IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999 1595

Optimal FPGA Mapping and Retiming
with Efficient Initial State Computation

Jason Cong and Chang Wu

Abstract—For sequential circuits with given initial states, new circuit simulation AN st f(X) = y?
equivalent initial states must be computed for retiming, which y= fliris.iy) NP-complete
unfortunately is NP-hard. In this paper, we present a novel -
polynomial time algorithm for optimal field programmable gate
array (FPGA) mapping with forward retimingto minimize the
clock period with efficient initial state computation. It considers
forward retiming, initial state computation and mapping simulta-
neously. Our algorithm enables a new methodology of separating Fig. 1. Retiming and initial state computation. Each small rectangle repre-
forward retiming from backward retiming. Since we guarantee sents a FF.
to compute an optimal mapping with forward retiming solution,
backward retiming can be performed as a preprocessing to try to . N .
push flip-flops (FF's) to primary inputs with consideration of only progre_ss_has been made on equivalent initial state computation
initial state computation. Thus, we can avoid the time-consuming for retiming.
iterations between retiming for clock period minimization and A general retiming procedure usually involves two kinds
initial state computation. This algorithm compares very favorably of flip-flop (FF) movementsForward retiming (FRT) moves
to both conventional approaches of mapping followed by sepa- FF’s from nodes’ inputs to outputs, whileackward retiming

rate retiming and recent approaches of combined mapping with S
retiming, but without consideration of initial state computation moving FF's in the opposite direction. As shown in Fig. 1, the

[1], [2]. Our results show that our algorithm can reduce the €quivalent initial state of forward retiming can be computed
clock period by 17.5% over conventional approaches of separate easily using circuit simulation. The equivalent initial state for

mapping with retiming. On the other hand, our algorithm can packward retiming, however, requires solving a satisfiability
guarantee efficient initial state computation in the mapped and problem which is NP-complete in general.

retimed circuits with only 2.8% increase in clock period over the Touati and Bravt g d initial stat tati
optimal mapping with general retiming solutions, while the initial ouati and Brayton [8] proposed an initial state computation

state computation for the latter solutions may need prohibitively ~algorithm based on STG (state transition graph) traversal.

long runtime for designs with over several hundred FF'’s. Their algorithm can compute equivalent initial states under the
Index Terms—Field programmable gate array (FPGA), initial condition that there exists a loop from the initial state to itself
state, retiming, technology mapping. in the STG of the Original circuit. However, unless prOVidEd

externally, to determine the existence of such a loop needs
to search the STG which may have an exponential number
of nodes. Although representing the reset logic explicitly can
ETIMING is a well-known optimization technique for guarantee the existence of such a loop and avoid the STG
sequential circuits. Many research results have betwraversal, the extra cost of the reset logic separated from
published in literature recently on combining optimal retimin§F’s after retiming can be highFurthermore, the reset logic
presented in [3] with logic optimization, circuit partitioningmay restrict possible retiming of the original circuit, thus,
and technology mapping [4]-[6]. For lookup-table (LUT)+educe the potential of retiming optimization. A recent paper
based field programmable gate array (FPGA) designs, a diy- Singhalet al. [9] showed that by retiming the reset logic
nificant advancement was made by Pan and Liu [1] on optimalgether with FF's will not affect the possibility of retiming
simultaneous technology mapping with retiming for clock peand there is no extra cost on the area of the circuit. But
riod minimization. Later on, Cong and Wu [2], [7] proposed &heir approach is applicable for only forward retiming, but
much more efficient optimal mapping with retiming algorithrmot general retiming.
which achieves 1000 times speedup over [1]. However, limited Several heuristics for initial state computation of a given
retiming based on automatic test pattern generation (ATPG)
techniques have been proposed recently [10]-[12]. For ex-

was supported in part by the National Science Foundation (NSF) under ’

Young Investigator Award MIP9357582 and in part grants from XiIinxcompUtanon effort by minimizing the maximum retiming

Lucent Technologies, and Quickturn Design Systems under the Califorvalue which represents the maximum number of FF's to be
MICRQ Frogram. This paper was recommended by Associate Editor Mhoved backward across every gate. ATPG-based justification
apaefthymiou.

The authors are with the Computer Science Department, University!Most FF’'s have built-in reset logic. But we can represent such FF’s as
of California, Los Angeles, CA 90095 USA (e-mail: cong@cs.ucla.edgeneric FF's plus reset logic. After retiming, however, the reset logic may be
changwu@cs.ucla.edu). separated from the generic FF's and cannot be repacked together. As a result,

Publisher Item Identifier S 0278-0070(99)09468-3. extra LUT's may need to implement those reset logic.

I. INTRODUCTION

0278-0070/99$10.001 1999 IEEE

1596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

was used to compute equivalent initial states for backwa8TG traversal, or any extra reset logic in existing approaches
retiming. Possible iterations of retiming and initial state coni8], [10], [12], [16]. Our algorithm compares very favorably
putation may still be needed. However, ATPG itself is alstm both conventional approaches of separate mapping with
NP-complete [13], [14]. Furthermore, we have observed thagtiming and recent approaches of combined mapping with
minimizing the maximum retiming value as formulated in [11fetiming, but without initial state computation [1], [2]. It is
might not always lead to a simpler initial state computatioalso applicable to FPGA devices with prefixed initial state
problem. Our experience shows that unless a pure forwasettings>
retiming solution can be found, the effort of initial state The remainder of the paper is organized as follows.
computation depends on the number of nodes involved Tine problem formulation and definitions are presented in
backward retiming, instead of the maximum retiming value.Section Il. Our algorithm is presented in Section Ill. A post-
Maheshwari and Sapatnekar [12] proposed to compuieocessing for FPGA’s with prefixed initial state settings
an upper bound on each node’s retiming value based isnpresented in Section IV. Our experimental results are
ATPG techniques such that the equivalent initial state can peesented in Section V followed by conclusions and future
computed for a retiming within this bound. In general, thevork in Section VI. A preliminary version of this work was
larger values of the upper bounds, the better the retimipgesented at DAC'98 [17].
solution. However, to increase one node’s retiming upper
bound value may need to reduce another node’s retiming upper I

bound value and it is hard to tradeoff the values of different o]
nodes to achieve the best possible solution. As a result, thé>Iven a sequential circuit, the technology mapping prob-

authors proposed to perform retiming for many sets of upplém for K-LUT-based FPGA's is to construct @quivalent
bounds and choose the best possible results. Clearly, this E§RUit consisting ofK-LUT's and flip-flops (FF's), such that
be time consuming in practice. _the two circuits gener_ate the same put_pl_Jt sequence for any
To better understand the difficulty of the initial state comPPUt sequence, starting from their individual initial states,
putation problem and the capability of existing initial statEeSpectively. The clock period of a circuit is the maximum
computation algorithms, we tested the retiming package in Sf@mpinational path delay. In this paper, we shall explore the
[15] which computed initial states for retiming based on th@!lowing problem. S
algorithm in [8]. For circuit $9234.1 in the MCNC benchmark Problem 1: Given a sequential circuit with initial state
suite with 135 FF's and 1293 two-input gates, SIS could né¢: find an equivalent LUT circuit with initial state; and
finish the initial state computation for an optimal retiming aftefinimum clock period under forward retiming.
running 4 hours on a Sun ULTRA2 workstation with 256-MB_AS N (1] _and [2], instead of SO_|VIng t_hg optimization
memory. We see that the initial state computation probleﬁ{Oblem 1 directly, we shall solve its decision version and

being a major obstacle of preventing wide-spread use of tHign binary search for the minimum clock period.
retiming technique in practice. Problem 2: Given a sequential circuit with initial state

One common problem of existing retiming algorithms Igmd target clock perio@, find an equivalent LUT circuit with
lacking consideration of whether an equivalent initial stat8itial state s5 and clock period of no more thag under
can be computed when computing a retiming. When failing fgrward retiming. o
find an equivalent initial state for a retiming, most algorithms AS Proposed in [3], we use retiming graph to represent
need to backtrack to compute another retiming with almoSgduential circuits. The retiming grap&(V, £, W) of a
no assurance if an equivalent initial state can be computggfuential circuit is a directed graph, whéreis the set of
for the new retiming. As a result, many iterations betwedfPdes£ is the set of edges, anidl is the set of edge weights.

retiming and initial state computation may be needed and th&Ch node inV represents a gate, a primary input (PI), or a
computation time can be very long. primary output (PO) in the original circuit. Each edge:, v)
In order to avoid high time complexity of initial stateln £ represents a directed connection from a nede a node

computation forgeneral retiming, we propose to perform?: Theweightuw(e) of an edge: is the number of FF's on the

