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Abstract - This paper presents a new optimization 
technique called architectural retiming which is able to im- 
prove the performance of many latency-constrained circuits. 
Architectural retiming achieves this by increasing the num- 
ber of registers on the latency-constrained path while pre- 
serving the functionality and latency of the circuit. This 
is done using the concept of a negative register, which can 
be implemented using precomputation and prediction. We 
use the name architectural retiming since i t  both resched- 
ules operations in time and modifies the structure of the 
circuit to preserve its functionality. We illustrate the use of 
architectural retiming on two realistic examples and present 
performance improvement results for a number of sample 
circuits. 

1 The Problem 

The performance of synchronous digital systems is measured 
using throughput, the rate at which computations complete, 
and execution time, the total time between the start and 
completion of one computation'. Running the system at the 
smallest possible clock period increases throughput, which 
is inversely proportional to the clock period, T,, and reduces 
execution time, which is directly proportional to T,. For the 
system to function correctly, however, T, must be greater 
than or equal to the longest combinational delay between 
each pair of registers. Retiming [8] can be used to spread 
the registers optimally along all paths, finding the minimum 
feasible T,. But for any path p with n pipeline stages, T, x n 
must be greater than or equal to the delay of the longest path 
through the n stages. 

When a retimed circuit fails to run at the target T, be- 
cause of a path whose delay exceeds T, x n, further pipelin- 
ing must be used to increase the number of registers along 
p. With more clock periods available to complete each com- 
putation, the clock period can be shorter. Increased pipelin- 
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'Execution time is commonly referred to as latency. For clarity, 
however, the term latency will be strictly used to refer to the number 
of clock cycles between the start and completion of one computation. 
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ing, however, is often not an option because of latency con- 
straints which fix the number of clock cycles allowed for a 
computation and thus the number of registers on a path. 

Some latency constraints ensure that the circuit meets 
external performance requirements. If the execution time 
and the clock period are specified, then only a fixed number 
of clock periods is available to perform the computation. 
Many systems have such performance restrictions. Exam- 
ples include circuits in memory systems and real-time inter- 
active graphics, where the clock period is set for the overall 
system and the maximum execution time is specified for 
each operation. Other latency constraints are caused by cy- 
cles in the circuit. Changing the number of registers on a 
cycle changes the functionality of the circuit; therefore, the 
latency of each cycle is fixed. External constraints can also 
be modeled as cyclic constraints by feeding the output of an 
externally constrained pipeline back to the input through a 
register external to the circuit. 

Regardless of how the latency constraint is derived, the 
computation along a latency-constrained path is required to 
complete in a fixed number of clock cycles. Assuming that 
all optimizations that decrease delay have been applied, the 
only remaining option is to increase the number of registers 
on the path without increasing the number of clock periods 
to perform the computation, a seeming contradiction. 

In this paper we present a technique we call architectural 
retiming which attempts to do exactly this - increase the 
number of registers on a latency-constrained path without 
increasing the latency. We use the term architectural retim- 
ing because operations in the circuit are moved in time, as 
in retiming, but the structure of the circuit must be changed 
to preserve its functionality. More formally, we can state the 
task of architectural retiming as follows: 

Architectural Retiming 
Given a synchronous circuit whose clock period 
is limited by a latency-constrained path, increase 
the number of registers on that path, thereby 
decreasing the clock period, while preserving the 
circuit's functionality and latency. 

We begin this paper by reviewing the notation that will 
be needed to describe architectural retiming. We then de- 
scribe the basic concepts. Next, we demonstrate the ap- 
plication of architectural retiming to two real-world circuit 
examples. Finally, we report the results of applying the 
technique to a set of examples, and discuss previous related 
work. 
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2 Preliminaries 

All registers in a circuit are edge-triggered registers clocked 
by the same clock. Time is measured in terms of clock cycles 
and the notation xt denotes the value of a signal x during 
clock cycle t ,  where t is an integer clock cycle. Values of 
signals are referenced after all signals have stabilized and it 
is assumed that the clock period is sufficiently long for this 
to happen. A register delays its input signal y by one cycle. 
Thus, zt+' = yt, where z is the register's output. 

