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Abstract

High-performance rule processing systems are needed
by network administrators in order to protect Internet sys-
tems from attack. Researchers have been working to im-
plement components of intrusion detection systems (IDS),
such as the highly popular Snort system, in reconfigurable
hardware. While considerable progress has been made in
the areas of string matching and header processing, com-
plete systems have not yet been demonstrated that effectively
combine all of the functionality necessary to perform rule
processing for network systems.

In this paper, a framework for implementing a rule
processing system in reconfigurable hardware is presented.
The framework integrates the functionality to scan data
flows for regular expressions, fixed strings, and header val-
ues. It also allows modules to be added to perform extended
functionality to support all features found in Snort rules.
Reconfigurability and flexibility are key components of the
framework that enable it to adapt to protect Internet systems
from threats including malicious worms, computer viruses,
and network intruders.

To prove the framework viable, a system has been
built that scans all bytes of Transmission Control Proto-
col/Internet Protocol (TCP/IP) traffic entering and leaving
a network’s gateway at multi-gigabit rates. Using Xilinx
FPGA hardware on the Field programmable Port eXtender
(FPX) platform, the framework can process 32,768 complex
rules at data rates of 2.5 Gbps. Systems to handle data at 10
Gbps rates can be built today using the same framework in
the latest reconfigurable hardware devices such as the Vir-
tex 4.
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of this paper have received equity from the license of technology to that
company. John Lockwood has served as a consultant and co-founder to
Global Velocity.http://www.globalvelocity.com

1. Introduction

High performance network intrusion detection and pre-
vention systems are desperately needed in order to protect
the Internet from malicious attacks [1, 2]. The use of soft-
ware alone to perform intrusion prevention has been shown
to be too slow for use in networks, even on relatively slow,
100 Mbps links [3, 4]. Reconfigurable hardware has been
shown effective at performing many of the computationally
intensive tasks needed for intrusion detection and preven-
tion. Research groups have designed high performance sys-
tems that perform regular expression scanning, static sig-
nature scanning, header processing, and TCP flow recon-
struction. However, with few exceptions [5, 6], the systems
implemented only performed single aspects of the task. The
network security community needs all of the aspects of rule
processing to be integrated in order to deliver a viable solu-
tion for useful protection.

Complex rule sets, such as those found in intrusion de-
tection systems like Snort [7], process rules that specify
the processing of packet headers, the matching of patterns
in packet payloads, and the action to take when a rule is
matched. A Snort rule, in fact, has a syntax like:

alert tcp any 110→ any any (msg:“Virus -
Possible MyRomeo Worm”; flow:established;
content:“I Love You”; classtype:misc-activity;
sid:726; rev:6;)

The rule above indicates that the packet header can match
a wildcard value for the source IP address, the destination IP
address, and the destination port. However, the source port
of the packet must have the value of 110. The rule also spec-
ifies that the protocol should be TCP. The second part of the
rule specifies to search for“I Love You” over an established
TCP/IP connection. If the signature were found in an UDP
packet, it is not a match. Flow reconstruction across multi-
ple TCP packets must be performed, as there is no guaran-
tee that the string is not segmented across multiple packets.
All of the tasks described above must be performed just to



process this single rule. There are 2464 rules in version 2.2
of the Snort rule database from September 2004. Over 80%
of the rules require performing all steps like those in the
rule above. The remaining rules require some combination
of the above steps.

Once the tasks of rule-processing have been defined,
they need to be integrated and implemented. In this pa-
per, a framework for performing rule processing in hard-
ware is proposed that utilizes modular interfaces to enable
plug-and-play integration of the multiple components of
rule processing. A complete implementation of Snort fea-
tures can be implemented in this framework to perform rule-
based processing at multi-gigabit speeds.

Some features of Snort have not been implemented in
reconfigurable hardware yet, such as support for pattern
matching at specified offsets. This framework allows inte-
gration of modules so experimentation with future process-
ing modules can be performed. Additionally, the best-
known methods for header-processing and content-scanning
developed to date can be used concurrently. A module that
efficiently matches on multiple headers can be used in tan-
dem with one that is optimized for specific headers. Sim-
ilarly, a module that is optimized at detecting regular ex-
pressions can process data directly before a module that is
optimized for static signatures. Through the use of modules,
additional features can be added as they are developed.

