
A Transformational Model

of VLSI Systolic Design

Monica S. Lam, Carnegie-Mellon University
Jack Mostow, Information Sciences Institute, University of Southern California

Using transformations
that formalize the

systolic designer's "bag
of tricks," a prototype

system converts nested-
loop algorithms into

efficient functional-level
systolic designs.

Systolic arrays have been proposed
as a cost-effective solution to

many computation-intensive prob-
lems. They consist of simple cells
operating synchronously, each com-
municating only with nearby cells.
Their applications range from numer-
ic tasks, such as signal and image
processing and matrix arithmetic, to
symbolic tasks, such as searching and
sorting, graph algorithms, and rela-
tional databases.
The design process for systolic ar-

rays is modeled here as a series of
transformations, expressed in a lan-
guage devised for clearly and concisely
describing systolic arrays. A prototype
program called Sys (for systolic design
system) accepts a software algorithm
and some advice and applies a series of
transformations to produce a func-
tional-level circuit description of a sys-
tolic design.

Systolic arrays

Systolic architectures are typically
large, regular arrays of processor ele-
ments (Figure 1). Such an architec-
ture is called systolic because data is
pumped steadily through the array of
cells, much like blood in the body.
Data items, including inputs and
partial and completed results, flow
through the structure synchronously
in a fLxed, regular pattern; all opera-
tions involving an item are applied to
it as it passes through. This method of

computation eliminates the need to
retrieve the item from external mem-
ory every time it is used, a process that
typifies von Neumann machines. Con-
sequently, a systolic array can be
expanded to provide the increased
capacity required by a computation-
intensive application without impos-
ing a corresponding increase in exter-
nal memory bandwidth. This property
gives systolic architectures a major
advantage over traditional architec-
tures, which are limited by the von
Neumann bottleneck.

Besides their low external memory
bandwidth requirements, systolic ar-
chitectures offer other advantages as
well. The simplicity of systolic VLSI
designs is especially important for
special-purpose applications, where
design cost must be amortized over a
small production volume. A systolic
array is typically made up of a few
simple cell types and is therefore
cheaper to design than a circuit con-
taining a variety of complex cells.
Moreover, the regular pattern of local
interconnection between cells simpli-
fies the layout problem.

Unlike architectures that broadcast
data to many points, systolic architec-
ture can easily be scaled up to handle
large problems. Their local intercon-
nections schemes'avoid the clock skew
that arises when data is broadcast over
paths of differing lengths. Also, the
low fanout in a systolic array allows
the signal drivers to be independent of
the number of cells in the array. Thus

0018-9162/85/0200-0042S01.00o c 1985 IEEE42 COMPUTER

the size of a systolic array can be in-
creased without altering other design
parameters.
These properties-low external

memory bandwidth, simplicity, regu-
larity, and local communication-
make systolic architectures especially
well-suited to implementation in
VLSI. Systolic design is providing new
or improved hardware solutions to
many computation-intensive prob-
lems. Two solutions to the simple
problem of polynomial evaluation will
serve as examples of systolic arrays.

Two systolic designs for polynomial
evaluation. Suppose we have the
following polynomial:

P(X)=AmXm+AmjlXm-l+ .+Ao

We wish to evaluate P(xi) at points xi,
I ic n. By Horner's rule, the poly-
nomial can be reformulated from a
sum of powers into an alternating se-
quence of multiplications and addi-
tions:

P(x)=(((Amx+Am_.)x+. . .+Al)x+Ao

The value of P(x,) for each xi, pi, is
computed by an algorithm whose in-
ner loop is

for ifrom 1 to n do
for j from m to 0 do

pi:.pi *x; +Ai;

Figure 1. Some common configurations of systolic arrays.

Figure 2. Poly-l: Hold xi in register x; accumulate pi in register p; pass Ai.

Figure 3. Poly-ll: Hold Ai in register A, pass xi and pi.

Here pI, . . . , p, are initialized to 0.
One systolic implementation is

shown in Figure 2. In this design,
referred to as Poly-1, there is one cell
for each xi. Each cell holds its xi value
in one register, x, and accumulates the
value of the polynomial in another.
The coefficients A, . ..m, A 0are
passed from one cell to another so that
each cell sees the same sequence of
coefficients. On each clock cycle,
every cell multiplies its partial sum by
the value stored in its x register, adds
the coefficient it receives, and stores
the result into its p register. When all
the coefficients have flowed through,
the results will be in the p registers.
An alternative systolic implementa-

tion is shown in Figure 3. In this de-
sign, Poly-1l, the coefficients are held

in cells through which the xi and pi
data flow. On every clock cycle, each
cell inputs xi and pi, multiplies them,
adds its stored coefficient, and out-
puts the result as Pout while passing on
xi unchanged. The result P(xi) ap-
pears at the output of the rightmost
cell m clock cycles after xi is input to
the leftmost cell.

Methodologies for systolic design.
Although their characteristics (regular
data flow, local communication, and
simple replicated components) make
systolic arrays easy to implement in
VLSI, mapping a computation onto
an array with these characteristics can
be difficult. Several attempts have
been made to simplify various aspects
of this design process.

An appoach adopted from z-trans-
forms in signal processing was first
suggested by Cohen I and later elabo-
rated by Johnsson and Cohen2 and
Weiser and Davis. Delay registers are
modeled with a special mathematical
operator Z, which is defined by

z[x(i)]=x(i- 1)

Mathematical formulas can be manip-
ulated to obtain different expressions
that correspond to different computa-
tional networks. The drawback in de-
veloping a methodology based on this
representation is that the notation is
unwieldy for complex computations.

