
T. Okamoto (Ed.): CT-RSA 2004, LNCS 2964, pp. 324–338, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A 1 Gbit/s Partially Unrolled Architecture
of Hash Functions SHA-1 and SHA-512

Roar Lien, Tim Grembowski, and Kris Gaj

ECE Department, George Mason University, 4400 University Drive, Fairfax, VA 22030
kgaj@gmu.edu

Abstract. Hash functions are among the most widespread cryptographic primi-
tives, and are currently used in multiple cryptographic schemes and security
protocols, such as IPSec and SSL. In this paper, we investigate a new hardware
architecture for a family of dedicated hash functions, including American stan-
dards SHA-1 and SHA-512. Our architecture is based on unrolling several mes-
sage digest steps and executing them in one clock cycle. This modification
permits implementing majority of dedicated hash functions with the throughput
exceeding 1 Gbit/s using medium-size Xilinx Virtex FPGAs. In particular, our
new architecture has enabled us to speed up the implementation of SHA-1
compared to the basic iterative architecture from 544 Mbit/s to 1 Gbit/s using
Xilinx XCV1000. The implementation of SHA-512 has been sped up from 717
to 929 Mbit/s for Virtex FPGAs, and exceeded 1 Gbit/s for Virtex-E Xilinx
FPGAs.

1 Introduction

Hash functions are very common and important cryptographic primitives. Their pri-
mary application is their use for message authentication, integrity, and non-
repudiation as a part of the Message Authentication Codes (MACs) and digital signa-
tures [1].

The current American federal standard, FIPS 180-2, recommends the use of one of
the four hash functions developed by National Security Agency (NSA) and approved
by NIST. By far the most widely used of these four functions is SHA-1 (Secure Hash
Algorithm-1), a revised version of the standard algorithm introduced in 1993. The
best attack against this algorithm is in the range of 280 operations, which makes its se-
curity equivalent to the security of Skipjack and the Digital Signature Standard (DSS).
After introducing a new secret-key encryption standard, AES (Advanced Encryption
Standard), with three key sizes, 128, 192, and 256 bits, the security of SHA-1 did not
any longer match the security guaranteed by the encryption standard. Therefore, an
effort was initiated by NSA to develop three new hash functions, with the security
equivalent to the security of AES with 128, 192, and 256 bit key respectively. This ef-
fort resulted in the development and standardization of three new hash functions re-
ferred to as SHA-256, SHA-384, and SHA-512 [1].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 325

All four standardized algorithms have a similar internal structure and operation. All
of them are based on sequential processing of consecutive blocks of data, and there-
fore cannot be easily sped up by using pipelining or parallel processing (at least when
only one stream of data is being processed).

The majority of reported implementations of SHA-1 based on the current genera-
tion of FPGA devices, such as Virtex [2], can only reach the throughputs up to 500
Mbit/s [3-9]. The higher speeds can only be accomplished by using more expensive
FPGA devices, such as Virtex-E or Virtex II (see Table 1). Similarly, the FPGA im-
plementations of SHA-512 based on the medium cost Virtex devices reach the speeds
in the range of 700 Mbit/s [3, 4].

Significantly higher speeds might be required for applications such as High Defini-
tion Television (HDTV), videoconferencing, Virtual Private Networks, etc. [10]. Our
goal was to propose, implement, and verify a new architecture of standard hash func-
tions that would allow them to be executed with the throughputs in the range of 1
Gbit/s using medium cost FPGA devices, such as Xilinx Virtex 1000.

2 Hardware Architectures of Hash Functions

A general block diagram common for all four SHA standards and many other dedi-
cated hash functions is shown in Fig. 1. An input message passes first through the
preprocessing unit which performs padding and forms message blocks of the fixed
length, 512 or 1024 bits, depending on the hash function. The preprocessing unit
passes message blocks to the message scheduler unit. Message scheduler unit gener-
ates message dependent words, Wt, for each step of the message digest. The message
digest unit performs actual hashing. In each step, it processes a new word generated
by the message scheduler unit. The message digest is the most critical part of the im-
plementation, as it determines both the speed and area of the circuit.