2. Related Work

State-based intrusion detection and prevention systems
(IDPS) require three primary elements: TCP flow reassem-
bly, header processing, and content scanning. Using infor-
mation received about these elements, a rule processor de-
termines whether rules match.

2.1 TCP Flow Processing

Schuehler and Lockwood developed a TCP Processor in
FPGA logic that annotates control information onto incom-
ing IP packets, specifying where headers begin and end and
where payload data begins and ends [8, 9]. The TCP Proces-
sor is capable of simultaneously keeping state for 8 million
TCP flows while operating at 2.9 Gbps in the FPX platform.
TCP data is presented to processing modules in-order along
with pertinent flow information.

Nguyen, Zambreno, and Memik created flow monitor
units (FMU) that provide lower level components with flow-
based information [10]. Their results show the ability to
process a flow at very high throughput.

Necker, Contis, and Schimmel implemented a single
TCP-stream assembler in FPGA technology capable of op-
erating at 3.2 Gbps [11].

The need for TCP offload engines (TOEs) has become
greater as network link speeds increase [12]. A TOE
processes the layers of TCP/IP stack such that a host need
not perform protocol related computations.

2.2 Header Processing

Header processing and packet classification have been
extensively studied in the literature. Header processing in
the context of intrusion detection requires that all matching
header rules be investigated. A simplification provided by
operating on TCP flows is that header processing only has
to be done once per flow.

Yu and Katz used ternary content addressable memories
(TCAMs) to return multiple matching packet headers [13].

Song and Lockwood used a hybrid bit-vector and TCAM
algorithm to compress the matching header representa-
tion [14]. The authors converted 222 Snort header rules into
264 trie-node prefixes and 33 distinct TCAM entries.

2.3 Content Processing

There are many techniques to perform string matching
that are well suited for FPGAs [15]. Focusing on effi-
ciency, resource consumption, and module throughput, sev-
eral groups have invested a significant amount of effort to
improve string matching. Any of the following circuits
could be used as content processing modules in this frame-
work.

Baker and Prasanna developed a technique to partition
signature databases into independent pipelines, allowing
FPGA resources to be efficiently utilized by reducing re-
dundancy [16].

Clark and Schimmel reduced the redundancy inherent
in string matching when using non-deterministic finite au-
tomata (NFA) and increased the throughput of string match-
ing by processing multiple characters per clock cycle [17].

Moscola et. al created an automated way of generating
deterministic finite automata (DFA) structures optimized
with JLex in order to process regular expressions [18]. It
was found that, in most cases, the number of states neces-
sary to implement the DFA was comparable or less than the
number needed for an equivalent NFA.

Cho, Navab, and Mangione-Smith created a content-
based firewall using discrete logic filters [19]. They created
automated techniques to generate highly parallel compara-
tor structures that can be quickly configured. This work was
expanded to include logic re-use and read only memory.

Sourdis and Pnevmatikatos created unique VHDL in-
stances for each signature to process [20]. Signatures are
added or removed by modifying the instance loaded. They
achieved high-throughput using deeply pipelined compara-
tors and encoders, as well as by reducing fan-out.



Sugawara, Inaba, and Hiraki implemented a string
matching method using trie-based hashing in order to
achieve high throughput [21].

Bloom filters, using several hashes, have been shown
to be able to store thousands of search strings [22]. The
logic footprint is constant, regardless of the search criteria.
Updates are performed by dynamically re-writing values in
FPGA block RAMs.

Gokhale et. al investigated a hardware/software ap-
proach to intrusion detection, where header and content vec-
tors of matches are sent to software [6]. This system sepa-
rated string matching and rule processing onto separate en-
vironments, the former in hardware and the latter in soft-
ware, and was capable of supporting a few hundred rules.

