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Abstract. Hash functions are among the most widespread cryptographic primi-
tives, and are currently used in multiple cryptographic schemes and security 
protocols, such as IPSec and SSL. In this paper, we investigate a new hardware 
architecture for a family of dedicated hash functions, including American stan-
dards SHA-1 and SHA-512. Our architecture is based on unrolling several mes-
sage digest steps and executing them in one clock cycle. This modification 
permits implementing majority of dedicated hash functions with the throughput 
exceeding 1 Gbit/s using medium-size Xilinx Virtex FPGAs. In particular, our 
new architecture has enabled us to speed up the implementation of SHA-1 
compared to the basic iterative architecture from 544 Mbit/s to 1 Gbit/s using 
Xilinx XCV1000. The implementation of SHA-512 has been sped up from 717 
to 929 Mbit/s for Virtex FPGAs, and exceeded 1 Gbit/s for Virtex-E Xilinx 
FPGAs. 

1   Introduction 

Hash functions are very common and important cryptographic primitives. Their pri-
mary application is their use for message authentication, integrity, and non-
repudiation as a part of the Message Authentication Codes (MACs) and digital signa-
tures [1]. 

The current American federal standard, FIPS 180-2, recommends the use of one of 
the four hash functions developed by National Security Agency (NSA) and approved 
by NIST. By far the most widely used of these four functions is SHA-1 (Secure Hash 
Algorithm-1), a revised version of the standard algorithm introduced in 1993. The 
best attack against this algorithm is in the range of 280 operations, which makes its se-
curity equivalent to the security of Skipjack and the Digital Signature Standard (DSS). 
After introducing a new secret-key encryption standard, AES (Advanced Encryption 
Standard), with three key sizes, 128, 192, and 256 bits, the security of SHA-1 did not 
any longer match the security guaranteed by the encryption standard. Therefore, an 
effort was initiated by NSA to develop three new hash functions, with the security 
equivalent to the security of AES with 128, 192, and 256 bit key respectively. This ef-
fort resulted in the development and standardization of three new hash functions re-
ferred to as SHA-256, SHA-384, and SHA-512 [1]. 
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All four standardized algorithms have a similar internal structure and operation. All 
of them are based on sequential processing of consecutive blocks of data, and there-
fore cannot be easily sped up by using pipelining or parallel processing (at least when 
only one stream of data is being processed). 

The majority of reported implementations of SHA-1 based on the current genera-
tion of FPGA devices, such as Virtex [2], can only reach the throughputs up to 500 
Mbit/s [3-9]. The higher speeds can only be accomplished by using more expensive 
FPGA devices, such as Virtex-E or Virtex II (see Table 1). Similarly, the FPGA im-
plementations of SHA-512 based on the medium cost Virtex devices reach the speeds 
in the range of 700 Mbit/s [3, 4]. 

Significantly higher speeds might be required for applications such as High Defini-
tion Television (HDTV), videoconferencing, Virtual Private Networks, etc. [10]. Our 
goal was to propose, implement, and verify a new architecture of standard hash func-
tions that would allow them to be executed with the throughputs in the range of 1 
Gbit/s using medium cost FPGA devices, such as Xilinx Virtex 1000. 

2   Hardware Architectures of Hash Functions  

A general block diagram common for all four SHA standards and many other dedi-
cated hash functions is shown in Fig. 1. An input message passes first through the 
preprocessing unit which performs padding and forms message blocks of the fixed 
length, 512 or 1024 bits, depending on the hash function. The preprocessing unit 
passes message blocks to the message scheduler unit. Message scheduler unit gener-
ates message dependent words, Wt, for each step of the message digest. The message 
digest unit performs actual hashing. In each step, it processes a new word generated 
by the message scheduler unit. The message digest is the most critical part of the im-
plementation, as it determines both the speed and area of the circuit. 

The most straightforward implementation of the message digest, most often used in 
practice is shown in Fig. 2a. It is called the basic iterative architecture (or just  basic 
architecture). In this architecture, registers R and H are first both initialized with a 
value of the constant initialization vector, IV. Subsequently, the architecture executes 
one step of the message digest per one clock period. In each step t, the message digest 
accepts a different message dependent word, Wt, and a different step dependent con-
stant, Kt. After executing all steps, the result of the last step, stored in the register R, is 
added to the previous value of the register H. Then, the processing of the message di- 
 

 

Fig. 1. General block diagram of the hardware implementation of a dedicated hash function, 
such as SHA-1 and SHA-512 
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Fig. 2. General diagrams of the message digest units for a) basic architecture, b) partially un-
rolled architecture with k steps unrolled 

gest resumes for a new set of the message dependent words, Wt, corresponding to the 
new block of the message. 