Each function f in the circuit is a single-output function 
of N input variables (or signals) 20, X I ? . .  . , Z N - ~  computing 
a variable y. In a specific cycle t, the variable y is assigned 
the value computed by the function f using specific values 
for zO,xlr. . . ,ZN- I ,  that is, yt = f(x& xi,. . . 

The set of f a n - i n  signals of a function f is the set of f ' s  
input variables. The set of combinational transitive f a n - i n  
signals of a function f ,  denoted by GTj, is defined recur- 
sively as follows. For each fan-in variable xi of f, if z; is a 
primary input, then z; E CTf.  If z; is an output of a regis- 
ter, then xi E CTf.  Otherwise, g; computes xi, i.e. x; = g ; ( )  
and CT,, is in GTf.  The set of sequential transitive fan- in  
signals across one register boundary, STf, is defined the 
same as GTf except that the input path is allowed to cross 
one register. Unfolding [lo) is used to refer correctly to STf 
for a single-register cycle. 

3 Overview of Architectural Retiming 

Architectural retiming comprises two steps. First, a register 
is added to the latency-constrained path. Second, the circuit 
is changed to absorb the increased latency caused by the 
additional register. 

The challenge of architectural retiming then is to pre- 
serve the latency of the path and the functionality of the 
circuit while increasing the number of registers. This is 
accomplished using the concept of a negative register. A 
normal register performs a shift forward in time, while a 
negative register performs a shift backward in time. That 
is, the output of a negative register is defined by zt  = yt+'. 
A negative register/normal register pair reduces to a simple 
wire, which is our objective. The question then is how to 
implement a negative register. 

Let us assume the input to the negative register is the 
variable y computed by the function f (20, XI,. . . , Z N - I ) .  
From the definition of the negative re ister, zt  = yt+l  = 

are, of course, not available at time t. There are two possible 
ways to compute each zf+': precomputation or prediction. 
The choice is made after examining GT,, , the combinational 
transitive fan-in set for z;, for each xi in the fan-in o f f .  

f(xk+I, zi+l,. . . , Z t + l  N - l ) .  The values zi B for 0 5 i 5 N - 1 

3.1 Precomputation 
I f t h e v a l u e o f z ; , O < i < N - - l ,  a t t i m e t + l  canbecom- 
puted directly from values available at time t ,  then we can 
recompute the function f as a function f '  of values at time 
t .  That is, f( ..., z;+', ...) = f'( . . . , g  ;( ..., y!j ,...) ,... ), 
where xf" = Si ( .  . . , Y : ~ ,  . . .) for 0 5 i 5 N - 1 and 0 2 
j 5 M - 1, where M is the cardinality of ST;,. The func- 
tion f' which implements the negative register can then be 
derived from the definition of the original circuit by the re- 
cursive collapsing (or flattening) of each zi into the variables 
in ST,'; or the primary inputs in CT,, for which f is a don't 

care value. The recursive collapsing across a register bound- 
ary consists of substituting the input variable to the register 
for its output variable. 

Precomputation can be done only if there is sufficient 
information in the circuit to allow precomputing the value 
one cycle ahead of time. Precomputation is possible under 
the following condition: 

VppEPr, ( ( P  E GTz,) =+- (f(. . . ,gi(. . . ,p,. . ,>, . . .) = x) )  
where PI is the set of primary inputs, and X is a don't care 
value for the function f .  

The function f ' ,  which is synthesized by the precomputa- 
tion, includes two clock cycles' worth of computation along 
the latency-constrained path, which is precisely where opti- 
mizations and transformations are most needed. The imple- 
mentation of ,f' and its impact on reducing the clock period 
will vary depending on the specific circuit under considera- 
tion. The example presented in Section 4.1 illustrates how 
precomputation generates a bypass, an architectural trans- 
formation that can significantly improve performance. 

3.2 Prediction 
When the condition for performing precomputation is not 
met, then we must resort to an alternative solution to eval- 
uate the output of the negative register, z t .  We can rely on 
an oracle to predict the value produced by the negative reg- 
ister (i.e. one cycle before the value is actually computed). 
If we can preldict perfectly, as in precomputation, then no 
other change needs to be made to the circuit. If we cannot, 
then the prediction will at times be incorrect and, unless the 
circuit can adjust to this error, it will produce the wrong 
result. Dealing with incorrect predictions requires first veri- 
fying whether they are correct and then nullifying the effect 
of incorrect predictions. 