2.4 Our Solution

Rule processing is not solely composed of header
processing nor solely of content scanning. It is the combi-
nation of these two aspects that defines rule processing. We
have developed what we believe to be one of the first tech-
niques to combine the above elements in FPGA hardware to
support thousands of Snort-like rules. Previous techniques
have sent match vectors of the two components to software
to perform the rule processing [6]. Our solution involves
sending header and content match IDs to a rule processing
circuit. The rule processor, operating in real-time, deter-
mines whether a rule matched.

3 Rule Processing Framework

3.1 Elements of Rule Processing

Data flows through the system from a TCP flow assem-
bler toh header processors andc content scanners, as shown
in Figure 1. The flow assembler provides the in-sequence
ordering of TCP data required by content scanning engines.
Header processors perform packet classification, determin-
ing which header rules match the incoming packet. Content
processors scan payload bytes of data streams for regular
expressions and static strings. Strings can appear anywhere
within the payload or even across packet boundaries. Af-
ter finding matching headers or signatures, the header and
content modules forward match IDs to the rule processor.

A key aspect of this IDPS is flexibility. The nature of
future attacks to the Internet’s infrastructure are difficult to
predict. Network security devices that make the Internet
safe require constant change. As a result, the use of recon-
figurable hardware is highly desirable. The reconfigurabil-
ity of hardware allows the system to adapt to new threats.

TCP Flow Assembler

Rule Processor

h 

M
atch ID

s

c

TCP/IP data

TCP/IP data

(Regular Expressions and Static Strings)

Content Processing Modules

Header Processing Modules

Figure 1. The rule-processing framework al-
lows header processing and content scan-
ning components to be added or removed
without affecting rule processing. A stan-
dardized communication mechanism was
adopted to integrate multiple components.

3.2 Interface

To compose a modular system, a standardized communi-
cation format must be used between data processing mod-
ules. Data processing modules may be on separate devices
or in different regions of a FPGA. Modules should have the
property that they can be added, removed, or reconfigured
without interrupting the rest of the rule processing system.
A standard interface was developed to transit data between
modules via a communication wrapper. The communication
wrapper, as shown in Figure 2, transports data to and from
data processing modules.

The interface signals include: start of data (sod) to indi-
cate when a new data stream enters the system; a data enable
signal (en) to indicate when data is present; an end of data
(eod) signal to indicate when there is no more data; thedata
of the flow itself; the number of valid bytes (vb) on thedata
signal; and a busy signal (stop) used to temporarily halt the
flow of data in the case of a backlog.
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Figure 2. The communication wrapper pro-
vides a mechanism to communicate informa-
tion between modules and the rule processor.
The wrapper abstracts away the underlying
transmission requirements needed to com-
municate between modules across devices or
across the FPGA.

A module can be added to the system by adhering to the
following two properties. First, the module must be able
to accept and act upon IP packet data. Second, the module
must be able to provide relevant match IDs (either header
or content) to the rule processor using the communication
wrapper. Each unique header rule and signature are given an
unique identification number. When a header or signature
matches, the module informs the rule processor of what IDs
matched using the data format of Figure 3.

A standard data format was defined to communicate in-
formation about a flow to the rule processor. The flow ID
informs the rule processor of which TCP flow the results
belong. Note that in the case of stateless protocols, such
as UDP, this flow ID is given the default value of 0. The
remaining words contain a list of what particular strings,
regular expressions, or header rules matched. Several IDs
could potentially match in a packet. The module designer
can choose whether to buffer matches found and burst them
out at the end of a packet or to send match information as it
becomes available.

Using this interface, a module designer can implement
any feature found in Snort and interface with the rule

flags

ID N

ID N−1ID N−2

ID 4

ID 2ID 1

ID 3

flow ID

Figure 3. The data format for communicat-
ing matching rules and signatures consists
of flags, a flow ID field, and a list of matching
ID numbers.

processor by informing it as to which header or content
matched by providing the ID of the matching criteria. For
example, many content rules are only supposed to match if
they are found within a certain range of the payload. This
is difficult for a generic pattern match circuit to implement.
However, a module could be developed to handle this case.
Instead of loading the generic pattern match circuit with
these signatures, the new module could be loaded with
these signatures. Then, when the signature is found in the
specified range, the unique content ID given to the sig-
nature is forwarded to the rule processor by the new module.