Leiserson and Saxe4 developed a
general theory that allows us to op-
timize a synchronous circuit under dif-

February 1985 43

fering criteria by adjusting the number
of register delays in the data paths.
While this theory does not offer a
methodology for designing systolic ar-
rays from a high-level description, it
provides justification for some of the
transformations that replace global
broadcasting with local signal prop-
agation.
A methodology based on geometric

transformations has been proposed
for mapping nested-loop algorithms
onto systolic arrays. -7 The computa-
tion is modeled as a lattice with nodes
representing operations and edges
representing data dependencies. The
lattice is mapped onto a space-time
domain; the time and space coor-
dinates of each node indicate when
and where in the array to perform the
operation. We can derive different
systolic designs by applying geometric
transformations to the lattice.
Moldovan uses matrices to repre-

sent a predetermined systolic architec-
ture, a geometric transformation, and
the set of data dependencies in a
nested-loop program.8'9 The integer
solution to a corresponding matrix
equation gives a mapping from the
program onto the architecture. Using
a similar approach, Quinton'° dem-
onstrates a constructive method to
generate all possible systolic designs
for a certain class of recurrence equa-
tion under some mapping restrictions.
This approach is very powerful, but
works only for highly regular recur-
rences.
The approaches described above

abstract a computation in terms of its
data dependencies; they assume that
the computation has already been
decomposed into operations corre-
sponding to the behavior of individual
cells. This assumption is impractical
for complex computations where the
design process may depend on details
of internal cell behavior; for example,
it prevents the use of certain design
transformations that redefine this
behavior.
The behavior of the cells in a sys-

tolic array can be quite complex. In
particular several recent implementa-
tions of systolic arrays have program-
mable cells that can perform many

different and complex functions.""12
Some systolic algorithms exploit this
capability to solve problems that may,
at first blush, appear unsuited to sys-
tolic implementation. Examples in-
clude Brent and Kung's systolic arrays
for computing the greatest common di-
visor of polynominals and integers.'3
Our methodology models cell be-

havior explicitly. We can manipulate
the cell programs at the same time we
design the data flow and interconnec-
tion of the array. This manipulation
allows us to design complex systolic
algorithms with data-dependent cell
actions and variable data-flow speeds.

A transformational approach

We model the design process as a
series of transformations applied to an
initial abstract algorithm for a com-
putation. Instead of embarking on the
formidable task of automating the
process, we rely on the human de-
signer to decide which transforma-
tions to try, and we let the machine
perform the laborious manipulation
required to apply them.
This transformational paradigm

was first suggested as a solution to the
high cost of software maintenance.'4
By using a computer-aided transfor-
mational process to map a high-level
specification into an implementation,
we can capture all the design decisions
in the machine. Changes in the design
strategy or in the specification itself
can be implemented simply by editing
the recorded history of design de-
cisions and replaying the modified
history.'5

Our motivation for using the trans-
formational paradigm is to help peo-
ple create systolic designs. The "bag
of tricks" produced by research in
systolic design can be encapsulated as
machine-applicable transformations.
Moreover, the transformational ap-
proach offers a solution to the verifi-
cation problem. A systolic design is
typically remote from the abstract
computation it implements, so its veri-
fication can be quite complicated.
However, if the design has been de-

rived by applying a sequence of trans-
formations known to preserve correct-
ness, the derivation itself serves as a
constructive proof of correctness with
respect to the initial specification.

Transformational model

Our model of the systolic design
process can be summarized as

Begin
Perform software transformations;
For block from inner to outer
Do begin

Allocate hardware units;
Schedule the computation;
Apply optimizing transformations
end;

end;

Part of this process has been im-
plemented in a prototype system, Sys.
The process starts with an abstract
algorithm and designs a functional-
level systolic circuit. The design de-
scribes a set of functional units, their
interconnections, and the input and
output data streams.
The algorithm must first undergo

high-level transformations to be pre-
pared for systolic implementation.
For example, Horner's rule was used
to transform polynomial evaluation
into a series of multiply-and-add
operations, which can be performed
by the same type of cell. Some of these
transformations are similar to those
that adapt sequential programs for
execution on general multiprocessor
architectures.'6"7 In systolic designs,
further consideration must be given to
the unique characteristic of data flow-
ing through a regular interconnect
rather than residing in a global mem-
ory. Failure to anticipate such con-
cerns before translating the algorithm
into a lower level design can force the
designer to backtrack and revise the
high-level algorithm. While the trans-
formational paradigm cannot substi-
tute for design insight in selecting a
good algorithm initially, it can facili-
tate design evolution by assisting the
transformation of successive versions
of an algorithm. Sys assumes that the
initial algorithm has undergone the

COMPUTER44

necessary software transformations.
An algorithm ready for systolic

implementation typically consists of
highly repetitive computations, ex-
pressed in terms of nested loops and
begin-end blocks. Sys knows how to
map such constructs onto hardware;
some transformations for mapping
other constructs are described else-
where.18

Sys takes the algorithm and goes
through a bottom-up process to design
a systolic array. For each loop, it allo-
cates hardware, schedules the compu-
tation, and optimizes.
The allocation phase generates a de-

scription of the necessary primitive
functional units and allocates them to
operations in the algorithm. The user
guides this phase by annotating each
begin-end block and loop. The anno-
tation in place tells Sys to use the same
hardware for all the statements in the
block or iterations of the loop, while
the annotation in parallel tells Sys to
use separate hardware for each one.
The scheduling phase decides when

each operation can safely be performed.
The optimization phase makes the

design truly systolic by inserting regis-
ters, adding data connections, and ad-
justing the schedule. The user can
guide this phase by selecting which op-
timizing transformations to apply.

Description of systolic circuits. To
facilitate machine transformations,
we divide the description of a systolic
circuit into its structure and its driver.
The structure describes the hardware
cells and how they interconnect; the
driver describes the format of the data
streams to and from the circuit.

