
Abstract

While modern FPGAs often contain clusters of 4-input
lookup tables and flip flops, little is known about good
choices for two key architectural parameters: the number of
these basic logic elements (BLEs) in each cluster, and the total
number of distinct inputs that the programmable routing can
provide to each cluster. In this paper we explore the effect of
these parameters on FPGA area-efficiency. We show that a
cluster containing N BLEs needs only 2N + 2 distinct inputs
(vs. the 4N maximum) to achieve complete logic utilization.
Secondly, we find that a cluster size of 4 is most area-effi-
cient, and leads to an FPGA that is 5 - 10% more area-efficient
than an FPGA based on a single BLE logic block.

1. Introduction

One of the key determinants of an FPGA’s area-efficiency
is the structure and granularity of its logic block. If a very sim-
ple, or fine-grained, logic block is employed, more logic
blocks will be required to implement a given circuit, and the
routing area required to interconnect the blocks may become
excessive. On the other hand, if a very complex, or coarse-
grained, logic block is used, much of the logic block function-
ality may be unused in most circuits, again wasting area.

Most commercial FPGAs use logic blocks based on look-
up tables (LUTs) [1, 2, 3], and accordingly most prior
research has focused on LUT-based logic blocks [4, 5, 6]. In
[4], it is shown that a 4-input LUT is the most area-efficient
LUT, chiefly because LUT complexity grows exponentially
with the number of inputs. In this study, we investigate a logic
block based on a cluster of 4-input LUTs. The complexity of
this logic block cluster grows less than quadratically with
cluster size, so it holds promise as a practical coarse-grained
logic block.

We explore two questions concerning this cluster architec-
ture. First, how many distinct inputs should be provided to a
cluster of N 4-LUTs? Secondly, how many 4 LUTs should be
included in a cluster to create the most area-efficient logic
block? Recent FPGAs from Xilinx [7], Altera [1], Lucent
Technologies [3] and Actel [8] have all grouped several LUTs
together into a more coarse-grained logic block, but there has
been little published work investigating the number of LUTs
which should be included in a cluster.

The next section describes the cluster architecture in
detail. Section 3 outlines the experimental method we used to
evaluate each variant of the architecture. Section 4 describes
the algorithms used in our logic cluster packing program. Sec-
tion 5 presents results concerning the number of inputs that
must be provided to a cluster of N 4-LUTs, while Section 6

evaluates the area-efficiency of clusters of different sizes.
Finally, we summarize our results and conclusions.

2. Cluster-Based Logic Blocks

Fig. 1 shows the structure of a logic cluster. This logic
block has a two-level hierarchy; the overall block is a collec-
tion of basic logic elements (BLEs). As shown in Fig. 1a, our
basic logic element is composed of a 4-LUT and a register,
and the BLE output can be either the registered or unregis-
tered version of the LUT output. The complete logic block
consists of N interconnected BLEs, as shown in Fig. 1b. We
call the total logic block a logic cluster.

We describe a logic cluster via two parameters, N and I. N
is the number of BLEs per cluster, while I is the number of
inputs to the cluster. As Fig. 1 shows, not all 4N LUT inputs
are accessible from outside the logic cluster. Instead, only I
external inputs are provided to the logic cluster -- multiplexers
allow arbitrary connections of these cluster inputs to the BLE
inputs. The same multiplexers also connect to each of the N
BLE outputs, allowing the output of any BLE within the clus-
ter to be connected to any of the BLE inputs. All N outputs of
the logic cluster can be connected to the FPGA routing for use
by other logic clusters.

Notice that the logic cluster of Fig. 1 is fully connected; i.e.
each of the 4N BLE inputs can be connected to any of the I
cluster inputs or any of the N BLE outputs. It is simpler to
write CAD tools that completely exploit logic clusters that are
fully connected than those which are not. For example, deter-
mining if a group of BLEs can be implemented in a single
cluster only requires counting the number of cluster inputs
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and comparing it to I if a cluster is fully connected. As well,
in a fully-connected logic cluster all the cluster inputs and all
the cluster outputs are logically-equivalent, which gives the
router a great deal of flexibility in how it routes inter-cluster
nets. The logic block cluster used in the Altera 8K and 10K
FPGAs is fully connected [1], and the logic block cluster used
in the Xilinx 5200 FPGA is nearly fully connected [7].