4 Rule Processor Design

There are aspects of rule processing that are critical for
networking systems. First, the system must allow new rules
to be added as quickly as possible. Second, the system must
be able to support large numbers of rules. There are 2464
rules in Snort version 2.2, but the number of rules is ex-
pected to increase. Third, the system must be able to operate
on TCP flows. This point implies there must be an efficient
way to retain context information for the flow. Finally, the
system must operate in real-time. A response to an intrusion
must be detected and blocked at the instant that it occurs.

4.1 Analysis

Analysis of systems should consider the number of
unique headers and signatures that the systems can handle,
the number of different header rules that can be processed,
and the number of signatures that can be associated with a
given rule.

Rule database analysis should consider how often signa-
tures occur and how many rules solely consist of a header
rule. Examining this helps to determine an optimal amount
of resources for a practical system.
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Figure 4. The number of signatures associ-
ated with each length. Note that signatures
longer than 40 bytes have been lumped into a
single bar.
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Figure 5. The distribution of how many times
a signature appears in an unique Snort rule.
Only 18 signatures appear in more than 10
rules.

The Snort rules database contains 292 unique header
rules, 2107 unique static signatures, and 233 regular ex-
pressions. Most Snort rules give a header rule of the form
EXTERNALNET to INTERNALNET. Up to 10 of the 292
headers can simultaneously match any given packet. The
static signatures are distributed across the range 1 to 122
characters, as shown in Figure 4. The bulk of the distrib-
ution is below 41 bytes. These 2107 signatures are spread
across 2296 of the 2464 rules. Figure 5 shows how often
signatures appear in multiple unique Snort rules. The y-axis
is how many times the signature is found in a rule, and the
x-axis gives a number to each of the 2107 signatures. Only
18 signatures occur in more than 10 rules. The hexadecimal
signatures|00 00 00 00|, |01|, and|00 01 86 A0| occur in
135, 73, and 66 different Snort rules, respectively.

4.2 Functionality

The rule processor collects information on the matching
headers and signatures from the modules. Using the com-
munication wrapper interface, modules can specify what has
been found in each flow as data passes through it.

The rule processor contains logic to allow rules to be
added, deleted, or modified. To the rule processor, the
syntax of the rules takes the form:

< action > HID ∧ (C1ID ∧ C2ID ∧ · · · ∧ CnID)

Thus, a rule consists of an action, a header rule, and
0 to n signatures. A rule matches when the header rule
matches and each of the signatures specified, if any, are
detected. When a match is found, the action specified is
taken. Rules are programmed into the system dynamically
using control packets from a management console or the
network.

4.3 Architecture

With these observations considered, the rule process-
ing architecture of Figure 6 was developed to perform rule
processing as traffic flows through a reconfigurable hard-
ware circuit. To achieve high performance, the circuit is
pipelined with seven stages. All communication is per-
formed via the communication wrappers. The rule proces-
sor handles two forms of inputs and a single form of output.
Programming information from a control host enters on the
control interface. Matching header and content IDs enter on
the ID interface. Rule match information and actions to take
are output the alert interface.

4.3.1 Stage 1: Input

The input stage has two main components, one for each of
the two types of inputs. The control FSM receives program-
ming information from software for adding, deleting, or
modifying rules. Software can read/write SRAM, read/write
on-chip block RAM, or query system event counters. On
the other interface, matching header and content IDs enter,
where they are buffered in a FIFO. From this FIFO, they
enter the processing pipeline. This FIFO acts as the flow
control. Information is held here in the case of perform-
ing context switching. Header IDs (HIDs) and content IDs
(CIDs) fork apart in this stage. CIDs advance to stage 2 of
the pipeline, while HIDs are forwarded to stage 5.