Structure. The notation for describ-
ing the structure is similar to a pro-
gramming language. A hardware mod-
ule corresponds to a procedure. The
description is hierarchical; composite
modules are made up of submodules,
which, can themselves, be composite
modules. The submodules are analo-
gous to local procedures. Local regis-
ters correspond to "own" variables,
which retain their states between calls.
A module's interface to the external

world consists of input and output
ports. A scalar port inputs or outputs

Figure 4. Poly-11 description.

a single value at a time, while an array
port transmits a vector of values si-
multaneously.

Consider, for example, the specifi-
cation of the Poly-II module, as
shown in Figure 4. (The italicized in-
formation is the driver specification.)
This figure shows that the Poly-II
module has two input ports, xin and
Pi,; an output port, pout; and an array
ofm + I primitive Multiply-Add mod-
ules, each of which has two input
ports, xi, and pin, two output ports
xou, and Pout, and one local register A.
The body of the module description

specifies the behavior of the module in
each clock cycle. For a primitive mod-
ule, the implementation of its behavior
is not important to the aspects of
systolic design addressed here. There-
fore, the computation performed in
each clock cycle is defined abstractly
by an Algol-like notation relating the
new values (outputs and new register
contents) to the inputs and old register
contents. We assume a two-phase
clocking scheme such that, in phase 1,
a module reads from its registers and
input ports and, in phase 2, it updates
its registers and writes into its output
ports. Each call to the module corre-
sponds to a clock cycle.

In the example of Poly-II, Multiply-
Add is a primitive module. In phase I

of each clock cycle or procedure call,
Pi, * Xin +A is computed and the
result is written into Pout in phase 2.
The value of xin is also read in phase 1
and written into xout in phase 2. All
output ports retain their values until
they are written into again in the sec-
ond phase of the next clock cycle when
the next procedure call occurs.
A composite module is an encap-

sulation of a group of submodules.
The function of the entire module can
be modeled as invoking, in parallel, all
the local procedures corresponding to
the submodules. In each clock cycle,
all submodules receive data from their
input ports simultaneously in phase I
of the common clock and write data
into their output ports in phase 2. The
interconnections among submodules
are modeled as parameter bindings.
Each input port of a submodule cor-
responds to a formal parameter of a
local procedure; whatever is connected
to the input port corresponds to the ac-
tual parameter.

The specification of Poly-II serves
as an example of the syntax for de-
scribing composite modules. Parallel
invocation of submodules is specified
by putting the corresponding pro-
cedure calls inside a "Parallel begin
. . . end" construct. The specification
states that the inputs of the leftmost

February 1985 45

module, Multiply-Add[m], come di-
rectly from the outside and that the in-
put ports of every other submodule
are connected to the output ports of
the submodule to its left.
The notation used in the definition

of a module follows standard pro-
gramming language conventions. Ar-
ray elements are designated by index-
ing. The mapping between actual and
formal parameters is positional. For
example, the order of the actual pa-
rameters in the statement Multiply-
Add[m](xin, Pin) indicates that the
Poly-II module input pin is connected
to the pmn port of the mth Multiply-
Add submodule, since that is the sec-
ond In-Port in the submodule defini-
tion. A module definition can refer to
a submodule's ports by prefixing them
with the submodule name. For exam-
ple, Multiply-Add[O].p0,, refers to the
Pout port of the 0th Multiply-Add
module.
Each level in the hierarchical de-

scription of the hardware hides the
details of lower levels; the names of
submodules are not visible outside the
module. This restriction eliminates
potential name conflicts between ports
of different submodules. When we
need to overcome it, we use the equate
(=) construct to identify a submodule
port with an externally visible port.
For example, the statement Pout =

Multiply-Add[O].pou, defines the pout
port of the Poly-II module to be the
same as the pout port of the rightrmost
Multiply-Add submodule.

and the updated value ofAi is written
to the output port Aout in phase 2. In-
putting a stream of values to the cell is
represented as

In-Port Ain
I SequenceU from m to 0] of Aj I;

This means that the values Am,...,
Ao are input to the Ain port in suc-
cessive clock cycles, as shown in
Figure 5a.
To describe the data input to or out-

put from an array port, we introduce
the Wave construct:

In-Port A i[l..n]
yWave[i from 1 to n] of Ail;

This example represents n elements
simultaneously input into the array
port Atn. Here all the elements have
the same value Ai.
A Wave can be nested inside a se-

quence:

In-Port A n[l..n]
[Sequence[j from m to 0] of
Wave[i from I to n] of Aj);

As shown in Figure 5b, this repre-
sents a two-dimensional array input a
row at a time into the array port Ai,
starting with row m. Each row is n
elements wide, and all the elements in
thejth row have the value Ai.
Two attributes, delayedand skewed,

capture common concepts in systolic
data flow. The values in a stream that
is delayed k are unspecified for the

first k cycles; the stream description
applies starting with the (k+ l)th cy-
cle:

In-Port Ain
[Sequence[j from m to 0 delayed 1]
of Aj1;

Here an unspecified value indicated by
x in Figure 5c is input into A,i, in the
first clock cycle, followed by the
values Am,. . ., Ao in sequence start-
ing at the second cycle.

If a Wave is skewed k, the values of
the wave elements are not presented
simultaneously; instead, each element
is presented k cycles after the element
preceding it:

In-Port A n[l..n]
[Sequence [j from m to 0] of
Wave [i from I to n skewed 1] of Aj1;

As shown in Figure 5d, all the ports
input the values Am,. . .,Ao in se-
quence, with the ith port starting at
the ith clock cycle (1 :i<n).