LUT-based FPGA mapping with forward retiming. Our maiffonnection represented by the edge. Phaeh weightuw(p) of
contribution is the development of the first polynomial tim& Pathp is the sum of all edge weights on the path. Under
optimal algorithm for FPGA mapping with forward retiming, Unit-delay modenode delayd(v) is one for internal nodes,

which has immediate benefit of guaranteed equivalent init@j 2670 for PI's or PO'sPath delayd(p) of a pathp is the
state computation in linear time. With this algorithm, w&4™ of all node delays on the path. For simplicity, we consider

can try to push FF's back to primary inputs as much r,J{Qe unit-delay model and synchronous sequential circuits with

possible to enlarge the solution space of mapping with forwa?i'9/e-Phase clock and edge-triggered Ffepending on the
retiming and achieve better results. One important advantdg¥1iext; We usé: to represent bothy” and £.

of our approa(_:h IS _that we or_1|y peed to focus on I_nltllal 2For example, the initial state of FF’s on Xilinx XC5200 FPGA’s can only
state computation without considering the effect of retiminge set to zero.

on clock period minimization during the preprocessing of 3For more complex delay models, such as the fanout-based nominal delay

backward retlmlng As a result we can St'” ach|eve eﬁe(ﬂlodel, the FPGA mapplng of combinational circuits for delay minimization
: as already been shown to be NP-hard [18]. We think, however, the techniques

_tlve r_etlmlng for CIrCUI.t qptlmlzat!op_ without t'me'consummgpresented in this paper can be extended for more accurate delay models as a
iterations between retiming and initial state computation, sloweuristic.

. PROBLEM FORMULATION AND DEFINITIONS

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING 1597

For a given retiming, theetiming valueR(v) of nodev Ilj(w) 4+ d(p) — 1 — @ - w(p) < lp(v). Therefore
is the number of FF's moved backward acressA negative
retiming value of a node means moving FF’'s forward across,,» p) =w(p) + R(v) — R(w)
the node. A retiming is represented by a set of retiming
values{R(v)| Vv € G}, whereR(v) is zero for every PI >w(p) +
or PO which means that no FF's moved across either PI's

or PO’s. <
l’

As in [2], for a target clock period®, we define the
edge length[denoted lengtte)] of an edgee(u, v) to be [pr(u)
d(v) — @ -w(e). Thepath length[denoted lengttp)] is >_ ., - o -

length(e). In an LUT network/, a node’sl-valuely,(v) is [() + (ﬂ
1

defined to be the maximum path length of all paths from Pl's > >

to v, which represents the node arrival time after retiming. a

(Here, we assume that every node is reachable from at least - M(“)w +1— PM(“)W

one PIl. In cases that there exist nodes not reachable from o

any PI's, thel-values of those nodes are not well defined. =1

Extension to the following theory and our algorithm will be

presented in Section IlI-F.) It is not difficult to prove the ™

following. Definition 1: Given a mapping with forward retiming solu-
Theorem 1:Given an LUT network} and a target clock tijon A/ and a target clock periodl, the number of FF’s moved

period®, the clock period of\f under forward retiming is no forward across LUTv from each input ofv, denotedry; (v),

more than®, if and only if the l-valuesiy;(v) are no more s called theforward retiming valueof v in A. The s-value

than & for every LUT v in M.* is defined to besys(v) = lar(v) — & - rar(v), wherely; (v) is

Proof: (=) Let {R(v)| Vv € M, R(v) < 0} be a thei-value of v in M.

forward retiming to achieved. After retiming, every combi- The s-value represents the node arrival time before forward

national path has delay of no more thénThus, for any path retiming. The reason of considering tkevalue is that it is

p: PI~ v, the path length after retiming satisfies the inequaliyasier to compute than tiesalue because it does not depend

that lengthi(p) = d(p)—2-w"(p) = d(p)—2-(w(p)+R(v)) £ on retiming, but the latter does.

®. Since R(v) < 0, the path length inM before retiming According to Theorem 1, we have the following.

length(p) = length'(p) + ¢ - R(v) is also no more tha®. As Corollary 1: A mapping solutiond/ has a clock period of

a result,ly (v) = max{length(p)| ¥V p: Pl - v} < @. no more than a give® under forward retiming, if and only
(«) Sincely(v) < @, we perform the forward retiming if s,,(v) 4+ @ -y, (v) < @ for every LUT rootw in M.
defined as Definition 2: Given a circuit and a target clock perici
if there exists a FRT mapping solution with clock period
0, if vis a Pl or PO of no more than® under forward retiming (called &asi-
R(v) = L (v) _ ble FRT mapping solutign the s-label S(v) for node v is
[Tw — 1, otherwise. defined to be the minimunz,;(v) amongall feasible FRT

mapping solutionsand, ther-label R(v) is defined to be the
minimum 7, (v) among all feasible FRT mapping solutions
We prove that the retiming will reduce the clock period ofith s,,(v) = S(v). The node label pair is defined to be a
M to @. First, we show that this is a legal retiming suchwo-tuple (S(v), R(v)).
that the edge weight of every edg€u, v) after retiming According to Corollary 1, we can solve Problem 2 by
is nonnegative. By definition of thé-value, we have that computing the node label pairs and checking if the inequality
In(v) 2 Iy (u) +length(e) = Iy (u) — @ - w(e) + 1. Without of S(v) + & - R(v) < @ holds for every node. The minimum
loss of generality, we assume batfandv are LUT's. (Notice clock period ®,,;, of the optimal mapping solution can be
that they may also be PI's or PO’s with delay of 0. The pro&fomputed with binary search. After gettingi, and the
for this case is very similar and is omitted here.) The retim%rresponding label pairs, we construct a mapping solution
edge weight satisfies the inequality that(c) = w(c) + and perform a post-processing of forward retiming step to
R(v)—R(u) = wle)+([Im(v)/®]—1) = ([lpr(u)/®]—1) > achieve ®,,;,. Minimizing S(v) is to minimize the longest
wle) + [(Ly(u) — @ - wle) + 1)/@] — [l (w)/®] = 0. path delay from PI's ta after mapping, thus, reduce the clock
Second, we show that"(p) > 1 for any pathp: « ~> v period after retiming. MinimizingR(v) is to push forward as
with d(p) > @. For such a patlp, sinced(p) is an integer, few FF’s as possible for each nodeto leave the maximum
we have thatd(p) > ® + 1 and Iy (u) + lengthp) = freedom to subsequent forward retiming step, because those
FF's pushed forward can no longer be pushed back. On the
other hand, minimizingS(v) may increaseR(v), because we

4Note that this result is similar to [1, Theorem 3] The difference is thq«ﬁeed to construct |arger LUT’s which may include more FF’s.
both forward and backward retimings were allowed in [1], while only forwar

retiming is allowed in our case. Consequently, [1, Theorem 3] checks or?t}ur algorithm can S.'mUItaneOUSIV m'n'mlze.mﬂ(v) and
the I-values of PO’s, while we need to check that of every node. R(v) to compute optimal FRT mapping solutions.

1598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

As in [1], [2], and [19], we assume that the initial circuit @ @
is K bounded. (When a circuit is ndk’ bounded, we can
use gate decomposition algorithms as presented in [20]-[22]
to decompose gates with more thanfanins.) ;

Before proceeding to present our algorithm, we first intro{ («) ()
duce the definition of{-cuts. In a directed graph with one : :
sink and one source, @t (X, X) is a partition of the graph 0. @ O i @
such that the sink is if and the source is ik. The node
cut-setV (X, X) is the set of nodes iX that are connected @ ®)
directly to nodes inX. If |V(X, X)| < K, a cut(X, X)is Fig. 2. Expanded circuits for LUT representation with backward retiming.
called aK-feasible cutor a K-cutin short. A cut is amin-
cut, if |[V(X, X)| is minimal. To dgtermlne the existence OfB. Expanded Circuit Construction for LUT
a K-cut, one can compute a maximum flow from the sour(ise resentation with Forward Retimin
to the sink and check whether its value is larger tanThis P 9
process is called<-cut computation With forward retiming only, the one-to-one correspondence

between K-LUT’s and K-cuts in £X™ introduced in
Section llI-A no longer holds. As shown in Fig. 2(d), to
. THE TURBOMAP-FRT ALGORITHM pack all the nodes in the dotted box into an LUT, we have to
Our algorithm, named TurboMap-frt, is to compute optimarTIove backwardthe FF on the fanout edge f to iis fanin
! ' edges, because the retiming to push the FF forward to the

mapping with forward retiming solutions for synchronous S8 nout edge of? is illegal as we have no FF to move forward

guential circuits with given initial states to minimize the clock d 0 0 Th h di d
eriod. It performs binary search on the clock period fror(r)1n edgec(a’, ¢”). Thus, the correspon_mg’-cut oes not
b ’ correspond to any<-LUT for FRT mapping.