The most straightforward implementation of the message digest, most often used in
practice is shown in Fig. 2a. It is called the basic iterative architecture (or just basic
architecture). In this architecture, registers R and H are first both initialized with a
value of the constant initialization vector, IV. Subsequently, the architecture executes
one step of the message digest per one clock period. In each step t, the message digest
accepts a different message dependent word, Wt, and a different step dependent con-
stant, Kt. After executing all steps, the result of the last step, stored in the register R, is
added to the previous value of the register H. Then, the processing of the message di-

Fig. 1. General block diagram of the hardware implementation of a dedicated hash function,
such as SHA-1 and SHA-512

326 R. Lien, T. Grembowski, and K. Gaj

Fig. 2. General diagrams of the message digest units for a) basic architecture, b) partially un-
rolled architecture with k steps unrolled

gest resumes for a new set of the message dependent words, Wt, corresponding to the
new block of the message.

Two straightforward ways of speeding up hardware implementations of hash func-
tions (and any other logic functions) are parallel processing using multiple instantia-
tions of the basic architecture, and pipelining. Out of these two methods, pipelining is
more attractive because of the smaller area penalty. Nevertheless, both of these archi-
tectures are able to improve an average circuit throughput only under the assumption
that multiple independent streams of data are processed simultaneously. If a single
long message needs to be hashed, none of these architectures offers any improvement
in terms of the execution time.

A new architecture of the dedicated hash functions investigated in this paper is
shown in Fig. 2b. It is called partially unrolled architecture. In this architecture, k
steps have been “unrolled” and are executed in the same clock cycle. As a result, the
total number of clock cycles necessary to compute one iteration of the message digest
has been reduced by a factor of k. At the same time, the critical path through k steps is
likely to be significantly shorter than k times the path through a single step. This is
because in hash functions, the critical path through a step of the message digest is dif-
ferent for each word of the step input (see Fig. 3).

3 Previous Work

Fully and partially unrolled architectures of dedicated hash functions have been inves-
tigated by several authors in the past, but no definite conclusions have been made. In
[11] a fully unrolled architecture of MD5 has been compared with a basic iterative ar-
chitecture. Unrolling of all 64 rounds resulted in a throughput increase by a factor of
2.1, while at the same time the circuit area increased by a factor of 5.4. In [12] a par-
tially unrolled architecture of SHA-1, with the number of rounds unrolled k=5, has
been investigated. A high level architecture presented in this paper was very similar to
the one proposed in this paper. Nevertheless, the reported results were rather
discouraging, with only 11% gain in the circuit throughput and a 43% penalty in the

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 327

aging, with only 11% gain in the circuit throughput and a 43% penalty in the circuit
area for the partially unrolled architecture over the basic iterative architecture.

All other hardware implementations of dedicated hash functions reported in the lit-
erature [9, 13, 14] or available as commercial IP cores [3-8] have followed the basic
iterative architecture with only one step of hash function executed in each clock cycle.

4 Details of the Hardware Architectures

4.1 Internal Structure of the Message Digests of SHA-1 and SHA-512

Internal structures of the message digests for SHA-1 and SHA-512 are shown in Fig.
3. In both functions, input registers are initialized with the constant initialization vec-
tor, and are updated with the new value in each round. In SHA-1, four out of five
words (A, B, C, and D) remain almost unchanged by a single round. These words are
only shifted by one position down. The last word, E, undergoes a complicated trans-
formation equivalent to multioperand addition modulo 232, with five 32-bit operands
dependent on all input words, the round-dependent constant Kt, and the message de-
pendent word Wt. The internal structure of the message digest of SHA-512 is similar.
The primary differences are as follows: The number of words processed by each
round is 8, each word is 64 bits long, and the longest path is equivalent to addition of
seven 64-bit operands modulo 264. These operands depend on seven out of eight input
words (all except D), the round-dependent constant Kt, and a message dependent word
Wt. Six out of eight input words remain unchanged by a single round.

4.2 Basic Architecture of SHA-1

From Fig. 3a, the critical path of a single SHA-1 round involves the calculation of the
chaining variable A at the moment t+1, given by the following formula:

At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et + Kt + Wt + HA’t

Fig. 3. Internal structure of a single message digest round of a) SHA-1, b) SHA-512

328 R. Lien, T. Grembowski, and K. Gaj

Fig. 4. Our implementation of the message digest unit of SHA-1 in the basic iterative architec-
ture

where Xt is a value of the variable X in the step t, and HA’t = HA when t=79, other-
wise 0. HA is a word A of the register H in Fig. 2a.