Two straightforward ways of speeding up hardware implementations of hash func-
tions (and any other logic functions) are parallel processing using multiple instantia-
tions of the basic architecture, and pipelining. Out of these two methods, pipelining is 
more attractive because of the smaller area penalty. Nevertheless, both of these archi-
tectures are able to improve an average circuit throughput only under the assumption 
that multiple independent streams of data are processed simultaneously. If a single 
long message needs to be hashed, none of these architectures offers any improvement 
in terms of the execution time. 

A new architecture of the dedicated hash functions investigated in this paper is 
shown in Fig. 2b. It is called partially unrolled architecture. In this architecture, k 
steps have been “unrolled” and are executed in the same clock cycle. As a result, the 
total number of clock cycles necessary to compute one iteration of the message digest 
has been reduced by a factor of k. At the same time, the critical path through k steps is 
likely to be significantly shorter than k times the path through a single step. This is 
because in hash functions, the critical path through a step of the message digest is dif-
ferent for each word of the step input (see Fig. 3). 

3   Previous Work 

Fully and partially unrolled architectures of dedicated hash functions have been inves-
tigated by several authors in the past, but no definite conclusions have been made. In 
[11] a fully unrolled architecture of MD5 has been compared with a basic iterative ar-
chitecture. Unrolling of all 64 rounds resulted in a throughput increase by a factor of 
2.1, while at the same time the circuit area increased by a factor of 5.4. In [12] a par-
tially unrolled architecture of SHA-1, with the number of rounds unrolled k=5, has 
been investigated. A high level architecture presented in this paper was very similar to 
the one proposed in this paper. Nevertheless, the reported results were rather 
discouraging, with only 11% gain in the circuit throughput and a 43% penalty in the 
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aging, with only 11% gain in the circuit throughput and a 43% penalty in the circuit 
area for the partially unrolled architecture over the basic iterative architecture. 

All other hardware implementations of dedicated hash functions reported in the lit-
erature [9, 13, 14] or available as commercial IP cores [3-8] have followed the basic 
iterative architecture with only one step of hash function executed in each clock cycle. 

4   Details of the Hardware Architectures 

4.1   Internal Structure of the Message Digests of SHA-1 and SHA-512 

Internal structures of the message digests for SHA-1 and SHA-512 are shown in Fig. 
3. In both functions, input registers are initialized with the constant initialization vec-
tor, and are updated with the new value in each round. In SHA-1, four out of five 
words (A, B, C, and D) remain almost unchanged by a single round. These words are 
only shifted by one position down. The last word, E, undergoes a complicated trans-
formation equivalent to multioperand addition modulo 232, with five 32-bit operands 
dependent on all input words, the round-dependent constant Kt, and the message de-
pendent word Wt. The internal structure of the message digest of SHA-512 is similar. 
The primary differences are as follows: The number of words processed by each 
round is 8, each word is 64 bits long, and the longest path is equivalent to addition of 
seven 64-bit operands modulo 264. These operands depend on seven out of eight input 
words (all except D), the round-dependent constant Kt, and a message dependent word 
Wt. Six out of eight input words remain unchanged by a single round. 

4.2   Basic Architecture of SHA-1 

From Fig. 3a, the critical path of a single SHA-1 round involves the calculation of the 
chaining variable A at the moment t+1, given by the following formula: 

 

At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et + Kt + Wt + HA’t 

 
Fig. 3. Internal structure of a single message digest round of a) SHA-1, b) SHA-512 
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Fig. 4. Our implementation of the message digest unit of SHA-1 in the basic iterative architec-
ture 

where Xt is a value of the variable X in the step t, and HA’t = HA when t=79, other-
wise 0. HA is a word A of the register H in Fig. 2a. 

Additionally, we know that 
 

Bt, = At-1,   Ct= Bt-1<<<30,   Dt= Ct-1. 
 