A prediction is verified one cycle after it is calculated 
once the actual value is computed. If the prediction was 
correct, the next prediction is allowed to proceed. If the 
prediction was incorrect, some measure must be taken to 
nullify the effects of the incorrect value and to restore the 
circuit to its previous state. Once restored to its previous 
state, the circuit continues operation using the delayed cor- 
rect value. Thus, a one cycle penalty is associated with a 
misprediction The actual process of nullifying the effect cf 
an incorrect prediction can be quite complex as we illustrate 
in the example in Section 4.2. 

Architectural retiming sometimes requires changing the 
interface of the circuit with its environment. Because an 
incorrect prediction might occur during some cycle, the cir- 
cuit's primary outputs must be paired with validation sig- 
nals to inform the interface when a primary output is incor- 
rect. The primary inputs to the circuit must be provided 
again by the interface during the cycle when the circuit is 
executing the substitute (correct) computation. Therefore, 
a data-not-taken signal is required to notify the interface 
when primary inputs must be repeated. The effect of apply- 
ing architectural retiming is to create an elastic interface, 
which provides (consumes) input (output) data at varying 
rates. Elastic interfaces are implemented by adding hand- 
shaking mechanisms to the circuit. A change in the circuit's 
interface may be undesirable or difficult to implement but is 
inevitable if performa,nce is to be improved. Moreover, many 
circuits already have interface protocols which architectural 
retiming can take advantage of. 

The probalbility of a correct guess can be increased by uti- 
lizing partial information that can be precomputed. Each 
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input xi, for 0 5 i 5 N - 1, of the function f that com- 
putes the output of a negative register can be precomputed 
if CT,, nPT = 0; otherwise, x:+' or the signal(s) in the com- 
binational transitive fan-in set for z, that are also primary 
inputs must be predicted. When choosing a guess value for 
a signal, the frequency of mispredictions and the penalties 
associated with correcting the results of mispredictions must 
be evaluated to determine its impact on the overall perfor- 
mance of the cycle. 

4 Examples 

We present two examples of applying architectural retiming 
to circuits taken from real systems to improve throughput 
while preserving the system's latency requirements. In the 
first example, the system cannot be pipelined because of 
constraints on the latency from input to output. In the sec- 
ond example, the circuit is constrained by a cycle. The first 
example is solved using precomputation-based architectural 
retiming and the second example is solved using prediction. 

4.1 Example 1: Memory Interface Module 
The first example is the memory system2 shown in Figure 1. 
The cache provides a read request C-mem-r-req and an ad- 
dress (not shown) in cycle 1, and expects a number of packets 
of valid data in return during the following cycles. When the 
memory receives a read request from the cache, it attempts 
to send the requested data. If the memory has the valid 
data, it asserts the M d v  signal and sends a packet of data. 
The cache can take a data packet if the signal C h o l d  is de- 
asserted. If Chold  is asserted, then the Interface Module 
(IM) is responsible for buffering the data coming from mem- 
ory and passing them to the cache once it deasserts Chold.  
The IM consists of a FIFO memory and logic to condition- 
ally advance the head and tail of the FIFO and to set the 
data valid signal, I d v .  

The original behavior of the IM is specified as f01lows:~ 

FIFOt+'[tailpt] = M d a t a t  (1) 

'This example was suggested by Ed Frank of NetPower. 
3The add operations are implicitly modulo the FIFO size. 

I d a t a t  = FIFOt[head-pt] (2) 

tail..pt+' = new-tad ( 5 )  

head-pt+' = newheadt (7) 
emptyt = (head-pt == tai1-p') (8) 

I d v t  = (Choldt  V emptyt)? 0 : 1 (3) 
new-tailt = M d v t ?  tail-pt + 1 : tai lpt  (4)  

n e w h e a d  = ( I d v t ) ?  head$ -t 1 : head-pt ( 6 )  

The system is required to run at a clock period of 16ns. 
The data from memory to the cache is specified to have a 
one cycle latency when Chold  is deasserted. The FIFO 
read operation has a delay of 8ns after the triggering edge 
of the clock. The I d a t a  signal is required to arrive at the 
IM boundary 4ns after the clock edge. 