Sometimes a module uses the same
data value repeatedly, or computes a
series of intermediate values culminat-
ing in a desired result. In such cases,
Sys allocates registers to hold data
loaded before the computation or ac-
cumulate results to be unloaded after-
wards. Sys includes annotations like
[preloaded with x) and [unloaded asy)
in the driver information for such reg-
isters, but does not design the loading
and unloading hardware. Standard

Driver. The driver represents the ex-
ternal calling discipline for the top-
level module at each stage of the de-
sign. It relates a hardware structure to
the part of the abstract algorithm it
implements by specifying when it in-
puts and outputs the abstract vari-
ables. Although the driver is not part
of the structure, for brevity we show it
inside the module definition. To in-
voke the primitive module Multiply-
Add with the input Aj and obtain an
updated value as output, the driver is

In-Port Ain (Ai);
Out-Port A,,t (Aj 1;

This means that the value of Ai is in-
put to the Multiply-Add cell in phase I

46

Figure 5. Data stream notation. (a) Sequence[i from m to 0) of A1; (b) Se-
quencefi from m to Olof Wave[i from I to nlof Aj; (c) Sequence[ji from m toO
delayed ilof Ag;and(d)Sequence[i fromm to Olof Wave[i from I to n skewed
i1of Ai. An unspecified value is indicated by the symbol x.

COMPUTER

techniques exist for this purpose, such
as loading the data sequentially with a
tag bit attached to signal the loading
phase or adding an extra data path to
unload the results.

Scheduling. To map an algorithm,
annotated with allocation advice, such
as in place or in parallel, into hard-
ware, Sys works bottom-up, starting
with the innermost loop. For each
loop, it designs the structure indicated
by the annotation, then schedules the
computation by constructing a simple
driver that satisfies the following con-
straints:

(1) Physical Constraint: No Data
Collision. A module cannot
simultaneously input or output
different values through the
same port and can therefore
compute a function of only one
set of inputs at a time.

(2) Logical Constraint: Data De-
pendency. A function cannot be
computed until the values of all
the inputs are ready.

In the scheduling phase, Sys assumes
that all the input and output values are
stored in external memory. However,
external I/O bandwidth is constrained
by pin count, a limiting factor in VLSI
design.

If a series of computations is sched-
uled on the same module, the data
collision constraint requires that they
be spaced far enough apart to avoid
interfering with each other. Sys com-
putes the number of clock cycles re-
quired between the start of successive
iterations on the same module. Itera-
tions can overlap in time without
violating the data collision constraint,
provided they do not use the same
components simultaneously.
The data dependency constraint

dictates that every input stream of a
module must be delayed by at least
one clock cycle relative to any output
stream that supplies it, because data
written into an output port in one
clock cycle cannot by used until the
next cycle. When scheduling a module,
Sys delays all its streams by the min-
imum number of cycles required to
satisfy this constraint. Sequential, par-

Figure 6. Three scheduling schemes.

allel, and pipelined scheduling, il-
lustrated in Figure 6, are the three
most common schemes in systolic
design.

Sequential. Consider the following
loop:

For ifrom 1 toninplacedoy,:=F(y,);

The annotation in place indicates that
this loop is to be implemented on a
single hardware cell that computes
function F. The data collision con-
straint dicates that the loop must be
computed sequentially, since the cell
can compute F for only one input
value at a time. As Figure 6a shows,
the cell inputs the elements yI,. . .,y,
in successive clock cycles and outputs
the updated value for each element in
the second phase of the same clock cy-
cle.

Parallel. If we change the in place
annotation to in parallel, Sys gener-
ates n modules, each of which com-
putes one iteration of the loop. The
data collision constraint is trivially
satisfied. Since the iterations are in-
dependent of each other, they can be
scheduled simultaneously without vio-
lating the data dependency constraint
(Figure 6b). The ith cell inputs yi and
outputs its updated value.

Pipelined. Consider the following
loop:

For i from 1 to n in parallel do x: = F(x);

Although n modules are allocated for
computing this loop, the data depen-
dency constraint precludes computing
the n loop iterations simultaneously,
since the value ofx at the beginning of
each iteration depends on the value

computed during the previous itera-
tion. However, a pipelined implemen-
tation is possible, as illustrated in
Figure 6c. The initial value of x is in-
put to the leftmost cell. Each cell ap-
plies the function F to its input and
outputs the result to its right. After n
steps, the rightmost cell outputs the
final value of x. The delay is the same
as for the sequential implementation;
however, the pipelined structure per-
mits overlapping execution of the loop
for different initial values of x, accept-
ing a new input as often as it can com-
pute the function F. Pipelining,
therefore, increases throughput by a
factor of n relative to the sequential in
place implementation.

Optimization. After scheduling, Sys
has a correct, but inefficient, func-
tional-level implementation of the
original algorithm. It next tries to
improve the design by applying cor-
rectness-preserving transformations
suggested by the user.

In the optimization phase, Sys tries
to reduce external memory accesses
and, in general, to minimize com-
munication between each module and
its environment. Sometimes external
data access can be replaced with local
storage; for example, if an input value
is used in many operations, it can be
input into the system once and kept
until it is no longer needed.

Preload-repeated-value:
If an input stream consists of a
repeated value, replace it with a
preloaded register.

Similarly, if a computed value is
only a temporary result to be used in
some other computation, the system
can save the value until it is used,

February 1985 47

rather than outputting it and reading it
back in later.

Replace-feedback-with-register:
If an output stream feeds back into
an input stream, replace them both
with a local register.

If the output from one cell of an
array is consumed by the next cell,
communication can be implemented
with a regular pattern of local inter-
connections.

Internalize-data-flow:
If the output of one cell in an array
is input to the next cell after k steps,
connect them through k- 1 buffer
registers.