None of these operations involve any logic, consequently, the expression 
 

ft (Bt, Ct, Dt) = ft (At-1, Bt-1<<<30, Ct-1) 
 

can be precomputed in the previous clock cycle, t-1, and will not contribute to the 
critical path. Similarly, the sum 
 

∑ HA’ Kt Wt = Kt + Wt + HA’t 

 

can be precomputed by the message scheduler unit, because all values are known al-
ready in the previous clock cycle. 

As a result, the critical path reduces to the addition of four operands 
 

At+1 = At<<<5 + Et + ∑ HA’ Kt Wt + ft (At-1, Bt-1<<<30, Ct-1). 
 

All aforementioned optimizations lead to the schematic of the basic architecture of 
SHA-1 shown in Fig. 4. The lowest level multiplexers choose initialization vectors 
IV0 to IV4 only in the first clock cycle of computations for any new message. The 
variables HB’.. HE’ are equal to HB..HE only in the last step of the message digest 
computations for a given message block, i.e., only when t=79; otherwise, they are 
equal to zero. 
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4.3   Partially Unrolled Architecture of SHA-1 

The optimization of the unrolled message digest is relatively straightforward. The 
general technique employed is to precalculate sums at the earliest possible stage using 
either regular carry propagate adders (CPAs) or carry save adders (CSAs) (see Fig. 5). 
The calculations in the critical path follow a sequence of computations described by 
the equations below: 
 

 
 

Fig. 5. Our implementation of the message digest unit of SHA-1 in the partially unrolled archi-
tecture with 5 steps unrolled 
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At+1 = At<<<5 + ft(Bt, Ct, Dt) + Et  + Kt + Wt = At<<<5 + ft(Bt, Ct, Dt) + Et  + ∑ Kt Wt 
At+2 = At+1<<<5 + ft+1(Bt+1, Ct+1, Dt+1) + Et+1  + Kt+1 + Wt+1 = 

   = At+1<<<5 + [ft+1(At, Bt<<<30, Ct) + Dt  + ∑ Kt+1 Wt+1] 
At+3 = At+2<<<5 + [ft+2(At+1, At<<<30, Bt<<<30) + [Ct  + ∑ Kt+2 Wt+2]] 
At+4 = At+3<<<5 + [ft+3(At+2, At+1<<<30, At<<<30) + [Bt<<<30  + ∑ Kt+3 Wt+3]] 
At+5 = At+4<<<5 + [ft+4(At+3, At+2<<<30, At+1<<<30) + [At<<<30 + ∑ Kt+4 Wt+4 + HA’t+4]]. 
 
At each stage two paths are critical. One is a calculation of the new value of At+i 
(i=1..5), which involves rotation by five positions and a single addition. The second is 
the precalculation of the value of [ft+i + [Et+i + ∑ Kt+iWt+i]] to be used in the next stage. 
This precalculation involves the calculation of ft+i and a single addition of a precalcu-
lated value [Et+i + ∑ Kt+iWt+i]. 

In the first stage of computations (computing At+1), precalculated values do not ex-
ist, so the computations must be performed from scratch. In every second stage start-
ing from stage two, the precomputation of the sum [ft+i + [Et+i + ∑ Kt+iWt+i]] is the most 
time consuming operation. Finally, in every second stage starting from stage three, the 
only contribution to the critical path is a single addition. 

4.4   Basic Architecture of SHA-512 

From Fig. 3b, the critical path of a single SHA-512 round involves the calculation of 
the chaining variable A at the moment t+1, given by the following formula: 
 

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + Kt + Wt + Ht + HAt’ 
 

where Xt is a value of the variable X in the step t; S0, Maj, S1, Ch are the logic func-
tions defined in the SHA-512 standard, and HA’t = HA when t=79, otherwise 0. 

Additionally, we know that 
Ht = Gt-1. 

 

The functions S0 and Maj execute in parallel in approximately the same amount of 
time. The same holds true for functions S1 and Ch.  

The sum 
KWHAt = Kt + Wt + Gt-1 + HA’t   

 

can be precomputed in the previous clock cycle, t-1. 
As a result, the critical path reduces to the addition of five operands 
 

At+1 = S0(At) + Maj(At, Bt, Ct) + S1(Et) + Ch(Et, Ft, Gt) + KWHAt. 
 