The critical path in the circuit is from the FIFO to the 
primary output, I d a t a .  Signal I d v  arrives 4ns later than 
its timing specification and the clock cycle is forced to be 4ns 
longer, or 20ns. Pipelining the I d a t a  signal by inserting 
a register between the FIFO output and the cache solves 
this problem, but violates the latency constraint. Retiming 
which only relocates registers in the circuit cannot reduce 
the clock period. 

4.1.1 Applying Architectural Retiming 
Since the clock period is constrained by the delay from the 
FIFO read to the cache, architectural retiming inserts a neg- 
ative register/normal register pair between the FIFO out- 
put and the cache, effectively pipelining this path without 
increasing the latency (Figure 2). The negative register is 

Normal Register -rr-rn 

Negative Register 

Figure 2: A negative register/normal register pair added be- 
tween the FIFO output and the cache. 
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Figure 3: Architecturally-retimed memory interface module. The implementaiion of the negative register results in generating a 
bypass path. None of the new synthesized paths violate the specified clock perioid (16ns). The latency and timing requirements 
for I d a t a  are met. 

then implemented by synthesizing the logic necessary to  pre- 
compute the output of the FIFO. 

The logic needed to implement the negative register can 
be deduced from the original specification of the FIFO. By 
definition, the output of the negative register, F ,  at time t is 
F I F O a u t  at time t + 1, but must be computed using only 
values available in time t .  

From specifications (2), (3), (6), and (7) ,  

FIFO_outt+' = FIFOt+'[head-pt+'] 
= (Choldt  V emptyt)? 

FIFOt+'[headpt] : 
FTFOtfl[head-pt + 11 

We must refer to the state of the FIFO in cycle t .  The 
FIFO is an axray of elements indexed by head-p and tail-p. 
According to  specification (l), the FIFO state in cycle t + 1 
can differ from that in cycle t only in the location pointed 
to by the tail pointer tail-pt. Thus, 

FIFOt+'[headpt] = (head-pt == tai lpt)? 
Mdata'  : FIFOt[head-pt] 

and similarly, 

FIFOt+'[headpt + 11 = ((head-pt + 1) == tai lpt)? 
M d a t a t  : FIFOt[head-pt + 11 

Thus, using the three previous equations, we can compute 
the output of the negative register, F t ,  as: 

F t  = FIFOautt+' 
= emptyt? M d a t a t  : 

(C'holdt? FIFOt[head-pt] : 
( ( (headp t  + 1) == tail-pt)? 
M d a t a t  : FIFOt[head-pt + 11)) 

The synthesis of the logic required to implement the neg- 
ative register is possible since the value can be precomputed 

using values available at time t .  The result is shown in Fig- 
ure 3. The signal I-data is now available at the IM bound- 
ary Ins after the clock (the delay in the register from the 
clock to the data is Ins ) ,  and it satisfies the timing require- 
ment. None of the synthesized paths violate the specified 
clock period. and the architecturally-retimed circuit meets 
the latency specification. Note that architectural retiming 
has changed the architecture of the circuit. An extra regis- 
ter has been added along the critical path and a bypass path 
allows the data from the memory to the cache to  maintain 
a one-cycle 1,atency. 

4.2 
The second example is taken from the chaos router, a two- 
dimensional, random, non-minimal adaptive packet router 
for implementing multicomputer interconnection networks [2]. 
Multi-flit packets from the network enter the router through 
input Games (buffers) and are routed to  neighboring routers 
or the processor connected to the router through output 
Games. Incoming packets that cannot be routed immedi- 
ately due tal the unavailability of their requested output 
frames are temporarily buffered in the multiqueue, a mod- 
ified FIFO buffer. When the multiqueue is full the chaos 
router routes only messages residing in the multiqueue. 