Routing can take up much of the
area required to lay out a VLSI circuit.
Unnecessary interconnections can be
eliminated by merging redundant data
streams.

Broadcast-common-input:
If the input streams to several ports
are identical, replace them with one
stream and broadcast its values to
the old ports.

Propagate-common-input:
If an array of cells input the same
value with a skew of k, input it once
and pass it from one cell to the next
through k buffer registers.

Global broadcasting is usually un-

desirable in VLSI because the propa-
gation delay along long wires in-
troduces clock skew (slowing the
allowable clock rate) and because sig-
nals with large fanout require power-
ful signal drivers that take up a large
area. Replacing broadcast with local
propagation allows a faster clock rate
and generally saves space. This trick
may not increase ihe speed of an in-
dividual computation because the data
previously broadcast takes several
clock cycles to propagate across the
array. However, it increases the over-
all throughput by overlapping suc-
cessive computations. Because cells
that received the broadcast data in the
same clock cycle will now receive it in
successive clock cycles, the circuit
must be retimed to delay the action of
each cell until the data arrives.

cell to the next, delaying the cell action
until the item arrives, and skewing any
other input and output streams of those
cells by one clock cycle.

This frequently-used transforma-
tion 9 is derived from a special case of
Leiserson and Saxe's retiming lemma4
in which the cells are unconnected.
When the cells are connected, other
data streams must be adjusted to pre-
serve consistency. A common tech-
nique derivable from the lemma is to
slow down one data stream with re-
spect to another by inserting delay reg-
isters in each cell. Another technique is
to pipe two data streams through an
array in opposite directions.

Transformational derivation of
two systolic designs

To generate the systolic design
Poly-I and Poly-I1 the user annotates
the algorithm with allocation advice
and selects the transformations to ap-
ply in each optimization phase as Sys
works its way up from the innermost
loop.

Derivation of Poly-I. Sys produces
the design shown in Figure 2 from the
annotated algorithm

For i from 1 to n in parallel do
for from m to 0 in place do

Pi pixxi+Aj;
The initial values ofp,. p., Pn are 0.

Implement loop body. The first step
in deriving Poly-I implements the in-
ner loop body, as shown in Figure 7a:

Module Multiply-Add;
In-Port Ain [A13;
In-Port xin [xi];
In-Port Pin Wpi;
Out-Port Pout [piI;
Pout : = Pin - Xin + Ain

end Multiply-Add;
Allocate inner loop. Next, Sys im-

plements the inner loop:
For from m to O in place do
pi := pi * xi +Aj;

The annotation in place tells Sys to
allocate a single Multiply-Add module
for this computation.

Schedule inner loop. The data colli-
sion constraint requires that the loop
be executed sequentially. This is done
by extending the driver of the Multi-
ply-Add module to process sequential
streams of data:

In-Port Ain [Sequence[j from m to 0] of Aj3;
In-Port xin [Sequence[j from m to 0] of xiJ;
In-Port Pin [Sequence[j from m to 0] of pi};
Out-Port Pout [Sequence[i from m to 0] of pJ];

This driver specifies that the exter-
nal environment first supplies Multi-
ply-Add with the initial value of pi.
The updated value is then output at
the Pout port and input back into the
cell in the following clock cycle, as
shown in Figure 7b. This process is
then repeated for a total of m +1
cycles.

Retime-to-eliminate-broadcasting:
If an input stream is broadcast to
several unconnected cells, propagate
each data item in the stream from one

Figure 7. Implementation of inner loop for Poly-l: (a) implementation of inner
loop body; (b) initial sequential implementation of inner loop; (c) result of
holding pi in register p; (d) result of replacing repeated input xi with pre-
loaded register x.

48

Pout := Pin * Xin + Ain
A1 x1 P1 Am..i-1 xi . . Am. xi Am'Am X(Pi Am Xi Am

L (a)
Pi

(b) (C) (d)04

COMPUTER

Optimize inner loop. Since the out-
put from pout is fed back into pm,, the
Replace-feedback-with-register trans-
formation applies here. As Figure 7c
shows, this rule modifies Multiply-
Add by replacing the pin and po0ut
ports with an internal register, p, and
by deleting the streams for the elimi-
nated ports.

Next, Sys identifies the data stream
Sequence Ufrom m to 01 of xi as a
repeated value by noticing that xi is
independent of the loop index j.
Therefore, the Preload-repeated-value
transformation applies. This rule
modifies the structure by replacing the
input port x,n with an internal register
x, and deletes the input stream for xm,
from the driver. Figure 7d shows the
optimized implementation of the inner
loop. At this point, the design descrip-
tion is

Module Multiply-Add;
In-Port Ain [Sequence[i from m to 0] of

Ail;
Register x [preloaded with xi];
Register p [preloaded with 0,

unloaded as pi3;
p p,x+Ain;

end Multiply-Add;
Allocate outer loop. The annota-

tion in parallel tells Sys to implement
the outer loop of the algorithm by
replicating the Multiply-Add module
it has constructed for the inner loop.

