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Optimal FPGA Mapping and Retiming
with Efficient Initial State Computation

Jason Cong and Chang Wu

Abstract—For sequential circuits with given initial states, new
equivalent initial states must be computed for retiming, which
unfortunately is NP-hard. In this paper, we present a novel
polynomial time algorithm for optimal field programmable gate
array (FPGA) mapping with forward retimingto minimize the
clock period with efficient initial state computation. It considers
forward retiming, initial state computation and mapping simulta-
neously. Our algorithm enables a new methodology of separating
forward retiming from backward retiming. Since we guarantee
to compute an optimal mapping with forward retiming solution,
backward retiming can be performed as a preprocessing to try to
push flip-flops (FF’s) to primary inputs with consideration of only
initial state computation. Thus, we can avoid the time-consuming
iterations between retiming for clock period minimization and
initial state computation. This algorithm compares very favorably
to both conventional approaches of mapping followed by sepa-
rate retiming and recent approaches of combined mapping with
retiming, but without consideration of initial state computation
[1], [2]. Our results show that our algorithm can reduce the
clock period by 17.5% over conventional approaches of separate
mapping with retiming. On the other hand, our algorithm can
guarantee efficient initial state computation in the mapped and
retimed circuits with only 2.8% increase in clock period over the
optimal mapping with general retiming solutions, while the initial
state computation for the latter solutions may need prohibitively
long runtime for designs with over several hundred FF’s.

Index Terms—Field programmable gate array (FPGA), initial
state, retiming, technology mapping.

I. INTRODUCTION

RETIMING is a well-known optimization technique for
sequential circuits. Many research results have been

published in literature recently on combining optimal retiming
presented in [3] with logic optimization, circuit partitioning
and technology mapping [4]–[6]. For lookup-table (LUT)-
based field programmable gate array (FPGA) designs, a sig-
nificant advancement was made by Pan and Liu [1] on optimal
simultaneous technology mapping with retiming for clock pe-
riod minimization. Later on, Cong and Wu [2], [7] proposed a
much more efficient optimal mapping with retiming algorithm
which achieves 1000 times speedup over [1]. However, limited
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Fig. 1. Retiming and initial state computation. Each small rectangle repre-
sents a FF.

progress has been made on equivalent initial state computation
for retiming.

A general retiming procedure usually involves two kinds
of flip-flop (FF) movements.Forward retiming(FRT) moves
FF’s from nodes’ inputs to outputs, whilebackward retiming
moving FF’s in the opposite direction. As shown in Fig. 1, the
equivalent initial state of forward retiming can be computed
easily using circuit simulation. The equivalent initial state for
backward retiming, however, requires solving a satisfiability
problem which is NP-complete in general.

Touati and Brayton [8] proposed an initial state computation
algorithm based on STG (state transition graph) traversal.
Their algorithm can compute equivalent initial states under the
condition that there exists a loop from the initial state to itself
in the STG of the original circuit. However, unless provided
externally, to determine the existence of such a loop needs
to search the STG which may have an exponential number
of nodes. Although representing the reset logic explicitly can
guarantee the existence of such a loop and avoid the STG
traversal, the extra cost of the reset logic separated from
FF’s after retiming can be high.1 Furthermore, the reset logic
may restrict possible retiming of the original circuit, thus,
reduce the potential of retiming optimization. A recent paper
by Singhalet al. [9] showed that by retiming the reset logic
together with FF’s will not affect the possibility of retiming
and there is no extra cost on the area of the circuit. But
their approach is applicable for only forward retiming, but
not general retiming.

Several heuristics for initial state computation of a given
retiming based on automatic test pattern generation (ATPG)
techniques have been proposed recently [10]–[12]. For ex-
ample, Stoket al. [11] proposed to reduce the initial state
computation effort by minimizing the maximum retiming
value which represents the maximum number of FF’s to be
moved backward across every gate. ATPG-based justification

1Most FF’s have built-in reset logic. But we can represent such FF’s as
generic FF’s plus reset logic. After retiming, however, the reset logic may be
separated from the generic FF’s and cannot be repacked together. As a result,
extra LUT’s may need to implement those reset logic.
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was used to compute equivalent initial states for backward
retiming. Possible iterations of retiming and initial state com-
putation may still be needed. However, ATPG itself is also
NP-complete [13], [14]. Furthermore, we have observed that
minimizing the maximum retiming value as formulated in [11]
might not always lead to a simpler initial state computation
problem. Our experience shows that unless a pure forward
retiming solution can be found, the effort of initial state
computation depends on the number of nodes involved in
backward retiming, instead of the maximum retiming value.

Maheshwari and Sapatnekar [12] proposed to compute
an upper bound on each node’s retiming value based on
ATPG techniques such that the equivalent initial state can be
computed for a retiming within this bound. In general, the
larger values of the upper bounds, the better the retiming
solution. However, to increase one node’s retiming upper
bound value may need to reduce another node’s retiming upper
bound value and it is hard to tradeoff the values of different
nodes to achieve the best possible solution. As a result, the
authors proposed to perform retiming for many sets of upper
bounds and choose the best possible results. Clearly, this can
be time consuming in practice.

To better understand the difficulty of the initial state com-
putation problem and the capability of existing initial state
computation algorithms, we tested the retiming package in SIS
[15] which computed initial states for retiming based on the
algorithm in [8]. For circuit s9234.1 in the MCNC benchmark
suite with 135 FF’s and 1293 two-input gates, SIS could not
finish the initial state computation for an optimal retiming after
running 4 hours on a Sun ULTRA2 workstation with 256-MB
memory. We see that the initial state computation problem
being a major obstacle of preventing wide-spread use of the
retiming technique in practice.