While a strictly hierarchical FPGA was investigated in [9],
to our knowledge this is the first work to investigate the use of
logic blocks with a two-level hierarchy within an otherwise
flat FPGA architecture.

3. Experimental Methodology

Our goal in this research is to determine the values of N
and I that lead to the most area-efficient FPGA architecture.
Our method is experimental -- we technology-map, place and
route 20 of the largest MCNC benchmark circuits [10] into
each architecture to determine the area used in each case. Nine
of these benchmark circuits are sequential and eleven are
combinational; they range in size from 500 to 3690 BLEs.

3.1. CAD Flow

Fig. 2 illustrates the CAD flow used in these experiments.
First, the SIS [11] synthesis package is used to perform tech-
nology-independent logic optimization of each circuit. Next,
each circuit is technology-mapped into 4-LUTs and flip flops
by FlowMap [12]. Our VPACK program (described in Sec-
tion 4) then maps this netlist of 4-LUTs and flip flops into
logic clusters with the specified values of N and I. Finally, the
VPR placement and routing tool [13] is used to place and glo-
bally route the circuit.

As Fig. 2 shows, the circuit is repeatedly routed with dif-
ferent channel capacities until VPR finds the minimum
number of tracks per channel required to successfully globally
route the circuit. At this point we have enough information to
use our area model to evaluate the architecture’s area-
efficiency.

3.2. Area Model

The area model is based on counting the number of mini-
mum width transistors required to implement a benchmark
circuit in each FPGA architecture (larger transistors are
counted as several minimum width transistors). To allow

averaging of results from circuits of different sizes, we use a
normalized area metric: number of transistors used per BLE
in a circuit. We have developed a detailed model of the num-
ber of transistors required to implement both logic clusters
and FPGA routing in an SRAM-based FPGA [14]. This
model tries to build an FPGA using as few transistors as pos-
sible without unduly compromising speed. The model takes as
input: the logic cluster parameters (N and I); the number of
routing tracks to which each logic cluster input or output can
connect (Fc [15]); the number of routing track segments to
which each segment can connect at a switch point (Fs [15]);
and the channel width required after detailed routing
(Wdetailed).

N and I are the architectural parameters being varied in
this study. We set the other parameters in the model as fol-
lows. Fs is set to 3, since this is the value used by most
commercial FPGAs. The fourth parameter, Wdetailed, can be
determined after a circuit has been placed, globally routed and
detailed routed. We do not currently have a detailed router
capable of routing logic cluster based FPGAs, so we use the
number of tracks required after global routing, Wglobal, to esti-
mate Wdetailed. It has been shown that Wdetailed is highly
correlated to Wglobal in FPGAs with reasonable amounts of
interconnection flexibility [15]. We have used the SEGA
detailed router [16] to determine that for a “conventional”
logic block consisting of 1 BLE, Wdetailed is approximately
1.35 times Wglobal. Throughout our experiments we assume
that this relation holds true for other logic blocks, provided
appropriate choices are made for the value of Fc.

We present results using two different assumptions, one
pessimistic and one optimistic, about how Wdetailed depends
on Fc. The pessimistic assumption sets Fc equal to 10 for all
architectures, and assumes that Wdetailed is always 35% more
than Wglobal. We set Fc = 10 because Fc = Wdetailed has been
shown to be a reasonable choice when the logic block is a sin-
gle BLE [15], and the average value of Wdetailed over our 20
benchmarks for this architecture is 10. This model is pessi-
mistic because the full connectivity of a logic cluster means
all the inputs are equivalent, and all the outputs are also equiv-
alent. Therefore, with Fc set to 10 for all architectures, the
number of choices the detailed router has to enter and leave
logic blocks increases essentially linearly with cluster size,
yet we assume it still takes 1.35 Wglobal tracks to detailed
route a circuit.