Schedule outer loop. Since the itera-
tions of the outer loop are allocated to

different Multiply-Add modules and
can be executed independently, they
can be scheduled simultaneously with-
out violating either the data collision
or the data dependency constraint. Sys
groups the Aim, ports of these modules
into a single array port. It constructs
the driver for this array port by wrap-
ping a Wave quantifier around the
driver for the original scalar port. The
resulting design, shown in Figure 8a, is
described as

Module Poly-l;
InPort Aijn[l n]

[Sequence]j from m to 0[of
Wave[i from 1 to n] of Ajj;

Module Multiply-Add[iEl. n];
In-Port Ain;
Register x [preloaded with xi);
Register p [preloaded with 0,

unloaded as pi];
p p * x+Ain;

end Multiply-Add;
Parallel begin

Multiply-Add[i] (Ain [i]) for 1 c i < n;
end;

end Poly-l;
Optimize outer loop. Sys now re-

alizes that the data input to the constit-
uent ports of the array port AmIn are
identical, since Aj is independent of i,
so it applies the Broadcast-common-
input rule. As Figure 8b shows, Sys
reduces Ain to a scalar port, simplifies
its input stream from a sequence of
waves to a scalar sequence, and broad-
casts it to all the cells in the array:

In-Port Ain [Sequence(j from m to 0] of
Aj1;
Multiply-Add[i] (Ain) for 1 < i c n;

Finally, Sys applies the Retime-to-
eliminate-broadcasting rule. The input
stream is unchanged, but it now goes
only to the leftmost cell instead of
being broadcast to all the cells. Figure
2 shows the final Poly-I design:

Module Poly-l;
In-Port Ain

[Sequence[j from m to 0] of Aj);
Module Multiply-Add[iEl. n];

In-Port Ain;
Out-Port Aout;
Register x [preloaded with xi];
Register p [preloaded with 0,

unloaded as pi);
p := +Ain;
Aout := Ain;

end Multiply-Add;
Parallel begin

Multiply-Add[1l] (Aijn);
Multiply-Add[i] (Multiply-Add

[i-1]Aout)
for 2<i n;

end;
end Poly-l;

Derivaton of Poly-HI. The Poly-IT
design shown in Figure 3 is the result
of starting with different annotations
in the same algorithm:

For i from 1 to n in place do
for from m to 0 in parallel do

pi =pi *xi+Ai;

Implement loop body. The first
step, implementing the body of the in-
ner loop, is the same as for Poly-I. The
resulting Multiply-Add module is
shown in Figure 7a.

(a) AmI Am-1
Am Am

r-- __--.

I x x

I p P

Ami
Am

x I

p I

Am1
Am

r -
II
II
II

L I _ _ _ _ _ _ _ _.__ ___ ___

Figure 8. Outer loop implementation: for Poly-1: (a) initial parallel implementation; (b) identical streams collapsed
into broadcast input Ai.

(b)

-I
I
I
I
I
I

49February 1985

Allocate inner loop. The next step
implements the inner loop. The an-
notation in parallel tells Sys to rep-
licate Multiply-Add for eachj from m
to 0. The resulting module has three
array inputs-pin, xin, and ain-and
an array output, Pout

Schedule inner loop. Because the
loop iterations update the same vari-
able, they are not independent. To
satisfy the data dependency con-
straint, Sys employs the pipelined
scheme, scheduling the iterations suc-
cessively (rather than simultaneously)
in successive cells. The data streams
must be delayed accordingly. This
timing information is represented by
the skewed attribute.
Module Poly-Il;

In-Port Ain[m. .01 [WaveUfrom m to
O skewed 1] of Aj1;

In-Port Ax in [m. .0] WaveU from m
toO skewed 11 of x,];

In-Port pi I[m . . O] IWaveUfrom m to
O skewed 1] of pi];

Out-Port POut[m. .0] WaveUfromm
to 0 skewed 1] of Apij;

Module Multiply-Add[m. .0];
In-PortAn, Xn Pin;
Out-Port Pout;
Pout : = Pin *Xin + Ain;

end Multiply-Add;
Pout [i] Multiply-Add[]pout for
Osjsm;

Parallel begin
M ultiply-Add[j] (A in [i], x in [i]
P in []

for Osjsm;
end;

end Poly-ll;

As Figure 9a shows, the driver speci-
fies that the value pi is input to the
system at pin [m] in the first cycle and
an updated value is returned at pout [m]
at the end of the cycle. This value is fed
in turn to pin [m - 11 in the next cycle,
and so forth, for a total ofm + 1 cycles.

Optimize inner loop. Sys now re-
duces Pin and pout to scalar ports by
applying the Internalize-data-flow
rule. The result is shown in Figure 9b,
where Pin is now an input of the left-
most cell and pout is an output of the
rightmost cell. Sys further simplifies
the circuit by applying the Propagate-
common-input rule, which applies to
the input stream Wave [jfrom m to 0
skewed 1] ofxi because xi is indepen-
dent of] and, unlikepi, is not updated
by Multiply-Add. In the simplified cir-
cuit, shown in Figure 9c, xin is reduced
to a scalar input port connected only
to the leftmost cell. An output port
xout is added to each Multiply-Add
cell and connected to the xin port of
the cell to its right. The definition of
Multiply-Add is modified to store the
input from xin into x0,t at each clock
cycle, so as to pass xi from one cell to
the next. The design is now

Module Poly-Il;
In-Port Ain [Wave[j from m to 0
skewed 1] of Ai];In-Port xijn [xij;

In-Port Pin [Pi1;
Out-Port Pout [pi delayed ml;

Module Multiply-Add[m. .0];
In-Port Ain X, Pin;
Out-Port Pout xout;
Pout Pin Xin +Ain;
Xout Xin;

end Multiply-Add;
Pout =Multiply-Add[O].pout;
Parallel begin

Multiply-Add[m] (Aijn[m], xijn.
Pin);
Multiply-Add[j] (Ain [j], Multiply-
Add[j+llXout,
Multiply-Add[j+ 1 Pout) for

Ocj<m-1;
end;

end Poly-Il;
Allocate outer loop. The annota-

tion in place in the outer loop of the
algorithm tells Sys to implement it on
the hardware structure it has con-
structed for the inner loop.