One common problem of existing retiming algorithms is
lacking consideration of whether an equivalent initial state
can be computed when computing a retiming. When failing to
find an equivalent initial state for a retiming, most algorithms
need to backtrack to compute another retiming with almost
no assurance if an equivalent initial state can be computed
for the new retiming. As a result, many iterations between
retiming and initial state computation may be needed and the
computation time can be very long.

In order to avoid high time complexity of initial state
computation forgeneral retiming, we propose to perform
LUT-based FPGA mapping with forward retiming. Our main
contribution is the development of the first polynomial time
optimal algorithm for FPGA mapping with forward retiming,
which has immediate benefit of guaranteed equivalent initial
state computation in linear time. With this algorithm, we
can try to push FF’s back to primary inputs as much as
possible to enlarge the solution space of mapping with forward
retiming and achieve better results. One important advantage
of our approach is that we only need to focus on initial
state computation without considering the effect of retiming
on clock period minimization during the preprocessing of
backward retiming. As a result, we can still achieve effec-
tive retiming for circuit optimization without time-consuming
iterations between retiming and initial state computation, slow

STG traversal, or any extra reset logic in existing approaches
[8], [10], [12], [16]. Our algorithm compares very favorably
to both conventional approaches of separate mapping with
retiming and recent approaches of combined mapping with
retiming, but without initial state computation [1], [2]. It is
also applicable to FPGA devices with prefixed initial state
settings.2

The remainder of the paper is organized as follows.
The problem formulation and definitions are presented in
Section II. Our algorithm is presented in Section III. A post-
processing for FPGA’s with prefixed initial state settings
is presented in Section IV. Our experimental results are
presented in Section V followed by conclusions and future
work in Section VI. A preliminary version of this work was
presented at DAC’98 [17].

II. PROBLEM FORMULATION AND DEFINITIONS

Given a sequential circuit, the technology mapping prob-
lem for -LUT-based FPGA’s is to construct anequivalent
circuit consisting of -LUT’s and flip-flops (FF’s), such that
the two circuits generate the same output sequence for any
input sequence, starting from their individual initial states,
respectively. The clock period of a circuit is the maximum
combinational path delay. In this paper, we shall explore the
following problem.

Problem 1: Given a sequential circuit with initial state
, find an equivalent LUT circuit with initial state and

minimum clock period under forward retiming.
As in [1] and [2], instead of solving the optimization

Problem 1 directly, we shall solve its decision version and
then binary search for the minimum clock period.

Problem 2: Given a sequential circuit with initial state
and target clock period , find an equivalent LUT circuit with
initial state and clock period of no more than under
forward retiming.

As proposed in [3], we use retiming graph to represent
sequential circuits. The retiming graph of a
sequential circuit is a directed graph, whereis the set of
nodes, is the set of edges, and is the set of edge weights.
Each node in represents a gate, a primary input (PI), or a
primary output (PO) in the original circuit. Each edge
in represents a directed connection from a nodeto a node

. Theweight of an edge is the number of FF’s on the
connection represented by the edge. Thepath weight of
a path is the sum of all edge weights on the path. Under
unit-delay mode,node delay is one for internal nodes,
or zero for PI’s or PO’s.Path delay of a path is the
sum of all node delays on the path. For simplicity, we consider
the unit-delay model and synchronous sequential circuits with
single-phase clock and edge-triggered FF’s.3 Depending on the
context, we use to represent both and .

2For example, the initial state of FF’s on Xilinx XC5200 FPGA’s can only
be set to zero.

3For more complex delay models, such as the fanout-based nominal delay
model, the FPGA mapping of combinational circuits for delay minimization
has already been shown to be NP-hard [18]. We think, however, the techniques
presented in this paper can be extended for more accurate delay models as a
heuristic.
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For a given retiming, theretiming value of node
is the number of FF’s moved backward across. A negative
retiming value of a node means moving FF’s forward across
the node. A retiming is represented by a set of retiming
values , where is zero for every PI
or PO which means that no FF’s moved across either PI’s
or PO’s.

As in [2], for a target clock period , we define the
edge length[denoted length ] of an edge to be

. Thepath length[denoted length ] is
length . In an LUT network , a node’s -value is
defined to be the maximum path length of all paths from PI’s
to , which represents the node arrival time after retiming.
(Here, we assume that every node is reachable from at least
one PI. In cases that there exist nodes not reachable from
any PI’s, the -values of those nodes are not well defined.
Extension to the following theory and our algorithm will be
presented in Section III-F.) It is not difficult to prove the
following.

Theorem 1: Given an LUT network and a target clock
period , the clock period of under forward retiming is no
more than , if and only if the -values are no more
than for every LUT in .4

Proof: Let be a
forward retiming to achieve . After retiming, every combi-
national path has delay of no more than. Thus, for any path

PI , the path length after retiming satisfies the inequality
that length

. Since , the path length in before retiming
length length is also no more than . As
a result, length PI .

Since , we perform the forward retiming
defined as

if is a PI or PO

otherwise.

We prove that the retiming will reduce the clock period of
to . First, we show that this is a legal retiming such

that the edge weight of every edge after retiming
is nonnegative. By definition of the-value, we have that

length . Without
loss of generality, we assume bothand are LUT’s. (Notice
that they may also be PI’s or PO’s with delay of 0. The proof
for this case is very similar and is omitted here.) The retimed
edge weight satisfies the inequality that

.
Second, we show that for any path

with . For such a path , since is an integer,
we have that and length

4Note that this result is similar to [1, Theorem 3]. The difference is that
both forward and backward retimings were allowed in [1], while only forward
retiming is allowed in our case. Consequently, [1, Theorem 3] checks only
the l-values of PO’s, while we need to check that of every node.

. Therefore

Definition 1: Given a mapping with forward retiming solu-
tion and a target clock period, the number of FF’s moved
forward across LUT from each input of , denoted ,
is called theforward retiming valueof in . The -value
is defined to be , where is
the -value of in .