Our optimistic assumption assumes that Wdetailed = 1.35
Wglobal can be achieved with lower values of Fc as the cluster
size increases. The optimistic area model sets Fc = 10 only for
FPGAs using a cluster size of 1. As the cluster size increases,
Fc is scaled by the number of pins on the cluster, relative to a
cluster of size 1. In this way, the number of possible connec-
tions to a cluster is kept constant as the cluster size increases.
This is an optimistic model because the number of nets that
must be routed to a cluster increases with cluster size, so there
is more competition for connections. This competition is not
as severe as one might initially assume however, as the aver-
age number of nets input to a cluster increases relatively
slowly with cluster size, and some cluster outputs will only be
used internally. Note that the Altera Flex 8K and 10K FPGAs
leverage the logical equivalence of cluster inputs and outputsFig. 2.  Architecture Evaluation Flow.
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to allow the use of Fc values of 1 and 2, respectively [1].
Our transistor model assumes that, in addition to the cir-

cuitry shown in Fig. 1, each logic cluster has one set/reset
signal of programmable polarity. We also assume that the
clock and set/reset signals are routed on dedicated nets, as this
is the usual case in commercial FPGAs. We have verified that
our model accurately predicts the number of transistors used
in several key structures in a commercial FPGA [17].

4. Logic Cluster Packing Algorithm

We have developed a tool, VPACK, that first packs flip
flops and LUTs together into BLEs, and then packs multiple
BLEs into logic clusters. VPACK takes as input a netlist of
flip flops and LUTs. It first uses a simple and optimal pattern-
matching algorithm to pack a flip flop and a LUT together into
one BLE wherever possible.

The second step of VPACK packs these BLEs into logic
clusters. The optimization goals are twofold: attempt to fill
each cluster to its capacity, N, and minimize the number of
used inputs to each cluster.

VPACK constructs each cluster sequentially. It begins by
choosing a seed BLE for the cluster. We have found that the
best way to choose this seed is to select the currently unclus-
tered BLE with the most used inputs, as such BLEs use the
most cluster inputs, which are a scarce resource. VPACK then
greedily selects the BLE which shares the most inputs and
outputs with the cluster being constructed; this tends to mini-
mize the number of inputs that must be routed to each cluster.
This procedure of greedily selecting a BLE to include in the
cluster continues until either the cluster is full or until adding
any unclustered BLE would cause the number of distinct
inputs needed by the cluster to exceed I. If the cluster is full,
we select a new seed BLE and begin packing BLEs into a new
cluster. If, however, the cluster occupancy is still less than N
but we cannot add any BLEs because of a lack of cluster
inputs, a second, hill-climbing, phase of VPACK is invoked.

Since we know that any clusters that reach this second
phase will be difficult to pack to capacity, VPACK now
selects BLEs to add to the cluster in order to minimize the
increase in the number of cluster inputs required. In this
phase, VPACK also allows BLEs to be added to a cluster even
if it results in an infeasible cluster (i.e the number of inputs
required by the cluster exceeds I). Note that adding a BLE to
a cluster in which all of its inputs are already present, and in
which the output of the BLE is used by some other BLE
already in the cluster decreases the number of distinct inputs
to the cluster by 1. This is the key to the hill-climbing phase;
while adding one BLE to a cluster may make it infeasible, it
may become feasible again when additional BLEs are added.
The hill-climbing phase terminates when the cluster is full; if
the cluster is still infeasible VPACK backs up the last point at
which the cluster was feasible. VPACK then selects a seed
BLE for the next cluster and invokes the first phase again, as
before.

This clustering algorithm is very efficient. None of the
twenty benchmark circuits used in this study required more
than 3 seconds to cluster on a 70 MHz Sparc 5. The complex-
ity of the algorithm is O(kC), where C is the number of BLEs
in a circuit, and k is the maximum fanout of any net.

5. Experimental Results: Relationship of I to N

As discussed in the introduction, the first question we
wish to answer is how many distinct inputs, I, should be pro-
vided to a cluster of size N. Since the number of transistors
required to implement each of the multiplexers shown in Fig.
1 grows linearly with I (for large I), we would like to make I
as small as possible. On the other hand, if I is made too small,
many of the BLEs in a logic cluster may become essentially
unusable, reducing logic utilization and wasting area. We find
the minimum value of I that allows good cluster utilization by
running benchmark circuits through the first two steps shown
in Fig. 2, technology-mapping and cluster packing, and mea-
suring the resulting logic utilization for different values of I.