All aforementioned optimizations lead to the schematic of the basic architecture of 
SHA-512 shown in Fig. 6. The registers HA-HH are set to the initialization vectors 
IV0 to IV7 only in the first clock cycle of computations for any new message. The 
multiplexers selecting between HB and ‘0’, HC and ‘0’, etc. choose non-zero values 
only in the last step of the message digest computations for a given message block, 
i.e., only when t=79. 
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Fig. 6. Our implementation of the message digest unit of SHA-512 in the basic iterative 
architecture (PC – a 5-to-3 parallel counter, see [9]) 

4.5   Unrolled Architecture of SHA-512 

The unrolled architecture of SHA-512 is shown in Fig.7.  Because of the dependence 
of Et+1 on Et, and At+1 on At and Et (see Fig. 3b), three major critical paths (A0 to A0, 
E0 to A0 and E0 to E0) exist in the circuit. These paths are marked in Fig. 7 with 
thicker lines. Values of variables At+i, and Et+i are denoted as “Ai” and “Ei” respec-
tively, e.g., “E2” denotes Et+2. Precomputations in the previous clock cycle are used to 
reduce the number of operands in the first four stages of the unrolled architecture.  
Recall that in the basic architecture, the KWHAt sum is computed based on the equa-
tion Ht = Gt-1. In the unrolled architecture with k=5, t changes by 5 every clock cycle 
As a result, Ht = Gt-1 = Ft-2 = Et-3 =  Et+2-5 = “E2” in the previous clock cycle. 
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On the far left side of Fig. 7, “E2” is used to precompute KWH0 (notation for 
KWHAt+0) for the next clock cycle.  

 

KWH0 = KWHAt = Kt + Wt + Ht + HA’t 
 

This method is repeated in stages two to four in order to compute KWHAt+i (denoted 
in Fig. 7 as KWHi, i=1..3). In stage 5, Ht+4 = Et+1 = “E1”, so this value is computed in 
the same clock cycle, and as a result is not included in the earlier precomputed KWH4 
= KWHAt+4, which reduces to KWHAt+4 = Kt+4 + Wt+4. Please, note that in Fig. 7, the 
sum Kt+i + Wt+i is denoted as KWi. 

 

Fig. 7. Our implementation of the message digest unit of SHA-512 in the partially unrolled ar-
chitecture with 5 steps unrolled 
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Further reductions in critical paths were accomplished in each stage by adding val-
ues of logic functions S1 and Ch as early as possible, reusing values of S1 + Ch, and 
by selective routing to balance the number of slices in various critical paths. 

5   Design Methodology and Results 

Our target FPGA device was the Xilinx Virtex XCV1000-6. This device is composed 
of 12,288 basic logic cells referred to as CLB (Configurable Logic Block) slices, in-
cludes 32 4-kbit blocks of synchronous dual-ported RAM, and can achieve synchro-
nous system clock rates up to 200 MHz [2]. XCV1000 was chosen because of the 
availability of a general purpose PCI board, SLAAC-1V, based on three FPGA de-
vices of this type [10]. Additionally, a new family of Virtex-E Xilinx devices was tar-
geted as well. 

All hardware architectures were first described in VHDL, and their operation veri-
fied through functional simulation using Active HDL, from Aldec, Inc. Test vectors  
and intermediate results from the reference software implementations based on the 
Crypto++ library [15] were used  for debugging and verification of VHDL codes. The 
revised VHDL code became an input to logic synthesis performed using FPGA Com-
piler II from Synopsys. Tools from Xilinx ISE 4.2 were used for mapping, placing, 
and routing. These tools generated reports describing area and speed of implementa-
tion, a netlist used for timing simulation, and a bitstream used to configure an actual 
FPGA device. All designs were fully verified through behavioral, post-synthesis, and 
timing simulations. 

The experimental testing of our cryptographic modules was performed using the 
SLAAC-1V hardware accelerator board, including three Virtex 1000 FPGAs as the 
primary processing elements. Only one of the three FPGA devices was used to im-
plement hash core. 

Test program written in C used the SLAAC-1V APIs and the SLAAC-1V driver to 
communicate with the board. Our testing procedure is composed of three groups of 
tests. The first group verifies the circuit functionality at a single clock frequency. The 
goal of the second group is to determine the maximum clock frequency at which the 
circuit operates correctly. Finally, the purpose of the third group is to determine the 
limit on the maximum encryption and decryption throughput, taking into account the 
limitations of the PCI interface. 