one to an upper bound computed by existing algorithms, forInthefollowing, we propose to construct a smaller expanded

example, FlowMap [19]. For a given clock period, a procedure . L o
) . . circuit for every node based on itlsaximum forward retiming

named FRTcheck is used to decide whether there exists) . .
. . . . alue so that everyK-LUT in an FRT mapping solution
feasible solution through label computation. An overview o

. . corresponds to & -cut on the expanded circuit and, vise versa.
the label computation procedure can be described as follows_ ~." .) : o
Definition 3: The maximum forward retiming valuét(v)

First, we assign an initial lower bound on the value of eacor} 2 nodew is the maximum number of FE’s which can be

node label pair. Then, we iteratively increase those lower o .
. oved forward from the (transitive) fanins ofto the output
bounds until they all converge to the values of node labe
v.

airs if there exists a feasible solution, or stop if we concluooe . o .
b P Lemma 1: For a nodewv in a retiming graph, f(w) is

there is no feasible solution. the minimum path weight from PI's ta, ie., fri{v) =
min{w(p)| Vp: Pl ~~ v}

A. Review of Expanded Circuit for LUT Proof: First, fri(v) < min{w(p)] Vp: Pl ~ v}, If

Representation with Backward Retiming otherwise, assume there is a pattPl ~» v andw(p) < frt(v).

To compute an optimal solution, we need to search dMter moving fr{v) FF's forward acrosss, the new path
possible LUT’s for every node under node duplication andeightw”(p) = w(p) —frt(v) < 0, which means the retiming
forward retiming. Pan and Liu [1] proposed to search ai illegal.
possible LUT’s rooted at a node which can be formed underLet m, = min{w(p)| Vp: Pl ~ u} for a nodeu. Clearly,
backwardretiming on the expanded circuit of the node. Ay, + w(e) > my, for any edgec(us, u2). We shall show
expanded circuite!, of node v with control number! is a that we can always pusir, FF's forward across for every
directed acyclic graph (DAG) rooted atand constructed from nodewv. To prove this, we simply need to perform a forward
the original retiming grapld with node replication, such thatretiming {R(u) = —m,| Y« € G} and show it is legal, i.e.,
all paths from a node &’ to the root have the same numbetv"(¢) = 0 for every edgec. For any edgec(us, uz2) € G,
of FF's. If a replication of a node, passesw FF’'s before w'(¢) =w(e) + R(uz) — R(u1) = w(e) — mu, + mu, 2 0.
reaching the root in £, it is denoted as: [1]. The control So it is a legal forward retiming. u
number! is the shortest distance (in terms of the number of Since the edge weight is nonnegative, the maximum forward
edges) between the root and each le4fif « is an internal retiming values of all the nodes in a retiming graph can
node inG.5 For example, Fig. 2(b)—(e) shows four expandelle computed inO(n?) time with Dijkstra’s shortest path
circuits £2, £}, €2, and €2 of nodec. With backward retiming algorithm [23].

Pan and Liu [1] showed that an/-LUT of a nodev can be ~ Now we define a set of expanded circuits of a nader
derived from ak-cut of ££™ and anyK-cut of ££™ can be FRT mapping. The expanded circuff; for a given upper
used to derive d&-LUT of v, wheren is the number of nodes bound: of forward retiming value of a node is a sub-DAG
in the original circuit. of £/ with root +° such thatu® is an internal node of¢,
if and only if % is an internal node of X", andw < 4; u®
is a leaf of 7, if and only if «* is either a leaf oEX™ or a
5The control number does not apply to any le&f if « is a Pl inG. fanin of an internal node ofF! with w > 4. For example,

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING

Fig. 3. LUT formation for FRT mapping based on the expanded circuits.

Edgee(c?, b2) shown in (b) does not belong to the expanded cirdgt,
i.e., b? is a leaf node inF!.

the shaded area of Fig. 3(b) represer®$ for the circuit

shown in Fig. 3(a), where the heavy shaded nodes are leaves

of F!.

Definition 4: For a K-cut (X, X) of an expanded circuit

of node v, the cut-weight is defined to bew(X, X)

max{w| Yu* € X}, which represents the minimum forward®

retiming value needed to push all the FF’s insifleto the
fanout edge ofv.
Obviously, the cut-weight of anys-cut of F¢ is no more

thani. Let us assume that the initial states of FF's on differe

1599

FRTcheck(G(V, E, W), @)

1 assign initial lower-bound (0,0) for each PI and
(—o0,0) for the other nodes

2 converge + FALSE, i+ 0

3 sort all nodes from PIs to POs with DFS
(depth-first search)

4 while (not converge and i < n?) do {

5 converge + TRUE

6 for each node v from PIs to POs do {
7 (Snew (), Tnew (v)) +LabelUpdate(v, ®)
8 if (Spew(v) > s(v)) then {

9 (V) ¢« Spew(V)

10 converge FALSE

11 }

12)

13 i—i+1

14}

15 if (converge) then return(TRUE)

16 else return(FALSE)

Fig. 4. Label computation for a target clock peridd

s it is a sub-DAG of&X™. Practically, however, using
the technique of efficienK-cut computation orpartial flow
networksproposed in [2], the expanded circuits needed to be
constructed always have far less thamodes and'n edges

fer all the benchmarks we have tested.

fanout edges of a node are the same, we have the following

theorenP o
Theorem 2: Every K-feasible cut X, X) of F**) corre-

C. Iterative Label Computation
For a target clock period, we compute all node label pairs

sponds to & -LUT rooted atv under possible node duplica-of a circuit to decide the existence of a feasible FRT mapping

tion and forward retiming, where all the leaves areXinand
the root is inX. On the other hand, ank-LUT in an FRT
mapping solution corresponds tolé-feasible cut ofFEt)
Proof: Obviously, everyK-cut (X, X) of £ cor-
responds to & -LUT in FRT mapping, because(X, X) <

frt(v) and we can always push all the FF’s withi forward

to the output ofv. Now we prove that thek-cut (X, X)

corresponding to & -LUT rooted atv in an FRT mapping
solution must be included i, or in other words, it must
be thatX c £F). Clearly w(X, X) < frt(v), because we
have to push all the FF’s withitX forward to the fanout of
v, which meansw < frt(v) for any v € X. By definition

of FE® anyw® € X is an internal node o=, On the

other hand, any leai® of F=**) cannot be included i,
because eithew > frt(v) or ¥ is also a leaf of€™ such
thatu™ ¢ X. (Notice that it is proved in [1] that for ani-cut
(X, X) corresponding to &-LUT, any leaf of ££™ is not
contained inX.) This concludes our proof.

solution. The algorithm for this operation is named FRTcheck.
It assigns a pair of lower bounds, denotedv), »(v)), on
the value of the label pair for every node and iteratively
updates the values of the lower bounds until they all converge
to the values of the node label pairs, i.e(v) = S(v) and
r(v) = R(v) for every nodev. The initial values of the lower
bounds ar€0, 0) for the PI's and —oo, 0) for the other nodes.
If the lower bounds cannot converge afiet iterations (one
iteration is the process of updating the lower bound of every
node’s label pair once), FRTcheck stops the computation and
concludes that no feasible FRT mapping solution exists for the
given®. The pseudocode of the FRTcheck algorithm is shown
in Fig. 4. In the remainder of this section, we will present
the details of the LabelUpdate procedure (line 7 in Fig. 4),
which is to update the lower bound of the label pair for a
single node once based on the current lower bound values of
all nodes.

Definition 5: Given a set of current lower bounds(v),

Let us look at the circuit shown in Fig. 3(a). Notice that it& (v)), wheres(v) < S(v), andr(v) < R(v) if s(v) = S(v),

only difference with the circuit in Fig. 2(a) is one extra FF oft

edge(iy, a) which makes fitc) = 1. Now the 3-cut(X, X)

shown in Fig. 3(b) can form a 3-LUT as shown in Fig. 3(c)

With the assumption that every edge has at most one
EXn has O(Kn?) nodes andO(K?n?) edges [1]. Clearly,
FE) has no more tha(Kn?) nodes and)(K2n?) edges

6In case the initial states of FF’s on different fanout edges of a node

he cut-heightof a K-cut (X, X) in the expanded circuit
F®) of nodew is

X, X) = max {s(u) =@ -w+1|Vu” e V(X, X)}.