Additionally, we know that

Bt, = At-1, Ct= Bt-1<<<30, Dt= Ct-1.

None of these operations involve any logic, consequently, the expression

ft (Bt, Ct, Dt) = ft (At-1, Bt-1<<<30, Ct-1)

can be precomputed in the previous clock cycle, t-1, and will not contribute to the
critical path. Similarly, the sum

∑ HA’ Kt Wt = Kt + Wt + HA’t

can be precomputed by the message scheduler unit, because all values are known al-
ready in the previous clock cycle.

As a result, the critical path reduces to the addition of four operands

At+1 = At<<<5 + Et + ∑ HA’ Kt Wt + ft (At-1, Bt-1<<<30, Ct-1).

All aforementioned optimizations lead to the schematic of the basic architecture of
SHA-1 shown in Fig. 4. The lowest level multiplexers choose initialization vectors
IV0 to IV4 only in the first clock cycle of computations for any new message. The
variables HB’.. HE’ are equal to HB..HE only in the last step of the message digest
computations for a given message block, i.e., only when t=79; otherwise, they are
equal to zero.

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 329

4.3 Partially Unrolled Architecture of SHA-1

The optimization of the unrolled message digest is relatively straightforward. The
general technique employed is to precalculate sums at the earliest possible stage using
either regular carry propagate adders (CPAs) or carry save adders (CSAs) (see Fig. 5).
The calculations in the critical path follow a sequence of computations described by
the equations below:

Fig. 5. Our implementation of the message digest unit of SHA-1 in the partially unrolled archi-
tecture with 5 steps unrolled

330 R. Lien, T. Grembowski, and K. Gaj

At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et + Kt + Wt = At<<<5 + ft(Bt, Ct, Dt) + Et + ∑ Kt Wt
At+2 = At+1<<<5 + ft+1(Bt+1, Ct+1, Dt+1) + Et+1 + Kt+1 + Wt+1 =

 = At+1<<<5 + [ft+1(At, Bt<<<30, Ct) + Dt + ∑ Kt+1 Wt+1]
At+3 = At+2<<<5 + [ft+2(At+1, At<<<30, Bt<<<30) + [Ct + ∑ Kt+2 Wt+2]]
At+4 = At+3<<<5 + [ft+3(At+2, At+1<<<30, At<<<30) + [Bt<<<30 + ∑ Kt+3 Wt+3]]
At+5 = At+4<<<5 + [ft+4(At+3, At+2<<<30, At+1<<<30) + [At<<<30 + ∑ Kt+4 Wt+4 + HA’t+4]].

At each stage two paths are critical. One is a calculation of the new value of At+i
(i=1..5), which involves rotation by five positions and a single addition. The second is
the precalculation of the value of [ft+i + [Et+i + ∑ Kt+iWt+i]] to be used in the next stage.
This precalculation involves the calculation of ft+i and a single addition of a precalcu-
lated value [Et+i + ∑ Kt+iWt+i].

In the first stage of computations (computing At+1), precalculated values do not ex-
ist, so the computations must be performed from scratch. In every second stage start-
ing from stage two, the precomputation of the sum [ft+i + [Et+i + ∑ Kt+iWt+i]] is the most
time consuming operation. Finally, in every second stage starting from stage three, the
only contribution to the critical path is a single addition.

4.4 Basic Architecture of SHA-512

From Fig. 3b, the critical path of a single SHA-512 round involves the calculation of
the chaining variable A at the moment t+1, given by the following formula:

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + Kt + Wt + Ht + HAt’

where Xt is a value of the variable X in the step t; S0, Maj, S1, Ch are the logic func-
tions defined in the SHA-512 standard, and HA’t = HA when t=79, otherwise 0.

Additionally, we know that
Ht = Gt-1.

The functions S0 and Maj execute in parallel in approximately the same amount of
time. The same holds true for functions S1 and Ch.

The sum
KWHAt = Kt + Wt + Gt-1 + HA’t

can be precomputed in the previous clock cycle, t-1.
As a result, the critical path reduces to the addition of five operands

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + KWHAt.