One of the cycles in the chaos router's control logic is il- 
lustrated in Figure 4. The routing box attempts to  make one 
new routing (decision each clock cycle. A routing decision de- 
termines the next packet in an input frame or the multiqueue 
to  be routed to an output frame. Packets in the multiqueue 
are given priority over packets in input frames. The multi- 
queue scoreboard manages the information for packets in the 
multiqueue, producing the signal &-wants, which indicates 
those output frames requested by multiqueue packets. The 
signal Route-fromiMQ, which indicates which packet was 
chosen for routing, is used by the scoreboard to eliminate 
requests by multiqueue packets that have been routed. The 
chaos router is forced to run at a slower clock period than 
desired because of the long delay through the multiqueue 
scoreboard and the routing box. 

Example 2: The Chaos Router 

711 



Figure 4: The cycle in the chaos router that limits perfor- 
mance is through the routing box and the scoreboard. 

4.2.1 Applying Architectural Retiming 
Architectural retiming adds a negative register/normal reg- 
ister pair on the cycle, effectively pipelining the logic without 
adding latency. There are two possible locations where this 
register pair can be inserted: the Route-fromJMQ signal or 
the Q-wants signal. Since the information required to pre- 
compute either signal is not available, architectural retiming 
must use prediction. Choosing which signal to predict re- 
quires an analysis of the results of choosing each. 

Predicting the signal Route-f romJMQ, which is the iden- 
tity of the packet chosen for routing, is difficult. It is not 
clear that we can do better than picking a value at random 
from those we know were going to be chosen, in which case 
we are seldom going to be able to predict correctly. 

Predicting the value of Qwants ,  which is the set of pack- 
ets in the multiqueue requesting routing, is easier. The dif- 
ference in this value from one cycle to the next comprises 
the addition of new requests, which are relatively infrequent, 
and the removal of the request just satisfied. Thus, simply 
using the previous value of Q-wants for the prediction will 
be fairly accurate and the hardware cost associated with this 
prediction is minimal. Analyzing the effect of mispredicting 
this signal is somewhat complicated. The prediction could 
be incorrect in two cases. 

The first case occurs when a packet requesting a spe- 
cific output frame is chosen to be routed based on the old 
Q-wants and there are no other packets in the multiqueue 
that request the same output frame. This scenario can only 
occur immediately following a cycle in which a multiqueue- 
route operation had started. Since routing from the multi- 
queue is a multi-cycle operation, a new routing decision is 
not allowed until the multiqueue route is completed. There- 
fore, no actions are needed to nullify the effects of a mispre- 
diction. 

The second case occurs when a new packet is routed into 
the multiqueue and the old Q-wants will not include the 
new packet’s request for an output frame. The new packet 
will then miss the opportunity of being immediately routed 
from the multiqueue. If the prediction is incorrect, then the 
routing decision must be canceled and the routing box must 
make a new decision based on correct information. Alter- 
natively, the result of the misprediction can be allowed to 
proceed while the new packet resides in the multiqueue for 
a number of additional cycles until the packet gets the op- 
portunity to be routed again. Although the latter solution 
is marginally unfair to the new packet, the router still func- 
tions correctly. 

I 1 ” l  

I correct? 

r 
Figure 5: Architecturally-retimed circuit: The prediction 
value for Qwants* is the old value of &-wants. The verifi- 
a t ion  occurs in the cycle after the prediction by  comparing 
the delayed Qwants” with the pipelined Q-wants. 

In Figure 5 ,  we show how the cycle can be architecturally 
retimed when predicting Q-wants. The delay around the 
cycle is increased slightly by the propagation delay of the 
added register and the delay of the 2:l multiplexer that se- 
lects between the predicted Q-wants’ and the delayed true 
Q-wants, but the cycle has been effectively pipelined, al- 
lowing a reduced clock period. Retiming caa relocate the 
registers in the cycle to achieve the minimum clock pe- 
riod. Architectural retiming allows the router chip to run 
at a smaller clock period at the expense of a one-clock-cycle 
penalty when Q w a n t s  is predicted incorrectly. Since the 
architecture of the router has been changed, the overall per- 
formance improvement of reducing the clock period at the 
expense of an occasional cycle penalty must be determined 
by simulating the entire system. 

5 Experiments 

Architectural retiming was applied to a number of circuits 
and the results are shown in Figure 6. The examples cho- 
sen are real circuits (with the exception of 3N+1) that have 
a latency-constrained path. Examples MIM and MDV are 
based on the interface module presented in Section 4.1. Ex- 
ample QC is a queue controller circuit. Example SE& is a 
small two-stage sequential circuit that cannot be further op- 
timized by current sequential optimization techniques [9,4,3]. 