Schedule outer loop. Although the
iterations of the outer loop are in-
dependent, the data collision con-
straint requires using the sequential
scheme of scheduling. Sys analyzes the
module description and determines
that each iteration can start one cycle
after the previous one. As Figure 10
shows, only the streams are changed:

In-Port Ain[m. .0]
[Sequence[i from 1 to n] of Wave[j from
m to 0 skewed 1] of Ail;

In-Port Xin
[Sequence[i from 1 to n] of xi];

In-Port Pin
[Sequence[i from 1 to n] of pi];

Out-Port Pout
[Sequence[i from 1 to n delayed m] of

pi];

50
COMPUTER

PixiAm .PXA.. .,,0 mxiAm-1. x10

I- _-:- -' 11 -1~ b

I . I +:A

pg..
Pi * Pi A 1m_PL.. ~~~~~~~~~~~~d~~~~(b) -A

(a) Am

Figure 9. Implementation of inner loop for Poly-Il: (a) in- I
itial pipelined Implementation; (b) pi data flow Internal- (c) __ _ __-_
ized; (c) common input xi propagated from cell to cell.

so COMPUTER

Optimize outer loop. Ai, is elimi-
nated by applying the Preload-re-
peated-value rule. Sys identifies the in-
put stream for Ai, as a repeated value
by noticing that the expression Ai is
independent of the sequence index i.
This step completes the Poly-II design
illustrated in Figure 3 and described in
Figure 4.

A0

Am~~A-1AAm Am_
Am

I ::P2P1 W} _ I
F r . Intls

Figure 10. Initial sequential implementation of outer loop for Poly-11.
Remarks on Sys

Some algorithms implemented on

systolic arrays involve not only nested
loops, but additional statements be-
fore and after an inner loop. For ex-

ample, an algorithm for finding
averages performs a series of additions
followed by a single division. These
algorithms are sometimes implemen-
ted as systolic arrays with special
boundary cells.20,21 The bottom-up
approach we have described allows
Sys to generate such compound de-
signs by implementing different parts
of the algorithm as separate circuits
and then "glueing" them together.
Each part of the algorithm is first
mapped onto a driver and structure.
Sys then determines the connections
between ports, the insertion of delay
registers, and the scheduling of the
composite circuit by analyzing
dependencies among the data streams
of the different circuits.

Sys is an experimental prototype
that was developed rapidly in the
sophisticated programming environ-
ment of Interlisp.22 It has some

knowledge about how to map loops
and begin-end blocks onto systolic ar-

rays, and it has a very small database
of transformations. Despite these
limitations, Sys generates efficient
systolic designs, including a rectanglar
array for matrix multiplication, sever-

al designs for convolution,23 and
various circuits for string pattern-
matching. We have extended the
transformational model to derive
systolic designs for matrix multiplica-
tion on a hexagonal array, 20 dynamic
programming, 2A and computing the
greatest common divisor of poly-
nomials.13 However, Sys lacks some

of the features required to handle

these examples. For instance, Sys uses
data dependency information for
scheduling and optimization, but its
dependency analysis is very limited.
To identify a stream of replicated
data, it simply tests whether the
variable inside the Wave or Sequence
quantifier is independent of the quan-
tifier index. To test if one data stream
is a delayed version of another, Sys
checks if they use the same variable;
thus Sys does not recognize that
Sequence[ifrom 0 to n-I] ofxi+] and
equivalent to Sequence[ifrom I to n]
of xi are equivalent. This limitation
could be overcome by adding an alge-
braic manipulation capability.

The major contribution of this
work is a transformational model

of systolic design. In our design mod-
el, software transformations are first
applied to put the algorithm to be im-
plemented into a regular form con-
ducive to systolic implementation.
The steps of allocating operations to
hardware, scheduling their execution,
and optimizing the design are then
performed bottom-up, starting with
the innermost blocks of the algorithm.
We have successfully used this model
to rederive several published designs,
and it appears suitable for designing
complex systolic arrays. This model
may help guide manual design, ex-
plain systolic algorithms, or capture
the design process in the machine
where it can benefit from effective
automated support.

Transformations offer a convenient
way to formalize systolic design exper-
tise. They are typically very simple,
and their effects are close to the de-
signer's intent. New ones can readily
be added to incorporate new design
techniques.

An equally important contribution
of this research is a natural notation
for describing systolic designs. It pre-
serves the structure of the original
algorithm by showing clearly which
operations are algorithmically related,
even though they may be radically
redistributed in time and space in the
final design. Together, the Wave, Se-
quence, skewed, and delayed con-
structs make it easy to express the
standard systolic communication pat-
terns. Similarly, the quantified nota-
tion for arrays of ports and modules
allows succinct specification of repli-
cated structure.

Splitting the description into struc-
ture and driver has proved advanta-
geous. Factoring transformations into
their effects on structure and driver
makes the transformations easy to
represent and implement. Describing
the hardware separately from how it is
to be used makes structure descrip-
tions context-independent and hence
easier to combine into composite
structures. The hierarchical represen-
tation of structure makes complex
designs more manageable.
Our transformational model and

notation are the basis of our prototype
system, Sys. While Sys itself does not
purport to be a practical tool for
systolic design, it demonstrates the
feasibility of a transformational de-
sign process that combines human
creativity with the capability of
machines to perform detailed manipu-
lations. D

Acknowledgments

The authors are grateful for the
support of H. T. Kung, Bob Balzer,

February 1985 51

and their colleagues at CMU and ISI
and to Mario Barbacci, Allan Fisher,
and Peter Highnam for reading early
drafts. This research was supported in
part by DARPA Contract MDA-903-
81-C-0335.

References

1. D. Cohen, "Mathematical Approach
to Iterative Computational Networks,"
Proc. Fourth Symp. ComputerArith-
metic, Oct. 1978, pp. 226-238.