All aforementioned optimizations lead to the schematic of the basic architecture of
SHA-512 shown in Fig. 6. The registers HA-HH are set to the initialization vectors
IV0 to IV7 only in the first clock cycle of computations for any new message. The
multiplexers selecting between HB and ‘0’, HC and ‘0’, etc. choose non-zero values
only in the last step of the message digest computations for a given message block,
i.e., only when t=79.

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 331

Fig. 6. Our implementation of the message digest unit of SHA-512 in the basic iterative
architecture (PC – a 5-to-3 parallel counter, see [9])

4.5 Unrolled Architecture of SHA-512

The unrolled architecture of SHA-512 is shown in Fig.7. Because of the dependence
of Et+1 on Et, and At+1 on At and Et (see Fig. 3b), three major critical paths (A0 to A0,
E0 to A0 and E0 to E0) exist in the circuit. These paths are marked in Fig. 7 with
thicker lines. Values of variables At+i, and Et+i are denoted as “Ai” and “Ei” respec-
tively, e.g., “E2” denotes Et+2. Precomputations in the previous clock cycle are used to
reduce the number of operands in the first four stages of the unrolled architecture.
Recall that in the basic architecture, the KWHAt sum is computed based on the equa-
tion Ht = Gt-1. In the unrolled architecture with k=5, t changes by 5 every clock cycle
As a result, Ht = Gt-1 = Ft-2 = Et-3 = Et+2-5 = “E2” in the previous clock cycle.

332 R. Lien, T. Grembowski, and K. Gaj

On the far left side of Fig. 7, “E2” is used to precompute KWH0 (notation for
KWHAt+0) for the next clock cycle.

KWH0 = KWHAt = Kt + Wt + Ht + HA’t

This method is repeated in stages two to four in order to compute KWHAt+i (denoted
in Fig. 7 as KWHi, i=1..3). In stage 5, Ht+4 = Et+1 = “E1”, so this value is computed in
the same clock cycle, and as a result is not included in the earlier precomputed KWH4
= KWHAt+4, which reduces to KWHAt+4 = Kt+4 + Wt+4. Please, note that in Fig. 7, the
sum Kt+i + Wt+i is denoted as KWi.

Fig. 7. Our implementation of the message digest unit of SHA-512 in the partially unrolled ar-
chitecture with 5 steps unrolled

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 333

Further reductions in critical paths were accomplished in each stage by adding val-
ues of logic functions S1 and Ch as early as possible, reusing values of S1 + Ch, and
by selective routing to balance the number of slices in various critical paths.

5 Design Methodology and Results

Our target FPGA device was the Xilinx Virtex XCV1000-6. This device is composed
of 12,288 basic logic cells referred to as CLB (Configurable Logic Block) slices, in-
cludes 32 4-kbit blocks of synchronous dual-ported RAM, and can achieve synchro-
nous system clock rates up to 200 MHz [2]. XCV1000 was chosen because of the
availability of a general purpose PCI board, SLAAC-1V, based on three FPGA de-
vices of this type [10]. Additionally, a new family of Virtex-E Xilinx devices was tar-
geted as well.

All hardware architectures were first described in VHDL, and their operation veri-
fied through functional simulation using Active HDL, from Aldec, Inc. Test vectors
and intermediate results from the reference software implementations based on the
Crypto++ library [15] were used for debugging and verification of VHDL codes. The
revised VHDL code became an input to logic synthesis performed using FPGA Com-
piler II from Synopsys. Tools from Xilinx ISE 4.2 were used for mapping, placing,
and routing. These tools generated reports describing area and speed of implementa-
tion, a netlist used for timing simulation, and a bitstream used to configure an actual
FPGA device. All designs were fully verified through behavioral, post-synthesis, and
timing simulations.

The experimental testing of our cryptographic modules was performed using the
SLAAC-1V hardware accelerator board, including three Virtex 1000 FPGAs as the
primary processing elements. Only one of the three FPGA devices was used to im-
plement hash core.

Test program written in C used the SLAAC-1V APIs and the SLAAC-1V driver to
communicate with the board. Our testing procedure is composed of three groups of
tests. The first group verifies the circuit functionality at a single clock frequency. The
goal of the second group is to determine the maximum clock frequency at which the
circuit operates correctly. Finally, the purpose of the third group is to determine the
limit on the maximum encryption and decryption throughput, taking into account the
limitations of the PCI interface.