The -value represents the node arrival time before forward
retiming. The reason of considering the-value is that it is
easier to compute than the-value because it does not depend
on retiming, but the latter does.

According to Theorem 1, we have the following.
Corollary 1: A mapping solution has a clock period of

no more than a given under forward retiming, if and only
if for every LUT root in .

Definition 2: Given a circuit and a target clock period,
if there exists a FRT mapping solution with clock period
of no more than under forward retiming (called afeasi-
ble FRT mapping solution), the -label for node is
defined to be the minimum among all feasible FRT
mapping solutionsand, the -label is defined to be the
minimum among all feasible FRT mapping solutions
with . The node label pair is defined to be a
two-tuple .

According to Corollary 1, we can solve Problem 2 by
computing the node label pairs and checking if the inequality
of holds for every node. The minimum
clock period of the optimal mapping solution can be
computed with binary search. After getting and the
corresponding label pairs, we construct a mapping solution
and perform a post-processing of forward retiming step to
achieve . Minimizing is to minimize the longest
path delay from PI’s to after mapping, thus, reduce the clock
period after retiming. Minimizing is to push forward as
few FF’s as possible for each nodeto leave the maximum
freedom to subsequent forward retiming step, because those
FF’s pushed forward can no longer be pushed back. On the
other hand, minimizing may increase , because we
need to construct larger LUT’s which may include more FF’s.
Our algorithm can simultaneously minimize both and

to compute optimal FRT mapping solutions.
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As in [1], [2], and [19], we assume that the initial circuit
is bounded. (When a circuit is not bounded, we can
use gate decomposition algorithms as presented in [20]–[22]
to decompose gates with more thanfanins.)

Before proceeding to present our algorithm, we first intro-
duce the definition of -cuts. In a directed graph with one
sink and one source, acut is a partition of the graph
such that the sink is in and the source is in . The node
cut-set is the set of nodes in that are connected
directly to nodes in . If , a cut is
called a -feasible cut, or a -cut in short. A cut is amin-
cut, if is minimal. To determine the existence of
a -cut, one can compute a maximum flow from the source
to the sink and check whether its value is larger than. This
process is called -cut computation.

III. T HE TURBOMAP-FRT ALGORITHM

Our algorithm, named TurboMap-frt, is to compute optimal
mapping with forward retiming solutions for synchronous se-
quential circuits with given initial states to minimize the clock
period. It performs binary search on the clock period from
one to an upper bound computed by existing algorithms, for
example, FlowMap [19]. For a given clock period, a procedure
named FRTcheck is used to decide whether there exists a
feasible solution through label computation. An overview of
the label computation procedure can be described as follows.
First, we assign an initial lower bound on the value of each
node label pair. Then, we iteratively increase those lower
bounds until they all converge to the values of node label
pairs if there exists a feasible solution, or stop if we conclude
there is no feasible solution.

A. Review of Expanded Circuit for LUT
Representation with Backward Retiming

To compute an optimal solution, we need to search all
possible LUT’s for every node under node duplication and
forward retiming. Pan and Liu [1] proposed to search all
possible LUT’s rooted at a node which can be formed under
backwardretiming on the expanded circuit of the node. An
expanded circuit of node with control number is a
directed acyclic graph (DAG) rooted atand constructed from
the original retiming graph with node replication, such that
all paths from a node in to the root have the same number
of FF’s. If a replication of a node passes FF’s before
reaching the root in , it is denoted as [1]. The control
number is the shortest distance (in terms of the number of
edges) between the root and each leaf if is an internal
node in .5 For example, Fig. 2(b)–(e) shows four expanded
circuits , , , and of node . With backward retiming
Pan and Liu [1] showed that any -LUT of a node can be
derived from a -cut of and any -cut of can be
used to derive a -LUT of , where is the number of nodes
in the original circuit.

5The control number does not apply to any leafuw if u is a PI inG.

Fig. 2. Expanded circuits for LUT representation with backward retiming.

B. Expanded Circuit Construction for LUT
Representation with Forward Retiming

With forward retiming only, the one-to-one correspondence
between -LUT’s and -cuts in introduced in
Section III-A no longer holds. As shown in Fig. 2(d), to
pack all the nodes in the dotted box into an LUT, we have to
move backwardthe FF on the fanout edge of to its fanin
edges, because the retiming to push the FF forward to the
fanout edge of is illegal as we have no FF to move forward
on edge . Thus, the corresponding -cut does not
correspond to any -LUT for FRT mapping.

In the following, we propose to construct a smaller expanded
circuit for every node based on itsmaximum forward retiming
value so that every -LUT in an FRT mapping solution
corresponds to a -cut on the expanded circuit and, vise versa.

Definition 3: The maximum forward retiming valuefrt
of a node is the maximum number of FF’s which can be
moved forward from the (transitive) fanins ofto the output
of .

Lemma 1: For a node in a retiming graph, frt is
the minimum path weight from PI’s to , i.e., frt

PI .
Proof: First, frt PI . If

otherwise, assume there is a pathPI and frt .
After moving frt FF’s forward across , the new path
weight frt , which means the retiming
is illegal.

Let PI for a node . Clearly,
for any edge . We shall show

that we can always push FF’s forward across for every
node . To prove this, we simply need to perform a forward
retiming and show it is legal, i.e.,

for every edge . For any edge ,
.

So it is a legal forward retiming.
Since the edge weight is nonnegative, the maximum forward

retiming values of all the nodes in a retiming graph can
be computed in time with Dijkstra’s shortest path
algorithm [23].