In Fig. 8, the minimum clock periods of SHA-1 and SHA-512 obtained using static 
timing analysis and the experiment are given. For the unrolled architecture, the effec-
tive clock period is the minimum time necessary for the data signals to pass the criti-
cal path. Since in both our unrolled designs, the data signal is traveling through the 
critical path over multiple clock periods, the effective clock period is a multiple of the 
actual clock period. In case of the unrolled architecture for SHA-1 the multiplication 
factor is 2, in case of the SHA-512 architecture, the multiplication factor is 5. 

Based on the knowledge of the minimum clock period, the maximum data through-
put has been computed according to the equation: 

 
Throughput=Message_block_size / (Effective_clock_period * Number_of_rounds/k) 
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The maximum throughput values calculated based on the minimum clock periods 
obtained using static timing analysis and experiment are shown in Fig. 9. In the same 
figure, these results are compared with the experimentally measured data throughputs 
that take into account the delay contributions and the bandwidth limit of the PCI inter-
face. This comparison demonstrates that the PCI interface is capable of operating with 
a constant uninterrupted data flow up to about 960-990 Mbit/s, and has a negligible 
influence on the data throughput below this communication rate.  

The number of CLB Slices used by our implementations of SHA-1 and SHA-512 
are shown in Tables 1 and 2. In SHA-512, four 4 kbit block RAMs are used to store 
80 64-bit constants Kt. 

Out of the two analyzed hash standards, SHA-1 offers much better potential for 
loop unrolling. As a result of loop unrolling, the throughput of SHA-1 increased by a 
factor of almost two (1.9 times), while at the same time its area grew only by a factor 
of three. SHA-512 is much less suitable for loop unrolling, as its observed speed-up 
was only 30%, and the area increase 48%. 
 

 

Fig. 8. Minimum clock periods of SHA-1 
and SHA-512 in the basic iterative archi-
tecture and partially unrolled architecture 
 

 

Fig. 9. Maximum throughputs of SHA-1 
and SHA-512 in the basic iterative archi-
tecture and partially unrolled architecture

6   Comparison with Other Hash Cores 

There exist multiple commercial IP cores implementing SHA-1 [3-8]. In Table 2, we 
present the comparison of our designs for SHA-1 with the most representative IP 
cores with equivalent functionality. For the Xilinx Virtex family of FPGA devices, 
our core for SHA-1 in the basic iterative architecture outperforms the second best core 
(from Helion Technology Ltd) by 13%, using 30% less CLB slices. Our core for the 
partially unrolled architecture of SHA-1 with 5 rounds unrolled, outperforms all re-
ported Virtex cores by a factor of at least two in terms of throughput, and uses about 
two times more area. The similar advantages exist for the implementations using 
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Virtex-E devices, where our core for the unrolled architecture approaches the 
throughput of 1.2 Gbit/s. 

Table 1. Comparison of our designs for SHA-1 with the representative commercial IP cores 
with equivalent functionality 

Source Clock  
frequency 

[MHz] 

Throughput 
[Mbit/s] 

Area 
[CLB Slices] 

Xilinx Virtex 
Our, basic 85 544 480 
Our, unrolled (k=5) 641 1024 1480 
ALMA Technologies 70 442 686 
Helion Technology Ltd. 76 480 689 
Ocean Logic Pty Ltd 56 352 612 

Xilinx Virtex-E 
Our, basic 103 659 484 
Our, unrolled (k=5) 72.5 1160 1484 
ALMA Technologies 87 549 686 
Bisquare Systems Private 
Limited 

66 422 579 

Helion Technology Ltd. 95 600 689 
Intron, Ltd. 71 449 716 
Ocean Logic Pty Ltd 71.5 452 612 

Xilinx Virtex-II 
ALMA Technologies 102 644 686 
Amphion Semiconductor 99 626 854 
Helion Technology Ltd. 103.5 654 569 
Ocean Logic Pty Ltd 79 498 612 

Table 2. Comparison of our designs for SHA-512 with the representative commercial IP cores 
with equivalent functionality 

Source Clock  
frequency 

[MHz] 

Throughput 
[Mbit/s] 

Area 3 
[CLB Slices] 

Xilinx Virtex 
Our, basic 56 717 2384 Slices 
Our, unrolled (k=5) 672 929 3521 Slices 
ALMA Technologies 56 707 2690 Slices 