Fig. 3 shows how the average logic utilization of our 20
benchmarks varies with I for three different logic cluster
sizes. The vertical axis is the fraction of BLEs in a cluster that
VPACK is able to use, while the horizontal axis is the number
of distinct inputs to the cluster relative to the total number of
BLE inputs in a cluster (i.e. I/4N). For very low values of I,
the logic utilization is very low, as one would expect. It is
interesting, however, that when I is only 50 to 60% of the total
number of BLE inputs, the logic utilization is essentially
100%. Clearly it is possible to pack BLEs together so that they
have many common inputs and can reuse locally generated
outputs. The relative amount of input sharing and output reuse
increases slightly with logic cluster size, causing the curves in
Fig. 3 to shift to the left as cluster size increases.

The solid line in Fig. 4 shows the value of I required to
achieve 98% logic utilization as the cluster size, N, is varied.
The dashed line in Fig. 4 shows how the average number of
logic cluster inputs that are actually used varies with cluster
size. Although there are 4N BLE inputs in a logic cluster of
size N, the number of inputs required to achieve 98% logic
utilization is only about 2N + 2. Furthermore, the average
number of logic cluster inputs that are actually used grows
even more slowly. On average, a cluster of size 1 uses 3.5 of
its inputs, while an cluster of size 16 uses only 19.7 of its
inputs. In other words, while the logic per cluster has
increased by a factor of 16, the average number of connec-
tions that must be routed to each cluster has increased by a
factor of only 5.6.

Our results indicate that commercial FPGAs can be more
aggressive in reducing the value of I. For example, the Altera
Flex 8K FPGAs use logic clusters with N = 8 and I = 24 [1],
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while our results indicate that I = 18 suffices for a cluster of
this size. Similarly, the Xilinx 5200 FPGA uses a logic cluster
with N = 4, and makes all 16 LUT inputs accessible [7], while
our results suggest 10 inputs are sufficient.

6. Experimental Results: Best Logic Cluster Size

We are now in a position to examine which cluster size
leads to the most area-efficient FPGA. Throughout this sec-
tion, the number of inputs, I, to a cluster of size N is chosen to
be the minimum value that allows VPACK to achieve 98%
logic utilization. This value of I allows our logic clusters to be
essentially fully utilized, while minimizing the complexity of
the cluster input multiplexers.

We ran 20 benchmark circuits through the experimental
flow described in Section 3, and determined the area they
required after placement and routing in each architecture. Fig.
5 shows how our area metric, number of transistors required
per BLE, varies with cluster size under both the pessimistic
and optimistic area models of Section 3. The pessimistic area
model predicts that clusters of size 1, i.e. the traditional single
BLE logic block, and clusters of size 4 are essentially tied as
the most area-efficient logic blocks. The optimistic area
model, on the other hand, predicts that a cluster size of 4 is
best, and leads to an FPGA that is 12% more area-efficient
than one based on a cluster of size 1. Since we know the truth
is somewhere between these two models, we can conclude
that a cluster of size 4 is most area-efficient, and will lead to
an FPGA that is approximately 5 - 10% more area-efficient
than one using a single BLE as its logic block.

Cluster-based logic blocks have two other advantages

over single BLE logic blocks. First, in an FPGA composed of
logic clusters many nets will be completely contained with a
logic cluster. These nets will be routed using only the multi-
plexers within a cluster; as the delay of these multiplexers is
less than that of the main FPGA routing this will tend to
increase the FPGA speed. Secondly, by clustering N BLEs
into each logic cluster before placement we reduce the num-
ber of blocks to be placed by a factor of N. This greatly
reduces the placement time, which is of increasing concern in
today’s large FPGAs.

7. Conclusions

There are two main conclusions to be drawn from this
work. First, the number of distinct inputs required by a cluster
grows fairly slowly with cluster size, N. A cluster of size N
requires approximately 2N + 2 distinct inputs. Secondly,
some cluster-based logic blocks lead to better area-efficiency
than the traditional single BLE (4-LUT plus flip flop) logic
block. Specifically, we found that a cluster of size 4 with 10
distinct inputs is the most area-efficient, and leads to an FPGA
that is approximately 5 - 10% more area-efficient than one
based on a single BLE logic block. Since cluster-based logic
blocks also lead to reduced placement times and a faster
FPGA overall, the advantages of cluster-based logic blocks
over a single-BLE logic block are significant.
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