VY K-cut(X, X) on Firt)

To compute a tighter lower bourg,..,(v) for a nodev, we

e
not the same, the theorem still holds after a simple buffer insertion. The deaﬁfﬁt compute a valug(v) = max{s(u)—®-w(e)| Ve(u, v) €

will be presented at the end of this section.

G}, whereG is the retiming graph of the original circuit. If

1600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

LabelUpdate(v, @) s(v) andr(v) converge to finite values for all the nodes, we
1 compute <(v) shall show that we can form an FRT mapping solution with
2 if¢(v) < s(v) then clock period of no more than the target value in Section IlI-D.
3 Snew (V) ¢ §(V), Tpew(v) < 0 Consequently, we conclude that TurboMap-frt can compute
4 else if does not exist a K-cut with height of an optimal FRT mapping solution with the minimum clock
no more than <(v) then period in polynomial time.
5 Snew('u) « ((’U) +1, rnEw(U) «0
6 else {
7 compute a K-cut with the minimum weight D. Mapping Generation with Forward Retiming
Whmin and R(X,X) < ¢(v) and Initial State Computation
8 if ¢(v) + @ - win < P then

After computing the minimum clock perio@,,;, with

9 Snew('u) « Q‘('U), 7'new(v) & Wnin . .
10 else Snew(v) ¢ (V) + 1, Few(v) = 0 binary search and obtaining the Iabe_l pa@ﬂv), R(v)) of
1) all nodesw, the last step of our algorithm is to generate the
mapping solution based on th€-cuts computed during the
Fig. 5. Label pair update for a single node label computation and perform forward retiming with initial

state computation.

s(v) < s(v), we keepsyey (v) to be s(v) and setryey(v) to First, we get all the LUT roots in the mapping solution
be 0. If ¢(v) > s(v), we decide whether there existsié based on thd({-cuts computed during the label computation.
cut of ZX) with height of no more than(v), based on Obviously, all the PO’s of the original circuit are LUT roots.
the max-flow computation oF (™) (In fact, for efficiency If v is an LUT root, all the nodes in the node-cut set of the
consideration, we perform the max-flaii-cut computation on £-cut of v are LUT roots. The complete set of LUT roots

a partial flow network ofFT* ™) with much smaller size as in &N be computed as follows: starting with a first-in-first-out
[2].) If there does not exist suchM-cut, we select a cut with (FIFO) queue including all the PO’s, we repeatedly extract
X = {v} and Setspen (v) = <(v) + 1 Ob’viously Faew (1) = 0 nodes from the head of the queue until the queue is empty. For
in this case bec;ljws?(:{v}) does. not includ;e ‘;’F‘]’y Fps. each node extracted from the queue, we mark it as an LUT
! " root and put all the nodes in its node-cut set to the end of

If, however, there does exist such/acut with height of
the queue.

no more than;(v), we compute & -cut with minimum cut- . :
Second, we create a new equivalent network by connecting

weight (see Definition 4)u,,,;,, and height of no more than) i —
; - - the K-feasible conesY, of the K-cuts (X, X,) of those
by binary searching the cut-weight from zero to(# v vh Tl
s(v) by binary ng ut-welg z ot LUT roots v. Then, we compute a forward retiming for all

as follows. _
For a givenw € [0, frt(v)], to decide whether there is ahodesy on the new network as follows:
K-cut with height of no more thag(v) and cut-weight of no 0 i vis aPlor PO
more thanw, we first construct an expanded circti’ and '
then, decide whether there existdsacut onF;’ with height B &w —1, if vis an LUT root
of no more tharg(v). If there exists such & -cut, clearly, it R(v) = Punin
is a K-cut with height of no more thar(v) and cut-weight R(u) + w, if v € LUT,,
of no more thamw. wherew is an LUT root.

Let (X, X) be such aK-cut with height ofs(v) and cut-
weight of wy,;, computed above. I§(v) + @ - wy, < ®, we After retiming all the FF's within eachX, will be pushed
update the new lower bound to i§e(v), wmi,). Otherwise, forward outside theX,, becausevs™ (u® ~ v%) = w+R(v) —
we update the new lower bound to bgv) + 1, 0). Recall R(u) = 0 for anyu® € X,,. Then, we collapse eacK, and
that if the minimum height of allK-cuts is larger thar(v), putitinto aK-LUT to form the final mapping solution which
we also update the new lower bound to bgv) + 1, 0). has a clock period of no more thah,,;,,.

This concludes the LabelUpdate procedure. The pseudocodeemma 2: The retiming defined above is a legal forward
is shown in Fig. 5. retiming to achieve clock perio@ ;.

Theorem 3: For a sequential circuit which has a feasible Proof: First, we prove itis a forward retiming. Letbe a
FRT mapping solution for a target clock peridg starting LUT root. SinceS(v) < @,in, R(v) = [S(v)/Pmin] —1 < 0.
from the initial lower boundg0, 0) for PI's and (—oc, 0) If ¥* is an internal node of LUJ, we prove thatR(u) <
for the other nodes, the inequalities,) < S(v) and 2) —R(u) and thenR(v) < 0. SinceS(u) + Ppin - R(1) < Prjin
r(v) < R(v) whens(v) = S(v), hold all the time after any based on the definition of the node label pair and Corollary 1,
number of iterations of label update. we have that (S(v) + P - R(w)/Prmin] €1 = R(u) =

The proof of this theorem is presented in the Appendix. [S(u)/®umin] —1 < —R(uw). Furthermore, for any* € LUT,,

This theorem shows thai(v) and r(v) are truly lower we have thatw < w(LUT,, LUT,) < R(u). As a result,
bounds on the values of(v) and R(v). Furthermore, we R(v) = R(u) + w < —R(u) + R(u) = 0.
shall prove in the Appendix that(v) will monotonically After retiming, everykK -feasible coneX will become a pure
increase and botk(v) and »(v) will converge toS(v) and combinational block and can be collapsed int&dUT. We
R(v), respectively, inn? iterations, if there exists a feasibleshall prove that the clock period of the LUT network is no
solution for the target clock period. If, on the other hand, bothmore than®,,;, in two steps.