In Fig. 8, the minimum clock periods of SHA-1 and SHA-512 obtained using static
timing analysis and the experiment are given. For the unrolled architecture, the effec-
tive clock period is the minimum time necessary for the data signals to pass the criti-
cal path. Since in both our unrolled designs, the data signal is traveling through the
critical path over multiple clock periods, the effective clock period is a multiple of the
actual clock period. In case of the unrolled architecture for SHA-1 the multiplication
factor is 2, in case of the SHA-512 architecture, the multiplication factor is 5.

Based on the knowledge of the minimum clock period, the maximum data through-
put has been computed according to the equation:

Throughput=Message_block_size / (Effective_clock_period * Number_of_rounds/k)

334 R. Lien, T. Grembowski, and K. Gaj

The maximum throughput values calculated based on the minimum clock periods
obtained using static timing analysis and experiment are shown in Fig. 9. In the same
figure, these results are compared with the experimentally measured data throughputs
that take into account the delay contributions and the bandwidth limit of the PCI inter-
face. This comparison demonstrates that the PCI interface is capable of operating with
a constant uninterrupted data flow up to about 960-990 Mbit/s, and has a negligible
influence on the data throughput below this communication rate.

The number of CLB Slices used by our implementations of SHA-1 and SHA-512
are shown in Tables 1 and 2. In SHA-512, four 4 kbit block RAMs are used to store
80 64-bit constants Kt.

Out of the two analyzed hash standards, SHA-1 offers much better potential for
loop unrolling. As a result of loop unrolling, the throughput of SHA-1 increased by a
factor of almost two (1.9 times), while at the same time its area grew only by a factor
of three. SHA-512 is much less suitable for loop unrolling, as its observed speed-up
was only 30%, and the area increase 48%.

Fig. 8. Minimum clock periods of SHA-1
and SHA-512 in the basic iterative archi-
tecture and partially unrolled architecture

Fig. 9. Maximum throughputs of SHA-1
and SHA-512 in the basic iterative archi-
tecture and partially unrolled architecture

6 Comparison with Other Hash Cores

There exist multiple commercial IP cores implementing SHA-1 [3-8]. In Table 2, we
present the comparison of our designs for SHA-1 with the most representative IP
cores with equivalent functionality. For the Xilinx Virtex family of FPGA devices,
our core for SHA-1 in the basic iterative architecture outperforms the second best core
(from Helion Technology Ltd) by 13%, using 30% less CLB slices. Our core for the
partially unrolled architecture of SHA-1 with 5 rounds unrolled, outperforms all re-
ported Virtex cores by a factor of at least two in terms of throughput, and uses about
two times more area. The similar advantages exist for the implementations using

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 335

Virtex-E devices, where our core for the unrolled architecture approaches the
throughput of 1.2 Gbit/s.

Table 1. Comparison of our designs for SHA-1 with the representative commercial IP cores
with equivalent functionality

Source Clock
frequency

[MHz]

Throughput
[Mbit/s]

Area
[CLB Slices]

Xilinx Virtex
Our, basic 85 544 480
Our, unrolled (k=5) 641 1024 1480
ALMA Technologies 70 442 686
Helion Technology Ltd. 76 480 689
Ocean Logic Pty Ltd 56 352 612

Xilinx Virtex-E
Our, basic 103 659 484
Our, unrolled (k=5) 72.5 1160 1484
ALMA Technologies 87 549 686
Bisquare Systems Private
Limited

66 422 579

Helion Technology Ltd. 95 600 689
Intron, Ltd. 71 449 716
Ocean Logic Pty Ltd 71.5 452 612

Xilinx Virtex-II
ALMA Technologies 102 644 686
Amphion Semiconductor 99 626 854
Helion Technology Ltd. 103.5 654 569
Ocean Logic Pty Ltd 79 498 612

Table 2. Comparison of our designs for SHA-512 with the representative commercial IP cores
with equivalent functionality

Source Clock
frequency

[MHz]

Throughput
[Mbit/s]

Area 3
[CLB Slices]

Xilinx Virtex
Our, basic 56 717 2384 Slices
Our, unrolled (k=5) 672 929 3521 Slices
ALMA Technologies 56 707 2690 Slices