Xilinx Virtex-E 
Our, unrolled (k=5) 722 1034 3517 Slices 
ALMA Technologies 68 859 2690 Slices 

Xilinx Virtex-II 
ALMA Technologies 72 910 2507 Slices 
Amphion Semiconductor 50 626 2403 Slices 

 

1 multi-cycle clock used in the critical path, critical path ≤ 2 TCLK = 2/fCLK, 5 steps executed in 2 
clock cycles 

2 multi-cycle clock used in the critical path, critical path ≤ 5 TCLK = 5/fCLK, 5 steps executed in 5 
clock cycles; 

3 each circuit contains additionally 4 Block RAMs 
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At this point, there are relatively few cores available for the new standard, SHA-
512 (see Table 2) [3, 4]. Our implementation of the basic iterative architecture slightly 
outperforms the equivalent core from ALMA Technologies in terms of throughput, 
using a smaller amount of FPGA resources. Our partially unrolled architecture is the 
fastest core for the Virtex family of FPGA devices outperforming the second best core 
by 30% at the cost of only 31% increase in the circuit area. For the Virtex-E family of 
FPGA devices our core is the only currently available SHA-512 core that exceeds the 
throughput of 1 Gbit/s. 

7   Comparison with Software Implementations 

Efficient software implementations of hash functions have been extensively studied in 
the literature [17-20]. In [17], basic recommendations on developing an efficient and 
portable implementation of SHA-1 in C have been formulated. In [18], a close to op-
timum implementations of dedicated hash functions using Pentium’s superscalar ar-
chitecture have been presented. In [19], software parallelism of all major dedicated 
hash functions have been studied. Finally, in [20], optimizations targeting Pentium III 
have been investigated. These optimizations made use of MMX registers and instruc-
tions available in Pentium III.  

In this paper, we used for comparison, software implementations of SHA-1 and 
SHA-512, available as a part of the Crypto++ library [15]. Although Crypto++ is not 
the fastest of the reported software implementations, the reason for using this library 
was its portability, availability in public domain, and wide practical deployment. 

A PC with 2.2 GHz clock, 1 GByte RAM, and cache size 512KB, running Win-
dows XP was used in our measurements. The Crypto++ implementation of hash func-
tions written in C++ was compiled using MS Visual Studio with Service Pack 5. The 
obtained throughput was 40.5 Mbit/s for SHA-1 and 30.4 Mbit/s for SHA-512. These 
throughputs were respectively 25 times and 31 times smaller than the throughputs of 
our partially unrolled hardware implementations of SHA-1 and SHA-512 for Xilinx 
Virtex 1000-6 FPGAs. 

8   Summary 

A new partially unrolled architecture has been proposed for a family of dedicated 
hash functions, including four American standard algorithms SHA-1, SHA-256, 
SHA-384, and SHA-512. The unrolled architecture has been designed, optimized, and 
experimentally verified for the most widely used hash algorithm, SHA-1, and one of 
the new hash standard algorithms SHA-512. For the purpose of comparison, the basic 
iterative architecture has been implemented for both functions as well.  

The new architecture appeared to be particularly suitable for the implementation of 
SHA-1. For the number of rounds unrolled equal to k=5, it allowed to almost double 
the throughput of SHA-1 compared to the basic iterative architecture, at the cost of 
increasing circuit area by a factor of three. The similar design for SHA-512 appeared 
to have much less benefit; the increase in the circuit throughput was only 30%, and 
the area of the circuit increased by 48%.  
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This different behavior of two hash algorithms could be easily explained by ana-
lyzing the structure of both algorithms. In the unrolled architecture of SHA-1, many 
message digest steps could be substantially sped up by preprocessing partial results of 
a given step in the previous steps. The same optimization was not possible in SHA-
512 due to sequential dependencies present in the algorithm. 

Our partially unrolled implementation of SHA-1 reached the target throughput of 
1 Gbit/s in Virtex XCV1000, and outperformed all known to the authors commercial 
IP cores with equivalent functionality by at least a factor of two. Our implementation 
of SHA-512 also compared favorably with commercial IP cores, and reached a target 
throughput of 1 Gbit/s using Virtex-E family of Xilinx FPGAs. To our best knowl-
edge, our implementations of SHA-1 and SHA-512 are the only FPGA implementa-
tions of these hash functions available to date that can sustain a throughput over 
1 Gbit/s for a single stream of data. 
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