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING 1601

1) The Retiming is LegalSuppose LUT, rooted atu is a
fanin of LUT,, rooted atv and the path from: to v has
w FF’s in the original circuitS(v) > S(u)—®pin-w+1
and [S(v)/Pumin] > [S(w)/Pmin] — w. As a result,
the new edge weight between the two LUT'’s after
retiming is w"(LUT,, LUT,) = w — R(u) + R(v) =
w— ([S(w)/Pmin] — 1) + ([S(v)/Pmin] — 1) > 0.
2) The Retimed Circuit has a Clock Period of no More
than ®,,;,,: For any pathp: LUT,, ~» LUT,, with delay Fig. 6. Incompatible initial states of fanout FF's. Each small rectangle
d(p) > Pomin, We prove thats™(p) > 1. Since bothi(p) represents a FF with a digit in it representing its initial state.
and ®,,;, are integral, it must be thakp) > @, + 1.
SinceS(v) > S(u) +length(p) = S(u) — Pwmin-w(p)+ as that of theith FF on edge:(u, v2), wherew; and v, are
d(p)—d(LUT,,) andd(LUT,) = 1, we have thaR(v) > two different fanouts ofu. If, however, there are FF's with
R(u) —w(p)+ [(d(p) — 1) /Pmin] = R(u) —w(p) +1. incompatible initial states as shown in Fig. 6(a), the outputs
It means thatw”(p) = w(p) + R(v) — R(u) > 1. of the two FF’s may constitute two inputs to LYB&s shown
m in Fig. 6(b). On the other hand, if we push the two FF's to
In the constructed network, since the retiming is a forwartie LUT's fanout as shown in Fig. 6(c), the two inputs to the
retiming, the equivalent initial state can be computed withUT can be merged into one. As a resultkaLUT may not
circuit simulation. Since eacH -input node can be simulatedcorrespond to & -cut. Consequently, our label computation
in O(K) time, for a K bounded circuit withn gates and may not be optimal. To solve this problem, we simply insert a
O(Kn) edges, the first step of getting LUT roots can be dormuffer on one fanout edge ef as shown in Fig. 6(d), before
in O(Kn) time. There ar@®(n) LUT's in the constructed LUT the label computation. Obviously, it will change neither any
network. EachK-LUT includes O(Kn) nodes as proved in path’s delay after mapping, nor the minimum clock period of
[2, Theorem 4]. The total number of nodes need to perforBRT mapping solutions. In the worse-case, we only need to
forward retiming isO(Kn?). Furthermore| R(v)| = O(n). add O(Kn) buffers, because each edge needs at most one.
The runtime of forward retiming iSO(Kn? - n - K) = After mapping, all those buffers can be collapsed into LUT’s
O(K*n?). However, the number of node in eadtLUT is without increasing either delay or area.
almost bounded by a constafit= O(K) in practice. So the = Theorem 5: For a given sequential circuit, the minimum
runtime of forward retiming iSO(K3n?) in practice. clock periods of FRT mapping before and after buffer insertion
Theorem 4: For a sequential circuit witlh gates, the op- are the same.
timal FRT mapping solution with the minimum clock period Proof: Let the minimum clock period of the optimal
can be computed iD(K3n® log? n) time with O(K2n%+S5) mapping solution of the original circuit (denot&®) be ¢,
space, wheres = O(2/n) is the space needed to represersnd the minimum clock period for the circuit after buffer
the original circuit. insertion (denoted?’) be ®,. Obviously,®> > ®; because
The proof of this theorem is presented in the Appendix. any mapping solution of¥ is also a mapping solution @¥.
Notice that Theorem 4 is based on the worst case result thaNow we prove that®, < @;. Let M1 be any mapping
the expanded circuits haw@(K?n?) edges and we need tosolution of G with clock period of$. We shall show that we
go throughn? iterations of label update. In practice, howeveran construct a mapping solution M2 with the same clock
the expanded circuits have no more th&mn edges with the period ¢ for G’. It means that the minimum clock period of
efficient K-cut computation on partial flow networks [2] andan optimal solution of is no more than the minimum clock
the number of iterations for each target clock period is alwaperiod of an optimal solution of?, i.e., s < ®;. Let e(u, v)
much less tham for all the examples we have tested wittbe one edge ir7. It is avisible edgein M1 if «» is an LUT
the DFS ordering of nodes. Practically, our algorithm runs oot in M1, or aninvisible edge otherwise. To construct M2
O(K?n® log® n) time with O(Kn + S) space requirement, for G’ based on M1, we add a buffer efu, v) if we added
where S = O(2%n) is the space to represent the originah buffer on the corresponding edge @. If e(u, v) is an

(d)

circuit. invisible edge in M1, the adding of the buffer will not change
the functionality of the LUT in whiche(w, v) is included. If

E. Buffer Insertion for Incompatible e(u, v) is a visible edge in M1, we can pack the buffer in the

Initial States of Fanout FF's LUT rooted atw with possible node duplication as shown in

In Theorem 2 we assumed that the FF's on different fanoﬁ#gé,gdn)a agacrllc})/’clzvg::icgeiﬁgithfSZ%ET; tT]Z?zifnlg/l 15 O_II_u;ii(S)n

edges of a node hacbmpatibleinitial states. Let us number ©
the FF's on an edge(u, v) from « to ». The FF’s on fanout conclude§ our'proof. . .
edges of a node havecompatible initial statesf for any 4, Bu_ffer |n_sert|on shall not increase the area 9f any mapping
the initial state of theith FF on edge:(u, v1) is the same solut|_0n._F|rst, aII_the buffers can be deleted _Wlthout changing
the circuit behavior. Second, the node duplication caused by

"To be precise, a node can be simulatedil) time, wherel represents the puffer insertion shown in Fig. 7(d) can be eliminated easily
the size of the node, for example, the number of literals in the cu

e-. . . ,
cover representation or the number of nodes in the binary decision diagr\c’i\mh a.postprocessmg of mergmg LUT's rooted at a nade
representation. or » with a buffer as shown in Fig. 7(e).

1602 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

wr Fr their initial lower bounds to be a very small value, but not
DT> —o0. (For example, we can assign the initial lower bound of
node labels to be-¢ - F for internal nodes and PO’s and
() original cireutt (0) after paffer insertion zero for PI's, respectively, wheré' is the total number of

FF's on the circuit.) The initial lower bound assignment of
the rest of node is the same as presented before, i.e., zero for

= LS S PI's and—oo for internal nodes and PO’s. We then update the
'& 'ik iterative label until all the lower bounds converge to values

no more than the target clock perigdor any of the lower
bounds exceed. In the first case, we conclude thatis a

(o) (@) w2 () 13 feasible clock period. In the latter case, we conclude ¢hist
Fig. 7. Buffer insertion will not change the clock period. M1 is a mappingnfeasible. Clearly, this modification works for mapping with
solution of (a). M2 is a mapping solution of (b). M3 is the result of M2 aﬂegenera| retiming algorithms proposed in [1] and [2] as well,
duplication removal. except that in that case we only need to check the labels of
the PO’s.

IV. POST-PROCESSING FORFPGA's
WITH FIXED INITIAL STATE SETTING

.

In Section Ill, we assume that the target FPGA device
Fio. 8. Manping for cireuits with | olated from PIs. £ o retimi provides both set and reset signals, thus, we can set the initial
o b mnistates of FF's ambirarily to be efther one or zero. However,
circuit, (b) mapping without retiming, and (c) mapping witrh forward retiming.there are some FPGA devices providing only one such control
signal. To map a circuit onto such kinds of FPGA devices, the
initial states of all the FF's need to be the same (either one or
zero, depending on which signal, set or reset, is provided on the
devicesy In this case, we propose to perform a postprocessing

In Theorem 1, we assumed that every node is connectedofostate switching with inverter insertion on the mapping
at least one PI. However, there exist circuits with some nodsslution generated by the TurboMap-frt algorithm presented
not connected with any PI's. Thievalues of those nodes arein the previous section. We guarantee that the clock period
not well-defined, and as a result, Theorem 1 no longer holdgill remain the same. Furthermore, in most cases, the number
Notice that [1, Theorem 3] also suffers the same probleoi LUT’s will also remain the same.
and the algorithms proposed in this paper and [1], [2] cannotWithout lose of generality, we suppose that the target FPGA
be directly applied for this kind of circuits. Nevertheless, thdevice provides only reset signal for each FF, i.e., the initial
mapping and retiming on those nodes can still affect the closkate of every FF needs to be zero. Egtbe an FF with initial
period of the entire circuit as shown in Fig. 8(b) and (c). Wstate of one in an FRT mapping solution. We insert a pair of
need to consider those nodes in the mapping algorithm. inverters on the fanin and fanout edges I&f and change

First, we assume that those nodes which are not connectied initial state ofF/; to be zero as shown in Fig. 9(a)—(c).
with PI's must form at least a loop. (Otherwise, they must havihe inverters can then be packed in LUT's (or I/O pads if
at least one predecessor without any input and with constéimty have built-in inverters) connected to the FF as shown
value. We can either collapse those nodes with constant vainegrig. 9(d)—(f). In case that the inverters connected only to
into their fanouts or mark them as PI's.) By definition of legaFF's or input-output (1/0) pads which do not have built-in
retiming in [3], we know that paths from those loops to PO’mverters, those inverters need to be implemented with new
will never be critical, because we can insert as many numbddT’s. Clearly, we can change the initial state of every FF
of FF’'s on those paths as we want by moving FF’s in thoseth this operation and the clock period will remain the same,
loops around. Let us look at the examples shown in Fig. 8(&xcept a few more LUT’s might be needed to implement some
Whenever we move the FF around the loop of three inverteénwerters if they cannot be packed into existing LUT's.
once, we will insert one FF on the edge from invertdo the Theorem 6: The clock period will remain the same after
AND gate. The only possibility that those loops will increas@verter insertion and initial state switching.
the clock period is when one of them has positive path length. Proof: Let p be a combinational path ended with either
To detect this case with Theorem 1, we can create a pseudd®PPO’s or FF’s and the clock period k& >1) before inverter
and connect it to every node that has no connection with aimgertion. We consider the following two cases.
real PI's with a new edge. We then put a very large number of1) |f the number of LUT’s onp is larger than zero, all
FF's on those edges. As a result, thealues of those nodes the added inverters op can be either cancelled out or
can still be defined and must be very values, unless they form packed into LUT’s orp. As a result, neither the number
at least one loop with positive path length.