Now we define a set of expanded circuits of a nodefor
FRT mapping. The expanded circuit for a given upper
bound of forward retiming value of a node is a sub-DAG
of with root such that, is an internal node of ,
if and only if is an internal node of , and ;
is a leaf of , if and only if is either a leaf of or a
fanin of an internal node of with . For example,
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(a) (b) (c)

Fig. 3. LUT formation for FRT mapping based on the expanded circuits.
Edge e(c2; b2) shown in (b) does not belong to the expanded circuitF1

c
,

i.e., b2 is a leaf node inF1

c
.

the shaded area of Fig. 3(b) represents for the circuit
shown in Fig. 3(a), where the heavy shaded nodes are leaves
of .

Definition 4: For a -cut of an expanded circuit
of node , the cut-weight is defined to be

, which represents the minimum forward
retiming value needed to push all the FF’s insideto the
fanout edge of .

Obviously, the cut-weight of any -cut of is no more
than . Let us assume that the initial states of FF’s on different
fanout edges of a node are the same, we have the following
theorem.6

Theorem 2: Every -feasible cut of corre-
sponds to a -LUT rooted at under possible node duplica-
tion and forward retiming, where all the leaves are inand
the root is in . On the other hand, any -LUT in an FRT
mapping solution corresponds to a-feasible cut of .

Proof: Obviously, every -cut of cor-
responds to a -LUT in FRT mapping, because
frt and we can always push all the FF’s within forward
to the output of . Now we prove that the -cut
corresponding to a -LUT rooted at in an FRT mapping
solution must be included in , or in other words, it must
be that . Clearly , because we
have to push all the FF’s within forward to the fanout of

, which means for any . By definition
of , any is an internal node of . On the
other hand, any leaf of cannot be included in ,
because either or is also a leaf of such
that . (Notice that it is proved in [1] that for any -cut

corresponding to a -LUT, any leaf of is not
contained in .) This concludes our proof.

Let us look at the circuit shown in Fig. 3(a). Notice that its
only difference with the circuit in Fig. 2(a) is one extra FF on
edge which makes frt . Now the 3-cut
shown in Fig. 3(b) can form a 3-LUT as shown in Fig. 3(c).

With the assumption that every edge has at most one FF,
has nodes and edges [1]. Clearly,

has no more than nodes and edges
6In case the initial states of FF’s on different fanout edges of a node are

not the same, the theorem still holds after a simple buffer insertion. The detail
will be presented at the end of this section.

Fig. 4. Label computation for a target clock period�.

as it is a sub-DAG of . Practically, however, using
the technique of efficient -cut computation onpartial flow
networksproposed in [2], the expanded circuits needed to be
constructed always have far less thannodes and edges
for all the benchmarks we have tested.

C. Iterative Label Computation

For a target clock period , we compute all node label pairs
of a circuit to decide the existence of a feasible FRT mapping
solution. The algorithm for this operation is named FRTcheck.
It assigns a pair of lower bounds, denoted , on
the value of the label pair for every node and iteratively
updates the values of the lower bounds until they all converge
to the values of the node label pairs, i.e., and

for every node . The initial values of the lower
bounds are for the PI’s and for the other nodes.
If the lower bounds cannot converge after iterations (one
iteration is the process of updating the lower bound of every
node’s label pair once), FRTcheck stops the computation and
concludes that no feasible FRT mapping solution exists for the
given . The pseudocode of the FRTcheck algorithm is shown
in Fig. 4. In the remainder of this section, we will present
the details of the LabelUpdate procedure (line 7 in Fig. 4),
which is to update the lower bound of the label pair for a
single node once based on the current lower bound values of
all nodes.

Definition 5: Given a set of current lower bounds ,
, where , and if ,

the cut-height of a -cut in the expanded circuit
of node is

-

To compute a tighter lower bound for a node , we
first compute a value

, where is the retiming graph of the original circuit. If
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Fig. 5. Label pair update for a single nodev.

, we keep to be and set to
be 0. If , we decide whether there exists a-
cut of with height of no more than , based on
the max-flow computation on . (In fact, for efficiency
consideration, we perform the max-flow-cut computation on
a partial flow network of with much smaller size as in
[2].) If there does not exist such a-cut, we select a cut with

and set . Obviously,
in this case, because does not include any FF’s.

If, however, there does exist such a-cut with height of
no more than , we compute a -cut with minimum cut-
weight (see Definition 4) and height of no more than

by binary searching the cut-weight from zero to frt
as follows.

For a given frt , to decide whether there is a
-cut with height of no more than and cut-weight of no

more than , we first construct an expanded circuit and
then, decide whether there exists a-cut on with height
of no more than . If there exists such a -cut, clearly, it
is a -cut with height of no more than and cut-weight
of no more than .

Let be such a -cut with height of and cut-
weight of computed above. If , we
update the new lower bound to be . Otherwise,
we update the new lower bound to be . Recall
that if the minimum height of all -cuts is larger than ,
we also update the new lower bound to be .
This concludes the LabelUpdate procedure. The pseudocode
is shown in Fig. 5.

Theorem 3: For a sequential circuit which has a feasible
FRT mapping solution for a target clock period, starting
from the initial lower bounds for PI’s and
for the other nodes, the inequalities, 1) and 2)

when , hold all the time after any
number of iterations of label update.

The proof of this theorem is presented in the Appendix.
This theorem shows that and are truly lower

bounds on the values of and . Furthermore, we
shall prove in the Appendix that will monotonically
increase and both and will converge to and

, respectively, in iterations, if there exists a feasible
solution for the target clock period. If, on the other hand, both

and converge to finite values for all the nodes, we
shall show that we can form an FRT mapping solution with
clock period of no more than the target value in Section III-D.
Consequently, we conclude that TurboMap-frt can compute
an optimal FRT mapping solution with the minimum clock
period in polynomial time.

D. Mapping Generation with Forward Retiming
and Initial State Computation

After computing the minimum clock period with
binary search and obtaining the label pairs of
all nodes , the last step of our algorithm is to generate the
mapping solution based on the-cuts computed during the
label computation and perform forward retiming with initial
state computation.