2. L. Johnsson and D. Cohen, "A
Mathematical Approach to Modelling
the Flow of Data and Control in
Computational Networks," VLSI
Systems and Computations, H. T.
Kung, R. F. Sproull, and G. L. Steele,
Jr., eds., Computer Science Press,
Inc., Carnegie-Mellon University,
Pittsburgh, Penn., Oct. 1981, pp.
213-225.

3. U. Weiser and A. Davis, "A Wave-
front Notation Tool for VLSI Array
Design," VLSI Systems and Compu-
tations, H. T. Kung, R. F. Sproull,
and G. L. Steele, Jr., eds., Computer
Science Press, Inc., Carnegie-Mellon
University, Pittsburgh, Penn., Oct.
1981, pp. 226-234.

4. C. E. Leiserson and J. B. Saxe, "Op-
timizing Synchronous Systems,"
J. VLSIand Computer Systems, Vol.
1, No. 1, 1983, pp. 41-68.

5. P. R. Cappello and K. Steiglitz, "Uni-
fying VLSI Array Designs with Geo-
metric Transformations," Proc. 1983
Int?l Conf. Parallel Processing, Aug.
1983, pp. 448-457.

6. R. M. King and T. C. Brown, "Re-
search on Synthesis of Concurrent
Computing Systems," Proc. I0th
Ann. Symp. Computer Architecture,
June 1983, pp. 39-46.

7. R. H. Kuhn, "Transforming Algo-
rithms for Single-Stage and VLSI
Architectures," Proc. Workshop on
Interconnection NetworksforParallel
and Distributed Processing, Apr.
1980, pp. 11-19.

8. D. I. Moldovan, "On the Analysis
and Synthesis of VLSI Algorithms,"
Transactions on Computers, Nov.
1982, Vol. C-31, No. 11, pp. 1121-1125.

9. D. I. Moldovan, "On the Design of
Algorithms for VLSI Systems," Proc.
IEEE, Jan. 1983, pp. 113-120.

10. P. Quinton, "Automatic Synthesis of
Systolic Arrays from Uniform Recur-
rent Equations," Proc. Ilth Ann.

Symp. Computer Architecture, 1984,
pp. 208-222.

11. A. L. Fisher et al., "Architecture of
the PSC: A Programmable Systolic
Chip," Proc. I0th Ann. Symp. Com-
puter Architecture, June 1983, pp.
48-53.

12. J. J. Svmanski, "NOSC Systolic Pro-
cessor Testbed," Tech. report NOSC
TD 588, Naval Ocean Systems Center,
June 1983.

13. R. P. Brent and H. T. Kung, "Systolic
VLSI Arrays for Linear-Time GCD
Computation," VLSI 83, F. Anceau
and E. J. Aas, eds., North Holland,
New York, Aug. 1983, pp. 145-154.

14. R. Balzer, N. Goldman, and D. Wile,
"On the Transformational Imple-
mentation Approach to Program-
ming," Proc. Second Int'l Conf. Soft-
ware Engineering, IEEE, 1976, pp.
337-343.

15. D. S. Wile, "Program Developments:
Formal Explanations of Implementa-
tions," Comm. ACM, Vol. 26, No.
11, Nov. 1983, pp. 902-911.

16. D. J. Kuck, The Structure of Com-
puters and Computations, John
Wiley& Sons, New York, Vol. 1, 1978.

17. D. J. Kuck et al., "Dependence
Graphs and Compiler Optimiza-
tions," Proc. ACMSymp. Principles
of Programming Languages, Jan.
1981, pp. 207-218.

Monica S. Lam is a doctoral student in
computer science at Carnegie-Mellon
University. Her research interests in-
clude parallel computer architecture
and software language support for
parallel processing. She received a BS
from University of British Columbia
in 1980 and an MS from Carnegie-
Mellon University in 1983, both in
computer science.

18. J. Mostow and B. Balzer, "Appli-
cation of a Transformational Soft-
ware Development Methodology to
VLSI Design," J. Systems and Soft-
ware, Vol. 14, 1984, pp. 51-61.

19. R. H. Kuhn, "Efficient Mapping of
Algorithms to Single-Stage Intercon-
nections," Proc. Seventh Ann. Symp.
Computer Architecture, 1980, pp.
182-189.

20. H. T. Kung and C. E. Leiserson,
"Systolic Arrays (for VLSI)," In-
troduction to VLSI Systems, C. A.
Mead and L. A. Conway, Addison-
Wesley, Reading, Mass., 1980, pp.
271-292.

21. M. J. Foster and H. T. Kung, "The
Design of Special-Purpose VLSI
Chips," Computer, Vol. 13, No. 1,
Jan. 1980, pp. 26-40.

22. W. Teitelman, Interlisp Reference
Manual, Xerox Palo Alto Research
Center, Palo Alto, Calif., 1978.

23. H. T. Kung, "Why Systolic Architec-
tures?," Computer, Vol. 15, No. 1,
Jan. 1982, pp. 37-46.

24. L. J. Guibas, H. T. Kung, and C.D.
Thompson, "Direct VLSI Implemen-
tation of Combinatorial Algorithms,"
Proc. Conf. VLSI: Architecture, De-
sign, Fabrication, California Institute
ofTechnology, Pasadena, Calif., 1979,
pp. 509-525.

Jack Mostow received his AB in ap-
plied mathematics from Harvard in
1974 and his PhD in computer science
from Carnegie-Mellon University in
1981. He has taken a transformational
approach to a variety of problems in
hardware and software design. His re-
search interests lie in the area of AI,
especially in machine learning.

Questions concerning this article can be addressed to Lam at the Computer
Science Department, Carnegie-Mellon University, Pittsburgh, PA 15213.

COMPUTER52