We can modify our algorithm as follows. We first detect 8For example, Xilinx XC5200 FPGA'’s provide only reset signal to each
nodes that are not connected with any PI's and then assim

@) (b) ©

F. Label Computation for Circuits with
Nodes Not Reachable from PlI's

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING 1603

'y FE e TABLE |
. INITIAL CiRcuiTs oF MCNC AND ISCAS BENCHMARKS
sl s cifcuit__| PT [PO | GATE | FF
bbara 4 2 28 10
(a) (b) (c) bbtas 2 2 15 5
dk16 2 3 162 5
dk17 2 3 42 5
PR FE kirkman 12 6 106 5
exl 8 19 140 5
s . ex2 2 2 16 7
“D I . ﬂ s1 8| 6 107 5
sse 7 7 74 4
() (e) keyb 7 2 134 5
styr 9 10 281 5
FF sand 11 9 327 17
planetl 7 19 348 6
» a a scf 27 54 516 7
§9234.1 36 39 1293 135
85378 35 49 1503 164
) $15850.1 | 76 | 148 3789 | 515
Fig. 9. Changing the initial state of a FF with inverter insertion. 538417 28 | 106 9763 | 1464

of LUT’s on p, nor the clock period of the circuit will computation utility in SIS [15] which is based on the algorithm
change. _ _ in [8] to try to compute an equivalent initial state for every
2) If the number of LUT's onp is zero, after inverter yrpoMap solution. In Table 11, Columns LUT and FF list the
insertion and cancellano_n (of inverter palr_s), t_here iSumbers of LUT’s and FF’s, respectively, in each mapping
at most one LUT orp. Since the clock period in the go|ytion. Columns® list the clock periods of the mapping
original mapping solution must be at least one, the delq¥syits. Columns CPU list the CPU time in seconds for each
increase orp from zero to one will not change the clockyigorithm. Those marked witk are examples for which SIS
period as well. failed to compute equivalent initial states for the TurboMap
B solutions in 2 hours. Column Best lists the best valid solutions
(with computed equivalent initial states) by TurboMap and
V. EXPERIMENTAL RESULTS FlowMap-frt.

The TurboMap-frt algorithm has been implemented in C To show the effectiveness of our algorithm on larger exam-
language on Sun workstations and incorporated into the S§s with more FF's, we selected eight ISCAS examples with
package [15] and the UCLA RASP FPGA synthesis systefiore than 70 FF's. We first performed pipeline insertion to
[24]. Our first test set consists of 14 MCNC FSM benchmarHyrther increase the number of FF’'s. The pipeline insertion was
and four ISCAS'89 benchmarks. Our second test set consistP8fformed to the extent that the clock period of the original
eight larger ISCAS benchmarks with more FF’s. SIS sequentfircuit (before mapping) could not be further reduced, i.e., it
synthesis commands and the DMIG decomposition methgguals to the maximum loops’ delay-to-register ratio. The sizes
[21] are used to generate the initial circuits as shown in Tableof the eight examples are shown in Table Ill. The test results

Columns GATE and FF list the numbers of gates and FF’s @f¢ shown in Table IV. Because all the circuits have more
each circuit, respectively. than 100 FF’s, we did not try to compute new initial states

Table Il shows the comparison of TurboMap-frt withfor TurboMap solutions with SIS, because it would take too
FlowMap-frt and TurboMap [2] on the first test set. Outong CPU time. We noticed that with more FF’s in the circuit,
experiments were performed on a Sun ULTRA2 workstatioFurboMap-frt needs more time to compute optimal solutions.
with 256-MB memory.K was set to be five. All the mapping This is because with more FF’s, (fit) is generally larger and
results of TurboMap-frt were computed and verified bthe binary search ab,, from zero to fr{v) (shown in Fig. 5)
verify_fsmof SIS [15] which performs formal verification needs longer computation time.
for sequential circuits, except the four largest ones which The results show that TurboMap-frt can reduce the clock
were verified by circuit simulation with input sequences dferiod by 17% as compared with FlowMap-frt for both test
3008 random vectors. FlowMap-frt represents the conventiorsgits. Comparing with the results by TurboMap [2], which
approach. It first partitions a sequential circuit into a set oépresent the minimum possible clock period of mapping with
combinational subcircuits by cutting at inputs and outputs general retiming, the clock period by TurboMap-frt is 3.6%
all FF's, then, maps every subcircuits independently usitg 2.8% longer, respectively, for the two test sets. However,
the depth-optimal FlowMap algorithm [19]. After mergingthere are ten out of 18 TurboMap solutions in the first test
the mapped LUT subcircuits with the original FF’s, a postet for which SIS concludes no equivalent initial states or
processing of forward retiming for clock period minimizatiorcannot find one due to either large memory requirement (more
was performed. TurboMap, on the other hand, computdgan 300 MB) or long runtime (longer than 2 hours). If we
optimal mapping withgeneralretiming solutions, but without compare the best valid solutions by TurboMap and FlowMap-
consideration of initial states [2]. We used the initial statit, TurboMap-frt can still reduce the clock period by 8%.

1604 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

TABLE I
COMPARISON OF TURBOMAP-FRT WITH FLOWMAP-FRT AND TURBOMAP FOR 5-LUT. “GMEAN” L isTs THE GEOMETRIC MEANS
OF THE RESULTS BY EACH APPROACH RESPECTIVELY. THE RUNTIME WAS RECORDED ON A SUN ULTRA2 wiTH 256-MB
MEMORY. THOSE MARKED WITH * ARE CIRCUITS THAT SIS FAILED TO COMPUTE INITIAL STATES FOR TURBOMAP SOLUTIONS

FlowMap-frt TurboMap Best TurboMap-frt
circuit ¥ |ILUT] FF [CPU | & [LUT] FF | CPU [® | LUT | FF | CPU
bbara ! 13 10 0.2 3 12 7 0.4 3 3 12 12 0.2
bbtas 2 7 5 0.1 1 6 4 0.2 1 1 6 4 0.1
dk16 14 | 101 5 09 | 14| 103 14 3.8 14 || 14| 103 |. 9 1.7
dk17 2 10 5 0.2 1 6 3 0.4 1 1 6 3 0.2
exl 8 83 5 0.7 8 92 21 1.9 8 8 92 20 1.3
ex2 2 9 7 02| =l 4 3 0.2 2 1 4 3 0.1
keyb 10 75 5 06 | 10 79 5 1.6 10 || 10 81 5 1.0
kirkman 6 48 5 0.7 | *5 57 24 1.2 6 5 57 14 0.8
planet1 19 | 213 6 20 | %19 | 201 18 12.5 19 || 19| 199 37 5.0
sl 7 58 5 0.5 7 63 11 1.2 7 7 56 6 0.7
sand 16 | 176 17 1.8 | %15 | 178 30 10.6 16| 15| 176 12 43
scf 14 | 325 7 2.8 | 13 | 304 20 19.8 14 || 13| 301 | 27 8.8
sse 7 42 4 0.4 6 45 10 0.9 6 6 44 8 0.5
styr 17 | 163 5 1.6 | %16 | 168 8 5.2 17 || 17| 168 12 3.2
5378 4§ 421 | 204 79 | »4 | 444 | 301 51.5 4 4 | 427 | 261 40.3
$9234.1 6| 462 | 161 85 | x4 | 498 | 217 | >7200 6 5| 441 | 203 58.8
515850.1 10 | 1240 { 504 | 30.3 | =8 | 1161 | 732 | >7200 10 || 10 | 1166 | 621 | 2056
538417 8 | 3526 | 1464 | 561.5 | 6 | 3420 | 2264 | 1201.8 8 6 | 3301 | 2573 | 1210.6
GMEAN 7.0 | 100 15 14| 56 94 24 74| 63 58 92 23 2.8
% +202 | 48.4 | -33.8 | -47.6 | -2.8 | +1.9 | +6.0 | +167.0 | +8.6 1 1 1 1
TABLE Il retiming solution, backward retiming can be performed as a
EIGHT PIPELINED TEST CIRCUITS FROM ISCAS BENCHMARK SUITE preprocessing step to try to push FF’s to primary inputs as
circuit | PI | PO | GATE | FF much as possible with consideration of only initial state com-
bigkey 262 | 197 3093 | 464 putation. Thus, we can avoid the time-consuming iterations
81423 17y 5 634 | 105 between retiming for clock period minimization and initial
5378 35 | 49 1284 | 403 .
§9234.1 36 | 39 931 | 135 state computation. _
$13207.1 | 62 | 152 3162 | 643 The experimental results show that TurboMap-frt is very ef-
S;gi?g-l ;g }gg gggg 1261;: ficient and effective comparing with conventional approaches
S
6385841 | 38 | 304 | 9681 | 1356 of separated mapping with retiming. Furthermore, the results

by TurboMap-frt are very close to that by the optimal mapping
with general retiming algorithm TurboMap [2] with regard to
Notice that we did not perform the preprocessing of backwakgth area and clock period, while many solutions by TurboMap
retiming for TurboMap-frt in our experiments. We believeeannot compute initial states.