The original cycle in examples FA2 and FA3 is a single- 
cycle circuit that performs a fetch from a RAM and add 
operation each cycle. FA2 and FA3 refer to a different im- 
plementation of the architectural retiming solution. Circuit 
3N+l is a single-register cycle that architectural retiming 
unfolds. The circuit calcula.tes the function: if N t  is even, 
Nt+’ = Nt /2 ,  else Nt+’ = N t  x 2 + 1. 

The numbers reported are based on applying architec- 
tural retiming and performing behavioral optimizations by 
hand. SIS [ll] was then used to optimize the resulting cir- 
cuits. Two optimizing scripts were applied to each circuit: 
script.delay and the sequence of the command fu l l s impl i fy  fol- 
lowed by the two scripts script.rugged and script.delay. We 
chose the optimized circuit that had the smallest delay even 
at the expense of added area. 
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Figure 6: Applying architectural retiming: Clock Period re- 
duction vs. urea increase. 

The average clock period reduction obta.ined using ar- 
chitectural retiming is 31%. The average area increase is 
14% not including the unfolded circuits (FAZ, FA3, 3N+1), 
and 99% for the unfolded circuits. At first glance the area 
penalty might seem excessive; however, this area increase is 
calculated with respect to the area of the latency-constrained 
path or cycle being architecturally retimed, which is typi- 
cally only a small fraction of the entire circuit. 

6 Related Work 

Architectural retiming is an optimization technique tha.t en- 
compasses and overlaps other techniques and concepts. The 
term negative register was used in peripheral retiming [9], 
an optimization technique for sequential circuits. Unlike 
architectural retiming, which actually implements negative 
registers, peripheral retiming uses negative registers as a 
bookkeeping technique to keep track of the number of reg- 
isters borrowed from the environment. Negative registers 
were also used in Ruby [6] to skew data while composing a 
circuit design. 

Precomputation-based architectural retiming performs se- 
quential logic optimization of latency-constrained paths by 
exposing adjacent pipeline stages for combinationd opti- 
mization, which is not performed by current sequential op- 
timization techniques. De Micheli applies local algebraic 
transformations across latch boundaries [4]. Peripheral re- 
timing [9] moved registers from the interior of a circuit to its 
environment to allow the whole circuit to be optimized using 
combinational optimization. Chakardhar et al. took a more 
timing-driven approach to sequential optimization that re- 
sults in applying combinational optimization techniques to 
each stage in the circuit [3]. This technique identifies the 
least stringent set of arrival and required timing constraints 
which are passed to a combinational delay optimizer along 
with the circuit. 

Kogge discusses the problem of pipelining circuits with 
feedback [7]. He solves the problem of transforming a re- 
currence equation z(n) that originally depends on the pre- 
vious sequence, z(n - 1) to a recurrence equation that de- 
pends on an earlier recurrence. Kogge’s technique conceptu- 
ally unfolds the recurrence to allow the corresponding cyclic 
pipeline to complete one operation each cycle. Unfolding of 
iterative DSP data-flow graphs is also used in multiproces- 
sor scheduling to expose the graph’s hidden concurrency to 
allow the scheduler to achieve the smallest possible iteration 
bound [lo]. 

Holtmann and Ernst present a scheduling algorithm that 
applies a speculative technique that is modeled after mul- 
tiple branch :prediction in a processor [5]. Precomputation 
has been used by Alidina et al. to restructure circuits to 
consume less power [I]. 

7 Concliision and Future Work 

We have found architectural retiming to be an elegant and 
powerful formulation that promises to generalize and auto- 
matically generate a number of ad hoc sequential optimiza- 
tion techniques that address the problem of improving the 
performance of latency-constrained circuits. In this paper 
we have presented the basic ideas of architectural retiming 
and shown how it can be used to speed up  two realistic cir- 
cuits. Our initial results for a set of example circuits show 
that architectural retiming can significantly improve perfor- 
mance. We are currently developing an interactive architec- 
tural retiming tool, ART, which will provide a framework 
for developing and refining the algorithms required to apply 
architectural retiming. 
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