Xilinx Virtex-E
Our, unrolled (k=5) 722 1034 3517 Slices
ALMA Technologies 68 859 2690 Slices

Xilinx Virtex-II
ALMA Technologies 72 910 2507 Slices
Amphion Semiconductor 50 626 2403 Slices

1 multi-cycle clock used in the critical path, critical path ≤ 2 TCLK = 2/fCLK, 5 steps executed in 2
clock cycles

2 multi-cycle clock used in the critical path, critical path ≤ 5 TCLK = 5/fCLK, 5 steps executed in 5
clock cycles;

3 each circuit contains additionally 4 Block RAMs

336 R. Lien, T. Grembowski, and K. Gaj

At this point, there are relatively few cores available for the new standard, SHA-
512 (see Table 2) [3, 4]. Our implementation of the basic iterative architecture slightly
outperforms the equivalent core from ALMA Technologies in terms of throughput,
using a smaller amount of FPGA resources. Our partially unrolled architecture is the
fastest core for the Virtex family of FPGA devices outperforming the second best core
by 30% at the cost of only 31% increase in the circuit area. For the Virtex-E family of
FPGA devices our core is the only currently available SHA-512 core that exceeds the
throughput of 1 Gbit/s.

7 Comparison with Software Implementations

Efficient software implementations of hash functions have been extensively studied in
the literature [17-20]. In [17], basic recommendations on developing an efficient and
portable implementation of SHA-1 in C have been formulated. In [18], a close to op-
timum implementations of dedicated hash functions using Pentium’s superscalar ar-
chitecture have been presented. In [19], software parallelism of all major dedicated
hash functions have been studied. Finally, in [20], optimizations targeting Pentium III
have been investigated. These optimizations made use of MMX registers and instruc-
tions available in Pentium III.

In this paper, we used for comparison, software implementations of SHA-1 and
SHA-512, available as a part of the Crypto++ library [15]. Although Crypto++ is not
the fastest of the reported software implementations, the reason for using this library
was its portability, availability in public domain, and wide practical deployment.

A PC with 2.2 GHz clock, 1 GByte RAM, and cache size 512KB, running Win-
dows XP was used in our measurements. The Crypto++ implementation of hash func-
tions written in C++ was compiled using MS Visual Studio with Service Pack 5. The
obtained throughput was 40.5 Mbit/s for SHA-1 and 30.4 Mbit/s for SHA-512. These
throughputs were respectively 25 times and 31 times smaller than the throughputs of
our partially unrolled hardware implementations of SHA-1 and SHA-512 for Xilinx
Virtex 1000-6 FPGAs.

8 Summary

A new partially unrolled architecture has been proposed for a family of dedicated
hash functions, including four American standard algorithms SHA-1, SHA-256,
SHA-384, and SHA-512. The unrolled architecture has been designed, optimized, and
experimentally verified for the most widely used hash algorithm, SHA-1, and one of
the new hash standard algorithms SHA-512. For the purpose of comparison, the basic
iterative architecture has been implemented for both functions as well.

The new architecture appeared to be particularly suitable for the implementation of
SHA-1. For the number of rounds unrolled equal to k=5, it allowed to almost double
the throughput of SHA-1 compared to the basic iterative architecture, at the cost of
increasing circuit area by a factor of three. The similar design for SHA-512 appeared
to have much less benefit; the increase in the circuit throughput was only 30%, and
the area of the circuit increased by 48%.

A 1 Gbit/s Partially Unrolled Architecture of Hash Functions 337

This different behavior of two hash algorithms could be easily explained by ana-
lyzing the structure of both algorithms. In the unrolled architecture of SHA-1, many
message digest steps could be substantially sped up by preprocessing partial results of
a given step in the previous steps. The same optimization was not possible in SHA-
512 due to sequential dependencies present in the algorithm.

Our partially unrolled implementation of SHA-1 reached the target throughput of
1 Gbit/s in Virtex XCV1000, and outperformed all known to the authors commercial
IP cores with equivalent functionality by at least a factor of two. Our implementation
of SHA-512 also compared favorably with commercial IP cores, and reached a target
throughput of 1 Gbit/s using Virtex-E family of Xilinx FPGAs. To our best knowl-
edge, our implementations of SHA-1 and SHA-512 are the only FPGA implementa-
tions of these hash functions available to date that can sustain a throughput over
1 Gbit/s for a single stream of data.