that the clock period by TurboMap-frt would have been even In the future we plan to extend our work for library-
closer to that by TurboMap if such preprocessing had bebased technology mapping with (forward) retiming for high-
performed. However, we do not see a compelling reason performance gate array and standard cell designs. A general
doing this as the best possible improvement could be vdrgmework on retiming with multiple clock designs was pro-
marginal (only 2.8%-3.6% as shown in our experimentg)osed recently by Legtt al. [25]. (The retiming proposed in
Our results also show that all the three algorithms compuf] and used in this and many other papers consider sequential
results with similar numbers of LUT’s. But FlowMap-frt usesircuits with single clock.) We plan to accommodate our
30%-40% fewer FF’'s. In general, we think simultaneowgpproach into their framework as well.

mapping with retiming leads to smaller clock period but tends

to use more FF’s. APPENDIX

To prove Theorems 3 and 4, we first show the important
monotone property of the nodelabels. Given a retiming
For sequential circuits with initial states, we present graph G of a sequential circuit which has a feasible FRT
new algorithm TurboMap-frt for FPGA mapping with forwardmapping solution for a target clock peridd a set ofS(v) is
retiming and initial state computation to minimize the clocknonotonef S(u)—®-w(e) < S(v) for any edge:(u, v) € G.
period. Unlike previous retiming algorithms which compute Theorem 7—Monotone PropertyGiven a retiming graph
retiming to minimize the clock period at first and then try t@7 of a sequential circuit which has a feasible FRT mapping
compute an equivalent initial state, we compute optimal mapelution for a target clock perio®, the set{S(v)|v € G} is
ping with forward retiming with guaranteed equivalent initiamonotone.
state in one step. Our algorithm enables a new methodology Proof: Given a nodev of an edgee(w, v), there must
of separating forward retiming from backward retiming. Sincexists a FRT mapping solutiofd such thats,;(v) = S(v).
we guarantee to compute an optimal mapping with forwafthe [-valuesiy (v) = sy (v) + @ - rar(v) and ly(u) =

VI. CONCLUSION AND FUTURE WORK

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING 1605

TABLE IV
COMPARISON OF TURBOMAP-FRT WITH FLOWMAP-FRT AND TURBOMAP FOR 5-LUT. “GMEAN”" L I1STS THE GEOMETRIC
MEANS OF THE RESULTS BY EACH APPROACH RESPECTIVELY. THE RUNTIME WAS RECORDED ON A SUN ULTRA2
WITH 512-MB MEemoRy. No INITIAL STATE CoMPUTATION WAS PERFORMED FORTURBOMAP SOLUTIONS

FlowMap-frt TurboMap TurboMap-frt
circuit $ [LUT | FF [CPU| & [LUT | FF | CPU || & | LUT | FF | CPU
bigkey 2 923 466 5.0 2 1136 985 26.0 2 1138 577 171.4
51423 10 228 105 1.0 9 212 136 9.9 9 208 119 27.7
55378 4 519 394 1.1 3 481 504 21.5 3 559 603 15.7
59234 6 313 135 1.1 4 349 212 38.9 5 349 194 19.1
513207 7 1024 643 3.3 5 1200 869 675.6 5 1193 1018 644.9
515850 7 1202 614 4.0 6 1136 906 190.8 6 1129 751 309.2
538417 8 3526 1464 22.3 6 3379 2405 866.1 6 3785 2979 | 3753.5
538584 6 3879 1356 10.9 5 3514 2398 503.8 5 3439 1952 | 2333.8
geo-mean 5.7 { 933.3 | 461.0 3.4 46 | 9484 | 710.6 102.4 4.7 | 973.9 | 659.3 199.3
% +21.2 -4.2 -30.1 | -98.3 | -2.8 -2.6 +7.8 | -48.6% 1 1 1 1

Proof: It is obvious thats(v) < suew(v) based on
our FRTcheck algorithm shown in Fig. 4. We now prove by
mathematical induction that,..,(v) < S(v) holds after every
label update.

Initially, s(u) = —oo < S(u). We prove that ifs(u) < S(u)

Sk for every nodeu, snew(v) < S(v) after each label update for
@ (b) a nodew. In the following, we assume(v) > s(v), because
Fig. 10. Proof of monotone property of node labels for Case 2. it is obvious thatsnew(v) = S(U) < S(U) if §(U) < S(U)

Let M be a feasible FRT mapping solution such that

sn(u) + - ras(u). Let LUT, be the K-LUT rooted at sy (v) = S(v) and X is the LUT rooted av in M. In M the

v in M. The edge weights"(e) after forward retiming is CUt'he,igithM(X’ X) = su(v) = S() ,arli' the cut-weight
w”(e) = wle) 4+ ra(u) — rar(v). (Notice thatry(v) is the wyt(g X) = R(v) < frt(v). Clearly, (X, X) Israfﬁr -cut on
number of FF's moved forward acrossin M.) We consider “v - Based on Corollary 1, we have thiag (X, X) +&-
the following two cases: wpy (X, X) < <I> Sinces(u) < S(u) < sp(w) hold for every
Case 1: w is a fanin to LUT,. Sincely;(u)—®-w"(c)+1 < Nodew, the height of the cut based on currgitu), r(u))
In(v), we have thaty (u) + @ -7y () — D(w(e) +ry(u) — Satisfies the inequality oh(X, X) < hy(X, X) = S(v).
rau() + 1 < ly(w) = sy(v) + @ - rp(v). It means that Furthermorewy (X, X) = w(X, X) is an invariant during
S(u) — @ - wle) < sp(u) — @ - wle) < sy (v) = S(v). labeling iterations for a_partlcuIaX. As a resulth(X, X)+
Case 2: u is covered inside LUT. Let H, be the largest € - w(X, X) < hp (X, X) + & - wy (X, X) < ©. Based on
sub-DAG rooted at: inside LUT, as shown in Fig. 10(a). the monotone property
The number of FF's moved acrossin LUT, is »(u) =

ra(v) — w(e). Clearly, H, can be covered by &-LUT. s(v) = max{s(u) — ® - wle)| Ve(u, v) € G}
By replicating H., explicitly outside LUT, to form LUT,, and < max{S(u) — & - wle)| Velu, v) € G}
pushr(u) FF’s forward tou's output? we can form another < S(v) = hy(X, X)
FRT mapping solutiom/’ with the same clock period aif. -
So Suppose first, thab(X, X) > ¢(v). Obviously, syey(v) <
smr(u) =y (w) — @ - r(u) s()+1 < h(X,X) < hout (X, X) = S(v).
<l (v) — @ () Second, ifh(X, X) < ¢(v), the cut(X, X) is a K-cut and

R(X, X)+ @ -w(X, X) <¢(v)+® w(X, X)

)
=su(v) + @ (w(e) +7(w) = @ - r(u) Shyu(X, X)+ @ - wy (X, X)
) <o |

<.
As aresult,S(u) — @ -wle) < spp(u) — @ -wle) < sy(v) =
S(v). B As aresultsyey(v) = s(v) < hy(X, X) = S(v).]
Based on the monotone property we can prove the follow- Lemma 4: Given a sequential circutt which has a feasible
ing. FRT mapping solution for a target clock peri@d ryew(v) <
Lemma 3: Given a sequential circuit which has a feasibl@®(v) when s, (v) = S(v) for any v in G.
FRT mapping solution for a target clock peridd the inequal- Proof: Based on the proof of the previous lemma, there
ity s(v) < snew(v) < S(v) holds for every node all the time must exist ak-cut (X, X) such thath(X, X) < S(v),
during labeling iterations. w(X, X) = R(v), and (X, X) + & - w(X, X) < & on

9Notice that only forward retiming is allowed. Fr) Snew(v) = WX, X) = S(v), it must be that

1606 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

rew(v) < w(X, X) = R(v), because we always computeterations for one target clock period and we need to binary
a K-cut with minimum weight and height of no more tharsearchn possible clock periods. Each labeling iteration will
S(v). m update the lower bounds of nodes once. Thus, the total
As a result, we have the following theorem: label computation time i©(K>n’ log? n). All the frt(v) can
Theorem 3:For a sequential circuit which has a feasiblée computed inO(n?) time. The mapping generation and
FRT mapping solution for a target clock peride starting forward retiming need>(K3n?) time with O(K?»n?) space
from the initial lower boundg0, 0) for PI's and (—o0, 0) in the worst case. As a result, the total time complexity of
for the other nodes, the inequalities 4v) < S(v) and 2) the TurboMap-frt algorithm iSO(K3n> log” n) with space
r(v) < R(v) whens(v) = S(v) hold all the time after any requirement ofD(K2n?+S). It is obvious thatS = O(2%»),

number of iterations of label update.

because the functionality of eadhi-input node can be repre-

The optimality of the FRTcheck algorithm can be provedented inO(2%) space and the number of edge<iéKn).m

as follows.