First, we get all the LUT roots in the mapping solution
based on the -cuts computed during the label computation.
Obviously, all the PO’s of the original circuit are LUT roots.
If is an LUT root, all the nodes in the node-cut set of the

-cut of are LUT roots. The complete set of LUT roots
can be computed as follows: starting with a first-in-first-out
(FIFO) queue including all the PO’s, we repeatedly extract
nodes from the head of the queue until the queue is empty. For
each node extracted from the queue, we mark it as an LUT
root and put all the nodes in its node-cut set to the end of
the queue.

Second, we create a new equivalent network by connecting
the -feasible cones of the -cuts of those
LUT roots . Then, we compute a forward retiming for all
nodes on the new network as follows:

if is a PI or PO

if is an LUT root

if LUT ,
where is an LUT root.

After retiming all the FF’s within each will be pushed
forward outside the , because

for any . Then, we collapse each and
put it into a -LUT to form the final mapping solution which
has a clock period of no more than .

Lemma 2: The retiming defined above is a legal forward
retiming to achieve clock period .

Proof: First, we prove it is a forward retiming. Letbe a
LUT root. Since , .
If is an internal node of LUT, we prove that

and then . Since
based on the definition of the node label pair and Corollary 1,
we have that

. Furthermore, for any LUT
we have that LUT LUT . As a result,

.
After retiming, every -feasible cone will become a pure

combinational block and can be collapsed into a-LUT. We
shall prove that the clock period of the LUT network is no
more than in two steps.
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1) The Retiming is Legal: Suppose LUT rooted at is a
fanin of LUT rooted at and the path from to has

FF’s in the original circuit,
and . As a result,
the new edge weight between the two LUT’s after
retiming is LUT LUT

.
2) The Retimed Circuit has a Clock Period of no More

than : For any path LUT LUT with delay
, we prove that . Since both

and are integral, it must be that .
Since length

LUT and LUT , we have that
.

It means that .

In the constructed network, since the retiming is a forward
retiming, the equivalent initial state can be computed with
circuit simulation. Since each -input node can be simulated
in time,7 for a bounded circuit with gates and

edges, the first step of getting LUT roots can be done
in time. There are LUT’s in the constructed LUT
network. Each -LUT includes nodes as proved in
[2, Theorem 4]. The total number of nodes need to perform
forward retiming is . Furthermore, .
The runtime of forward retiming is

. However, the number of node in each-LUT is
almost bounded by a constant in practice. So the
runtime of forward retiming is in practice.

Theorem 4: For a sequential circuit with gates, the op-
timal FRT mapping solution with the minimum clock period
can be computed in time with
space, where is the space needed to represent
the original circuit.

The proof of this theorem is presented in the Appendix.
Notice that Theorem 4 is based on the worst case result that

the expanded circuits have edges and we need to
go through iterations of label update. In practice, however,
the expanded circuits have no more than edges with the
efficient -cut computation on partial flow networks [2] and
the number of iterations for each target clock period is always
much less than for all the examples we have tested with
the DFS ordering of nodes. Practically, our algorithm runs in

time with space requirement,
where is the space to represent the original
circuit.

E. Buffer Insertion for Incompatible
Initial States of Fanout FF’s

In Theorem 2 we assumed that the FF’s on different fanout
edges of a node hadcompatibleinitial states. Let us number
the FF’s on an edge from to . The FF’s on fanout
edges of a node havecompatible initial statesif for any ,
the initial state of the th FF on edge is the same

7To be precise, a node can be simulated inO(l) time, wherel represents
the size of the node, for example, the number of literals in the cube-
cover representation or the number of nodes in the binary decision diagram
representation.

(a) (b) (c) (d)

Fig. 6. Incompatible initial states of fanout FF’s. Each small rectangle
represents a FF with a digit in it representing its initial state.

as that of the th FF on edge , where and are
two different fanouts of . If, however, there are FF’s with
incompatible initial states as shown in Fig. 6(a), the outputs
of the two FF’s may constitute two inputs to LUTas shown
in Fig. 6(b). On the other hand, if we push the two FF’s to
the LUT’s fanout as shown in Fig. 6(c), the two inputs to the
LUT can be merged into one. As a result, a-LUT may not
correspond to a -cut. Consequently, our label computation
may not be optimal. To solve this problem, we simply insert a
buffer on one fanout edge of as shown in Fig. 6(d), before
the label computation. Obviously, it will change neither any
path’s delay after mapping, nor the minimum clock period of
FRT mapping solutions. In the worse-case, we only need to
add buffers, because each edge needs at most one.
After mapping, all those buffers can be collapsed into LUT’s
without increasing either delay or area.

Theorem 5: For a given sequential circuit, the minimum
clock periods of FRT mapping before and after buffer insertion
are the same.

Proof: Let the minimum clock period of the optimal
mapping solution of the original circuit (denoted) be ,
and the minimum clock period for the circuit after buffer
insertion (denoted ) be . Obviously, because
any mapping solution of is also a mapping solution of .

Now we prove that . Let M1 be any mapping
solution of with clock period of . We shall show that we
can construct a mapping solution M2 with the same clock
period for . It means that the minimum clock period of
an optimal solution of is no more than the minimum clock
period of an optimal solution of , i.e., . Let
be one edge in . It is a visible edgein M1 if is an LUT
root in M1, or aninvisible edge, otherwise. To construct M2
for based on M1, we add a buffer on if we added
a buffer on the corresponding edge in. If is an
invisible edge in M1, the adding of the buffer will not change
the functionality of the LUT in which is included. If

is a visible edge in M1, we can pack the buffer in the
LUT rooted at with possible node duplication as shown in
Fig. 7(d). Clearly, what we get is an FRT mapping solution
of and the clock period is , the same as that of M1. This
concludes our proof.