References

1. NIST Cryptographic Toolkit, available at http://csrc.nist.gov/CryptoToolkit/
2. Xilinx, Inc.: Virtex 2.5 V Field Programmable Gate Arrays, available at www.xilinx.com
3. ALMA Technologies web page, available at http://www.alma-tech.com
4. Amphion Semiconductor web page, available at http://www.amphion.com
5. Bisquare Systems Private Limited web page, available at http://www.bisquare.com
6. Helion Technology Limited web page, available at http://www.heliontech.com
7. Intron, Ltd. Web page, available at http://www.intron.lviv.ua
8. Ocean Logic Pty Ltd web page, available at http://www.ocean-logic.com
9. Grembowski T., Lien R., Gaj K., Nguyen N., Bellows P., Flidr J., Lehman T., Schott B.:

Comparative Analysis of the Hardware Implementations of Hash Functions SHA-1 and
SHA-512, LNCS 2433, 5th International Conference, ISC 2002, Sao Paulo, Brazil,
Sep./Oct. 2002, 75–89

10. Bellows P., Flidr J., Gharai L., Perkins C., Chodowiec P., and Gaj K.: IPsec-Protected
Transport of HDTV over IP, LNCS 2778, 13th International Conference on Field Pro-
grammable Logic and Applications, FPL 2003, Lisbon, Portugal, Sep. 2003, 869–879

11. Deepakumara J., Heys H.M., and Venkatesan R.: FPGA Implementation of MD5 Hash
Algorithm, Proc. IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE 2001), Toronto, Ontario, May 2001, available at
http://www.engr.mun.ca/~howard/PAPERS/ccece_2001.pdf

12. Hoare R., Menon P., and Ramos M.: 427 Mbits/sec Hardware Implementation of the
SHA-1 Algorithm in an FPGA, International Association of Science and Technology for
Development (IASTED) Journal 2002

13. Ting K.K., Yuen S.C.L., Lee K.H., and Leong P.H.W.: An FPGA Based SHA-256 Proc-
essor, Proc. 12th International Conference, FPL 2002, Montpellier, France September 2–
4, 2002

14. Kang K.Y., Kim D.W., Kwon T.W., and Choi J.R.: Hash Function Processor Using Re-
source Sharing for IPSec, Proc. 2002 International Technical Conference On Cir-
cuit/Systems, Computers and Communications

15. Crypto++, free C++ class library of cryptographic schemes, available at
http://www.eskimo.com/~weidai/cryptlib.html

16. Digital Signature Standard Validation System (DSSVS) User’s Guide available at
http://csrc.nist.gov/cryptval/shs.html

17. McCurley K.S.: A Fast Portable Implementation of the Secure Hash Algorithm, Sandia
National Laboratories Technical Report SAND93–2591

338 R. Lien, T. Grembowski, and K. Gaj

18. Bosselaers A., Govaerts R. and Vandewalle J.: Fast Hashing on the Pentium, in N.
Koblitz (Ed.): Advances in Cryptology–CRYPT0 '96, LNCS 1109, Springer-Verlag Ber-
lin Heidelberg 1996, 298–312

19. Bosselaers A., Govaerts R. and Vandewalle J.: SHA: A Design for Parallel Architec-
tures?, in W. Fumy (Ed.): Advances in Cryptology–EUROCRYPT '97, LNCS 1233,
Springer-Verlag Berlin Heidelberg 1997, 348–362

20. Nakajima J. and Matsui M.: Performance Analysis and Parallel Implementation of Dedi-
cated Hash Functions, in L.R. Knudsen (Ed.): EUROCRYPT 2002, LNCS 2332,
Springer-Berlin Heidelberg 2002, 165–180

	1 Introduction
	2 Hardware Architectures of Hash Functions
	3 Previous Work
	4 Details of the Hardware Architectures
	4.1 Internal Structure of the Message Digests of SHA-1 and SHA-512
	4.2 Basic Architecture of SHA-1
	4.3 Partially Unrolled Architecture of SHA-1
	4.4 Basic Architecture of SHA-512
	4.5 Unrolled Architecture of SHA-512

	5 Design Methodology and Results
	6 Comparison with Other Hash Cores
	7 Comparison with Software Implementations
	8 Summary