Lemma 5: If there is a feasible FRT mapping solution for a
target clock perio, the two-tuplegs(v), »(v)) computed by
FRTcheck will converge to the node label paiis(v), R(v))
for all nodes after no more thaw? iterations.

Proof: According to Lemma 3s(v) will monotonically
increase and converge fv) finally. According to Lemma 4,
r(v) will converge toR(v) as well whens,.,(v) = S(v). As
a result, we only need to prove thdt) will converge toS(v)
within »? iterations for all the nodes.

According to [2], the lower bound(v) of every nodev
computed by TurboMap, which equals to the height of a min{s]
height K-cut on the expanded circuit of, will converge
to the node labelL(v) within n? iterations. In our label [g]
computation, we have the same initial lower bounds and a
tighter upper bounds on the node labels because we requi
S(v) < @ for everynodew, while TurboMap requires only
L(v) < ¢ for those POw. Clearly, we only need to prove
that spew(v) > Luew(v) for every nodev, where s, (v) and (6]
lhew(v) are the new lower bounds computed by TurboMap-frt
and TurboMap [2], respectively, after each label update. [

Since spew(v) in TurboMap-frt equals to the cut-height of
a min-height-min-weighti’-cut, while l,,...(v) in TurboMap
equals to the cut-height of a min-height-cut, it is obvious
Snew(v) Z lnew(v)- u

Lemma 6: For a target clock perioé, if FRTcheck returns [11]
TRUE, there must exist a feasible FRT mapping solution. [12]

Proof: To prove there exists a feasible FRT mapping
solution, we only need to construct one and prove it has[%]
clock period of no more than the targét This has been
shown in Lemma 2. m [14]

As in [1] and [2], we assume that each edge in the originﬁIS]
circuit has at most one FF. Based on Lemmas 5 and 6, we
have that:

Theorem 4:For a sequential circuit witm gates, the op- [16
timal FRT mapping solution with the minimum clock pe-
riod can be computed in the worst case time complexity”]
of O(K®n’log® n) and worst case space requirement of
O(K?n? + 5), where S = O(2%n) is the space needed to[18]
represent the original circuit.

Proof: There areO(Kn) edges and)(Kn) FF's in a [19]
K bounded circuit. To update one node’s lower bound, we
needO(log(Kn)) = O(log n) K-cut computations. Since the[20
expanded circuits hav®(Kn?) nodes andD(K?n?) edges
[1], each K-cut computation can be finished B(K3n?)
time [2]. Thus, computing snew(?), Tmew () for one node
needsO(K>n? log n) time. There are at most? labeling

(1]

(2]

(3]
(4]

[20]

[21]

REFERENCES

P. Pan and C. L. Liu, “Optimal clock period FPGA technology mapping
for sequential circuits,’ACM Trans. Design Automat. Electron. Syst.,
vol. 3, no. 3, 1998

J. Cong and C. Wu, “An efficient algorithm for performance-optimal
FPGA technology mapping with retiming[EEE Trans. Computer-
Aided Designyol. 17, pp. 738-748, Sept. 1998.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, pp. 5-35, 1991.

G. D. Micheli, “Synchronous logic synthesis: Algorithms for cycle-time
minimization,” |IEEE Trans. Computer-Aided Desigrol. 10, pp. 63—-73,
Jan. 1991.

H. Touati, N. Shenoy, and A. Sangiovanni-Vincentelli, “Retiming for
table-lookup field programmable gate arrays, Piroc. FPGA'92,1992,

pp. 89-94.

S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance optimization of pipelined circuits,” iRroc. IEEE Int.
Conf. Computer-Aided Desigi990, pp. 410-413.

I[I’ﬁ J. Cong and C. Wu, “An improved algorithm for technology mapping

with retiming for lookup-table-based FPGA's,” Univ. California, Los
Angeles, Tech. Rep. UCLA-CSD 960012, Apr. 1996.

H. Touati and R. K. Brayton, “Computing the initial states of retimed
circuits,” IEEE Trans. Computer-Aided Desigwol. 12, pp. 157-162,
Jan. 1993.

V. Singhal, S. Malik, and R. K. Brayton, “The case for retiming
with explicit reset circuitry,” inProc. IEEE Int. Conf. Computer-Aided
Design, 1996, pp. 618-625.

H. Yotsuyanagi, S. Kajihara, and K. Kinoshita, “Retiming for sequential
circuits with a specified initial state and its application to testability
enhancement,”lEICE Trans. Inform. Syst.yol. E78-D, no, 7, pp.
861-867, July 1995.

G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited and reversed,”
IEEE Trans. Computer-Aided Desigvol. 15, pp. 348-357, Mar. 1996.
N. Maheshwari and S. S. Sapatnekar, “Minimum area retiming with
equivalent initial states,” inProc. IEEE Int. Conf. Computer-Aided
Design, 1997, vol. 13, pp. 216-219.

H. Fujiwara and S. Toida, “The complexity of fault detection: An
approach to design for testabilityFTCS-12,pp. 101-108, 1982.

S. Kundu, L. M. Huisman, I. Nair, and V. lyengar, “A small test
generator for large designs,” roc. Int. Test Conf.1992, pp. 30—40.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Electron. Res. Lab., Memo.
UCB/ERL M92/41, 1992.

] L. Stok, I. Spillinger, and G. Even, “Improving initialization through

reversed retiming,” ilProc. Euro. Design Test Confl995, pp. 150-154.

J. Cong and C. Wu, “Optimal FPGA mapping and retiming with efficient
initial state computation,” ifProc. ACM/IEEE Design Automation Conf.,
1998, pp. 330-335.

J. Cong and Y. Ding, “On nominal delay minimization in LUT-based
FPGA technology mapping,Integration—The VLSI J.yol. 18, pp.
73-94, 1994.

, “FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table-based FPGA desighEEE Trans.
Computer-Aided Designjol. 13, pp. 1-12, Jan. 1994.

] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R.

Wang, “MIS: A multiple-level logic optimization system|EEE Trans.
Computer-Aided Desigrvol. CAD-6, pp. 1062-1081, June 1987.

K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-
Map: Graph-based FPGA technology mapping for delay optimization,”
IEEE Design Test Computpp. 7—20, 1992.

CONG AND WU: OPTIMAL FPGA MAPPING AND RETIMING 1607

[22] J. Cong and Y.-Y. Hwang, “Structural gate decomposition for depth Chang Wu received the B.S. degree in computer
optimal technology mapping in LUT-based FPGA design,”Rroc. science from Shanghai Jiao Tong University, Shang-
33rd ACM/IEEE Design Automation Conl.996, pp. 726—729. hai, China, in 1986, the M.S. degree from the

[23] T. H. Cormen, C. H. Leiserson, and R. L. Rivesttroduction to Institute of Pattern Recognition and Artificial In-
Algorithms. Cambridge, MA: MIT Press, 1990. _ telligence at the same university in 1989, and the

[24] J. Cong, J. Peck, and Y. Ding, “RASP: A general logic synthesis syste Ph.D. degree in computer science from University
for SRAM-based FPGA's,” irProc. ACM 4th Int. Symp. FPGA,996, of California at Los Angeles in 1999.
pp. 137-143.) From 1989 to 1995, he worked at Beijing Inte-

[25] K. Eckl, J. Madre, P. Zapter, and C. Legl, “A practical approach t grated Circuit Design Center as a Senior Software
multiple-class retiming,” irProc. ACM/IEEE Design Automation Conf., Engineer developing the Panda VLSI CAD System.
1999, pp. 237-242 He was a Visiting Scholar at the University of

California at Los Angeles from 1995 to 1996. He is now a Senior Software
Engineer and Researcher at Aplus Design Technologies, Inc., Los Angeles,

Jason Cong for a photograph and biography, see p. 420 of the April 1996A. His major interests are layout driven logic synthesis and technology

issue of this RANSACTIONS mapping with retiming for high-performance VLSI designs.

el
-