Buffer insertion shall not increase the area of any mapping
solution. First, all the buffers can be deleted without changing
the circuit behavior. Second, the node duplication caused by
the buffer insertion shown in Fig. 7(d) can be eliminated easily
with a postprocessing of merging LUT’s rooted at a node
or with a buffer as shown in Fig. 7(e).
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Fig. 7. Buffer insertion will not change the clock period. M1 is a mapping
solution of (a). M2 is a mapping solution of (b). M3 is the result of M2 after
duplication removal.

(a) (b) (c)

Fig. 8. Mapping for circuits with loops isolated from PI’s. Forward retiming
is performed for the LUT in the loop of the solution shown in (c). (a) Original
circuit, (b) mapping without retiming, and (c) mapping witrh forward retiming.

F. Label Computation for Circuits with
Nodes Not Reachable from PI’s

In Theorem 1, we assumed that every node is connected to
at least one PI. However, there exist circuits with some nodes
not connected with any PI’s. The-values of those nodes are
not well-defined, and as a result, Theorem 1 no longer holds.
Notice that [1, Theorem 3] also suffers the same problem
and the algorithms proposed in this paper and [1], [2] cannot
be directly applied for this kind of circuits. Nevertheless, the
mapping and retiming on those nodes can still affect the clock
period of the entire circuit as shown in Fig. 8(b) and (c). We
need to consider those nodes in the mapping algorithm.

First, we assume that those nodes which are not connected
with PI’s must form at least a loop. (Otherwise, they must have
at least one predecessor without any input and with constant
value. We can either collapse those nodes with constant value
into their fanouts or mark them as PI’s.) By definition of legal
retiming in [3], we know that paths from those loops to PO’s
will never be critical, because we can insert as many number
of FF’s on those paths as we want by moving FF’s in those
loops around. Let us look at the examples shown in Fig. 8(a).
Whenever we move the FF around the loop of three inverters
once, we will insert one FF on the edge from inverterto the
AND gate. The only possibility that those loops will increase
the clock period is when one of them has positive path length.
To detect this case with Theorem 1, we can create a pseudo PI
and connect it to every node that has no connection with any
real PI’s with a new edge. We then put a very large number of
FF’s on those edges. As a result, the-values of those nodes
can still be defined and must be very values, unless they form
at least one loop with positive path length.

We can modify our algorithm as follows. We first detect
nodes that are not connected with any PI’s and then assign

their initial lower bounds to be a very small value, but not
. (For example, we can assign the initial lower bound of

node labels to be for internal nodes and PO’s and
zero for PI’s, respectively, where is the total number of
FF’s on the circuit.) The initial lower bound assignment of
the rest of node is the same as presented before, i.e., zero for
PI’s and for internal nodes and PO’s. We then update the
iterative label until all the lower bounds converge to values
no more than the target clock periodor any of the lower
bounds exceed . In the first case, we conclude that is a
feasible clock period. In the latter case, we conclude thatis
infeasible. Clearly, this modification works for mapping with
general retiming algorithms proposed in [1] and [2] as well,
except that in that case we only need to check the labels of
the PO’s.

IV. POST-PROCESSING FORFPGA’s
WITH FIXED INITIAL STATE SETTING

In Section III, we assume that the target FPGA device
provides both set and reset signals, thus, we can set the initial
states of FF’s arbitrarily to be either one or zero. However,
there are some FPGA devices providing only one such control
signal. To map a circuit onto such kinds of FPGA devices, the
initial states of all the FF’s need to be the same (either one or
zero, depending on which signal, set or reset, is provided on the
devices).8 In this case, we propose to perform a postprocessing
of state switching with inverter insertion on the mapping
solution generated by the TurboMap-frt algorithm presented
in the previous section. We guarantee that the clock period
will remain the same. Furthermore, in most cases, the number
of LUT’s will also remain the same.

Without lose of generality, we suppose that the target FPGA
device provides only reset signal for each FF, i.e., the initial
state of every FF needs to be zero. Letbe an FF with initial
state of one in an FRT mapping solution. We insert a pair of
inverters on the fanin and fanout edges of and change
the initial state of to be zero as shown in Fig. 9(a)–(c).
The inverters can then be packed in LUT’s (or I/O pads if
they have built-in inverters) connected to the FF as shown
in Fig. 9(d)–(f). In case that the inverters connected only to
FF’s or input-output (I/O) pads which do not have built-in
inverters, those inverters need to be implemented with new
LUT’s. Clearly, we can change the initial state of every FF
with this operation and the clock period will remain the same,
except a few more LUT’s might be needed to implement some
inverters if they cannot be packed into existing LUT’s.

Theorem 6: The clock period will remain the same after
inverter insertion and initial state switching.

Proof: Let be a combinational path ended with either
PI/PO’s or FF’s and the clock period be before inverter
insertion. We consider the following two cases.

1) If the number of LUT’s on is larger than zero, all
the added inverters on can be either cancelled out or
packed into LUT’s on . As a result, neither the number

8For example, Xilinx XC5200 FPGA’s provide only reset signal to each
FF.
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Fig. 9. Changing the initial state of a FF with inverter insertion.

of LUT’s on , nor the clock period of the circuit will
change.

2) If the number of LUT’s on is zero, after inverter
insertion and cancellation (of inverter pairs), there is
at most one LUT on . Since the clock period in the
original mapping solution must be at least one, the delay
increase on from zero to one will not change the clock
period as well.

V. EXPERIMENTAL RESULTS

The TurboMap-frt algorithm has been implemented in C
language on Sun workstations and incorporated into the SIS
package [15] and the UCLA RASP FPGA synthesis system
[24]. Our first test set consists of 14 MCNC FSM benchmarks
and four ISCAS’89 benchmarks. Our second test set consists of
eight larger ISCAS benchmarks with more FF’s. SIS sequential
synthesis commands and the DMIG decomposition method
[21] are used to generate the initial circuits as shown in Table I.
Columns GATE and FF list the numbers of gates and FF’s in
each circuit, respectively.

