrast to [1] which shows that circuit routability for
logic is severely hampered by low values of the connec-
tion block exibility, Fc.

As the number of memory arrays increases above 4,
the number of tracks needed for complete routing does
increase signi�cantly for low Flm (Flm = 4 is su�cient).
There are several reasons for this. First, the circuits gen-
erated for these architectures tend to have larger memory
requirements, and thus, use more memory pins (this is
shown in Table 1). For small values of Flm, the nets con-
nected to each array have fewer routing options than nets
connected to only logic elements. The more of these nets
there are, the more sensitive the overall circuit routabil-
ity will be to Flm.

A second e�ect is from nets that connect to more than
one memory array. Memory arrays are connected to-
gether when they are combined to form larger user mem-
ories, or when independent user memories share a com-
mon data bus. The more arrays in a circuit, the more of
these memory-to-memory nets there are. The number of
routing paths for these nets is very dependent on Flm.



Minimum
Tracks

(W)

Flm
1 2 3 4 5 6 7 rW

0
2
4
6
8

10
12
14
16

g2 Arrays g g g g g g g

g4 Arrays
g g g g g g g

g8 Arrays
g g

g g g g g

g16 Arrays

g g

g g g g g Minimum
Tracks

W

Flm
1 2 3 4 5 6 7 rW

0
2
4
6
8

10
12
14
16

g

g

Fc=W
g

g g g g g

g

g Fc=0.5W
g

g g g g g
Average
Critical

Path
Delay

Flm
1 2 3 4 5 6 7 rW

350ns

375ns

400ns

425ns

450ns

g
g g

g

g
g

g

g

a) Fc =W b) 8 arrays, varied Fc c) delay results for 8-array architecture

Figure 4: E�ects of Flm on routability and delay

A �nal reason may be due to the way in which
the memory connections are \spread" among the logic
blocks, as determined by the parameter r. For architec-
tures with only a few arrays, the value of r is signi�cantly
larger than for architectures with many arrays, as shown
in Table 1, column 10. The higher r is, the more \spread
out" the memory pins are. It is possible that a con-
centration of the low-exibility memory pins in a single
channel decreases routability.

4.2 E�ect of Fc on choice of Flm

Figure 4-a assumed that the connection block exi-
bility, Fc = W ; Figure 4-b shows how the results (for 8
arrays) a�ected by Fc. Although the track requirements
go up as Fc is decreased, the dependence on Flm remains
unchanged.

4.3 Circuit Delay

Although the main motivation behind using a small
value of Flm was to reduce the area required for the mem-
ory/logic interconnect block, removing switches gener-
ally increases the speed of a circuit implemented on an
FPGA. In this case, however, the memory/logic inter-
connect block does not represent a major portion of the
critical path delay, so we would expect the speed to be
roughly independent of Flm. Figure 4-c shows the aver-
age critical path delay of the 8 array architecture. As
the graph shows, for low exibilities, the delay actually
drops slightly as Flm increases; this is because a low Flm

often results in circuitous routes for some nets.

5 Conclusions

In this paper, we have investigated the e�ects of the
memory/logic connection block exibility on the over-
all routability and speed of a circuit implemented on
an FPGA with embedded memory arrays. We have
found that the routability of circuits with memory is
not strongly a�ected by a low memory/logic interconnect
exibility, especially for architectures with fewer than 8
embedded arrays. For such architectures, the logic rout-
ing resources are exible enough to compensate for the
low exibility in the memory/logic interconnect. This
becomes less true as the number of arrays (and hence
the number of connections to memory) is increased.

The delay of such circuits was also shown to be roughly
independent of the exibility of the memory/logic in-
terconnect. This is primarily because this interconnect
block represents only a small portion of the critical path
of a circuit.

References

[1] J. Rose and S. Brown, \Flexibility of interconnection
structures for �eld-programmable gate arrays," IEEE
Journal of Solid-State Circuits, vol. 26, pp. 277{282,
March 1991.

[2] Altera Corporation, Datasheet: Flex 10K Embedded Pro-
grammable Logic Family, 1995.

[3] Actel Corporation, Datasheet: 3200DX
Field-Programmable Gate Arrays, 1995.

[4] Xilinx, Inc., The Programmable Logic Data Book, 1994.

[5] AT&T Microelectronics, Product Brief: AT&T Opti-
mized Recon�gurable Cell Array (ORCA) Series Field-
Programmable Gate Arrays (FPGAs), April 1993.

[6] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, \Ar-
chitecture of centralized �eld-con�gurable memory,"
in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 97{103, 1995.

[7] T. Ngai, J. Rose, and S. J. E. Wilton, \An SRAM-
Programmable �eld-con�gurable memory," in IEEE
Custom Integrated Circuits Conference, pp. 499{502,
May 1995.

[8] J. L. Kouloheris and A. E. Gamal, \PLA-based FPGA
area versus cell granularity," in 1992 Custom Integrated
Circuits Conference, pp. 4.3.1{4.3.4, 1992.

[9] E. Sentovich, \SIS: A system for sequential circuit anal-
ysis," tech. rep., Electronics Research Laboratory, Uni-
versity of California, Berkeley, May 1992.

[10] J. Cong and Y. Ding, \An optimal technology mapping
algorithm for delay optimization in lookup-table based
FPGA designs," IEEE/ACM International Conference
on Computer-Aided Design, pp. 48{53, November 1992.

[11] S. J. E. Wilton, Architecture of Field-Con�gurable Mem-
ory. PhD thesis, University of Toronto, in preparation.

[12] S. J. E. Wilton and N. P. Jouppi, \CACTI: an enhanced
cache access and cycle time model," IEEE Journal of
Solid-State Circuits, vol. 31, pp. 677{688, May 1996.