Table II shows the comparison of TurboMap-frt with
FlowMap-frt and TurboMap [2] on the first test set. Our
experiments were performed on a Sun ULTRA2 workstation
with 256-MB memory. was set to be five. All the mapping
results of TurboMap-frt were computed and verified by
verify_fsm of SIS [15] which performs formal verification
for sequential circuits, except the four largest ones which
were verified by circuit simulation with input sequences of
3008 random vectors. FlowMap-frt represents the conventional
approach. It first partitions a sequential circuit into a set of
combinational subcircuits by cutting at inputs and outputs of
all FF’s, then, maps every subcircuits independently using
the depth-optimal FlowMap algorithm [19]. After merging
the mapped LUT subcircuits with the original FF’s, a post-
processing of forward retiming for clock period minimization
was performed. TurboMap, on the other hand, computes
optimal mapping withgeneralretiming solutions, but without
consideration of initial states [2]. We used the initial state

TABLE I
INITIAL CIRCUITS OF MCNC AND ISCAS BENCHMARKS

computation utility in SIS [15] which is based on the algorithm
in [8] to try to compute an equivalent initial state for every
TurboMap solution. In Table II, Columns LUT and FF list the
numbers of LUT’s and FF’s, respectively, in each mapping
solution. Columns list the clock periods of the mapping
results. Columns CPU list the CPU time in seconds for each
algorithm. Those marked with are examples for which SIS
failed to compute equivalent initial states for the TurboMap
solutions in 2 hours. Column Best lists the best valid solutions
(with computed equivalent initial states) by TurboMap and
FlowMap-frt.

To show the effectiveness of our algorithm on larger exam-
ples with more FF’s, we selected eight ISCAS examples with
more than 70 FF’s. We first performed pipeline insertion to
further increase the number of FF’s. The pipeline insertion was
performed to the extent that the clock period of the original
circuit (before mapping) could not be further reduced, i.e., it
equals to the maximum loops’ delay-to-register ratio. The sizes
of the eight examples are shown in Table III. The test results
are shown in Table IV. Because all the circuits have more
than 100 FF’s, we did not try to compute new initial states
for TurboMap solutions with SIS, because it would take too
long CPU time. We noticed that with more FF’s in the circuit,
TurboMap-frt needs more time to compute optimal solutions.
This is because with more FF’s, frt is generally larger and
the binary search of from zero to frt (shown in Fig. 5)
needs longer computation time.

The results show that TurboMap-frt can reduce the clock
period by 17% as compared with FlowMap-frt for both test
sets. Comparing with the results by TurboMap [2], which
represent the minimum possible clock period of mapping with
general retiming, the clock period by TurboMap-frt is 3.6%
or 2.8% longer, respectively, for the two test sets. However,
there are ten out of 18 TurboMap solutions in the first test
set for which SIS concludes no equivalent initial states or
cannot find one due to either large memory requirement (more
than 300 MB) or long runtime (longer than 2 hours). If we
compare the best valid solutions by TurboMap and FlowMap-
frt, TurboMap-frt can still reduce the clock period by 8%.
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TABLE II
COMPARISON OF TURBOMAP-FRT WITH FLOWMAP-FRT AND TURBOMAP FOR 5-LUT. “GMEAN” L ISTS THE GEOMETRIC MEANS

OF THE RESULTS BY EACH APPROACH, RESPECTIVELY. THE RUNTIME WAS RECORDED ON A SUN ULTRA2 WITH 256-MB
MEMORY. THOSE MARKED WITH ? ARE CIRCUITS THAT SIS FAILED TO COMPUTE INITIAL STATES FOR TURBOMAP SOLUTIONS

TABLE III
EIGHT PIPELINED TEST CIRCUITS FROM ISCAS BENCHMARK SUITE

Notice that we did not perform the preprocessing of backward
retiming for TurboMap-frt in our experiments. We believe
that the clock period by TurboMap-frt would have been even
closer to that by TurboMap if such preprocessing had been
performed. However, we do not see a compelling reason in
doing this as the best possible improvement could be very
marginal (only 2.8%–3.6% as shown in our experiments).
Our results also show that all the three algorithms compute
results with similar numbers of LUT’s. But FlowMap-frt uses
30%–40% fewer FF’s. In general, we think simultaneous
mapping with retiming leads to smaller clock period but tends
to use more FF’s.

VI. CONCLUSION AND FUTURE WORK

For sequential circuits with initial states, we present a
new algorithm TurboMap-frt for FPGA mapping with forward
retiming and initial state computation to minimize the clock
period. Unlike previous retiming algorithms which compute
retiming to minimize the clock period at first and then try to
compute an equivalent initial state, we compute optimal map-
ping with forward retiming with guaranteed equivalent initial
state in one step. Our algorithm enables a new methodology
of separating forward retiming from backward retiming. Since
we guarantee to compute an optimal mapping with forward

retiming solution, backward retiming can be performed as a
preprocessing step to try to push FF’s to primary inputs as
much as possible with consideration of only initial state com-
putation. Thus, we can avoid the time-consuming iterations
between retiming for clock period minimization and initial
state computation.

The experimental results show that TurboMap-frt is very ef-
ficient and effective comparing with conventional approaches
of separated mapping with retiming. Furthermore, the results
by TurboMap-frt are very close to that by the optimal mapping
with general retiming algorithm TurboMap [2] with regard to
both area and clock period, while many solutions by TurboMap
cannot compute initial states.

In the future we plan to extend our work for library-
based technology mapping with (forward) retiming for high-
performance gate array and standard cell designs. A general
framework on retiming with multiple clock designs was pro-
posed recently by Leglet al. [25]. (The retiming proposed in
[3] and used in this and many other papers consider sequential
circuits with single clock.) We plan to accommodate our
approach into their framework as well.

APPENDIX

To prove Theorems 3 and 4, we first show the important
monotone property of the node-labels. Given a retiming
graph of a sequential circuit which has a feasible FRT
mapping solution for a target clock period, a set of is
monotoneif for any edge .

Theorem 7—Monotone Property:Given a retiming graph
of a sequential circuit which has a feasible FRT mapping

solution for a target clock period , the set is
monotone.

Proof: Given a node of an edge , there must
exists a FRT mapping solution such that .
The -values and
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TABLE IV
COMPARISON OF TURBOMAP-FRT WITH FLOWMAP-FRT AND TURBOMAP FOR 5-LUT. “GMEAN” L ISTS THE GEOMETRIC

MEANS OF THE RESULTS BY EACH APPROACH, RESPECTIVELY. THE RUNTIME WAS RECORDED ON A SUN ULTRA2
WITH 512-MB MEMORY. NO INITIAL STATE COMPUTATION WAS PERFORMED FORTURBOMAP SOLUTIONS

(a) (b) (c)

Fig. 10. Proof of monotone property of node labels for Case 2.

. Let LUT be the -LUT rooted at
in . The edge weight after forward retiming is

. (Notice that is the
number of FF’s moved forward acrossin .) We consider
the following two cases:

Case 1: is a fanin to LUT . Since
, we have that

. It means that
.

Case 2: is covered inside LUT. Let be the largest
sub-DAG rooted at inside LUT as shown in Fig. 10(a).
The number of FF’s moved across in LUT is

. Clearly, can be covered by a -LUT.
By replicating explicitly outside LUT to form LUT and
push FF’s forward to ’s output,9 we can form another
FRT mapping solution with the same clock period of .
So

As a result,
.

Based on the monotone property we can prove the follow-
ing.

Lemma 3: Given a sequential circuit which has a feasible
FRT mapping solution for a target clock period, the inequal-
ity holds for every node all the time
during labeling iterations.

9Notice that only forward retiming is allowed.

Proof: It is obvious that based on
our FRTcheck algorithm shown in Fig. 4. We now prove by
mathematical induction that holds after every
label update.

Initially, . We prove that if
for every node , after each label update for
a node . In the following, we assume , because
it is obvious that if .

Let be a feasible FRT mapping solution such that
and is the LUT rooted at in . In the

cut-height and the cut-weight
. Clearly, is a -cut on

. Based on Corollary 1, we have that
. Since hold for every

node , the height of the cut based on current
satisfies the inequality of .
Furthermore, is an invariant during
labeling iterations for a particular . As a result,

. Based on
the monotone property

Suppose first, that . Obviously,
.

Second, if , the cut is a -cut and

As a result, .
Lemma 4: Given a sequential circuit which has a feasible

FRT mapping solution for a target clock period,
when for any in .

Proof: Based on the proof of the previous lemma, there
must exist a -cut such that ,

, and on
. If , it must be that
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, because we always compute
a -cut with minimum weight and height of no more than

.
As a result, we have the following theorem:
Theorem 3: For a sequential circuit which has a feasible

FRT mapping solution for a target clock period, starting
from the initial lower bounds for PI’s and
for the other nodes, the inequalities 1) and 2)

when hold all the time after any
number of iterations of label update.

The optimality of the FRTcheck algorithm can be proved
as follows.

Lemma 5: If there is a feasible FRT mapping solution for a
target clock period , the two-tuples computed by
FRTcheck will converge to the node label pairs
for all nodes after no more than iterations.

Proof: According to Lemma 3, will monotonically
increase and converge to finally. According to Lemma 4,

will converge to as well when . As
a result, we only need to prove that will converge to
within iterations for all the nodes.

According to [2], the lower bound of every node
computed by TurboMap, which equals to the height of a min-
height -cut on the expanded circuit of, will converge
to the node label within iterations. In our label
computation, we have the same initial lower bounds and a
tighter upper bounds on the node labels because we require

for every node , while TurboMap requires only
for those PO . Clearly, we only need to prove

that for every node , where and
are the new lower bounds computed by TurboMap-frt

and TurboMap [2], respectively, after each label update.
Since in TurboMap-frt equals to the cut-height of

a min-height-min-weight -cut, while in TurboMap
equals to the cut-height of a min-height-cut, it is obvious

.
Lemma 6: For a target clock period , if FRTcheck returns

TRUE, there must exist a feasible FRT mapping solution.
Proof: To prove there exists a feasible FRT mapping

solution, we only need to construct one and prove it has a
clock period of no more than the target. This has been
shown in Lemma 2.

As in [1] and [2], we assume that each edge in the original
circuit has at most one FF. Based on Lemmas 5 and 6, we
have that:

Theorem 4: For a sequential circuit with gates, the op-
timal FRT mapping solution with the minimum clock pe-
riod can be computed in the worst case time complexity
of and worst case space requirement of

, where is the space needed to
represent the original circuit.

Proof: There are edges and FF’s in a
bounded circuit. To update one node’s lower bound, we

need -cut computations. Since the
expanded circuits have nodes and edges
[1], each -cut computation can be finished in
time [2]. Thus, computing for one node
needs time. There are at most labeling

iterations for one target clock period and we need to binary
search possible clock periods. Each labeling iteration will
update the lower bounds of nodes once. Thus, the total
label computation time is . All the frt can
be computed in time. The mapping generation and
forward retiming need time with space
in the worst case. As a result, the total time complexity of
the TurboMap-frt algorithm is with space
requirement of . It is obvious that ,
because the functionality of each-input node can be repre-
sented in space and the number of edges is .
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