4.3.2 Stage 2: Content ID Check

Matching CIDs enter into this stage to determine if this
content has already been seen for this particular flow. A
large bit-vector, stored in on-chip block RAM, is directly
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Figure 6. The rule processor consists of seven pipeline stages: (1) input, (2) content ID check, (3)
rule ID retrieval, (4) header ID mapping, (5) header ID check, (6) count check, and (7) alert output.

indexed by the CID value. If the indexed location is set,
no further processing is performed because the signature
was already detected, but a rule has not matched yet. If
the location is not set, the CID is passed to stage 3 and
the bit is set. Note that upon a rule match, stage 6 clears
the signatures found in the matching rule from this index
so the rule can be allowed to match again. Only the first
occurrence of a CID in a flow results in the CID being
forwarded to stage 3.

4.3.3 Stage 3: Rule ID Retrieval

Stage 3 receives uniquely occurring matching signatures,
and a reverse index look-up [23] that maps CIDs to rule
IDs (RIDs) is performed. Linked lists are maintained in
SRAM, where the first node of a list is directly indexed by
the CID. Iterating through the list, each RID associated with
the CID is returned. For example, the signature“I Love
You” is found in a single rule, so only one RID is returned.
If “.mp3” is found, 4 RIDs are returned since“.mp3” is
found in 4 rules. Assuming an uniform distribution of sig-
natures that match, 1.58 RIDs will be retrieved per unique
signature match on average.

Memory management is controlled by software in or-
der to simplify the hardware implementation. An entry in
SRAM consists of a rule ID and next pointer. The RID is
passed to stage 4 while the next pointer, if valid, is exam-

ined. The first RID will always be associated with the direct-
index of the CID. After that, software maintains a free-list
of SRAM words that can be used for next pointers.

4.3.4 Stage 4: Header ID Mapping

Potentially matching RIDs enter stage 4, where the HID as-
sociated with the RID is looked up. Using another bank of
SRAM, a mapping from RID to HID is maintained. The
RID directly indexes into SRAM, and the HID associated
with that RID is returned. At this point a similar technique,
as used in stage 3, could be adopted if rules were ever to
consist of more than a single header rule. However, the cur-
rent Snort rules do not associated more than one header rule
with a rule, so the architecture was simplified. The RID and
HID are sent to stage 5.

4.3.5 Stage 5: Header ID Check

This stage is similar to stage 2, only a HID queries the bit-
vector instead of a CID. The HID from stage 4 directly in-
dexes the block RAM, checking to see if the HID was found
to match this flow. The value in the index is set by forward-
ing incoming matching HIDs from stage 1. If the header
matches, the RID is passed along to stage 6. If the header
does not match, the RID is dropped from the pipeline.

The astute reader may have noticed that header-only
rules will be neglected in this scheme. To account for these



168 rules, a special ID range was allocated in the bit-vector
to inform this stage that when these headers arrive, a header-
only rule matched. In these cases, a rule match is declared
without any content being processed.

4.3.6 Stage 6: Count Check

When a potential matching RID is passed into this stage, an
on-chip block RAM is queried to determine if the number
of signatures associated with the rule have been detected.
The RID is used to directly index two block RAMs. From
the first block RAM comes the count required for a rule
to match. This value is programmable by software control
packets. From the second block comes the current count.
This count is incremented and compared to the requirement
for a rule match. If the two are equivalent, the rule with the
given RID is declared a match, and the RID is passed to the
next stage. When a rule matches, this stage clears the CIDs
embedded in this rule from the bit-vector of stage 2 so that
subsequent rule matches can be reported as well. The count
value in the block RAM is also reset. Enough space is al-
located to support rules that contain 15 signatures. Current
Snort rules have no more than 7 signatures specified.

Note that a RID will only enter this stage if (1) the first
occurrence of one of the signatures found in the rule is de-
tected, and (2) the header specified in the rule matched. This
ensures the count will only be incremented once per signa-
ture in a rule.

4.3.7 Stage 7: Alert Output

In the final stage matching rules are reported to a control
host, where the match can be logged and acted upon. The
RIDs that match in a packet are bundled into a single
control message that is passed through the communication
wrapper to the control host.

4.4 Efficient Context Switching

To facilitate efficient context-switching of the process-
ing circuit on each packet of a different flow, a mechanism
to save only pertinent information is required. Stages 2, 5,
and 6 perform context switching upon the arrival of differ-
ent flows. With support for up to 32,768 rules, a full loading
of each bit vector would require swapping in and out 192
Kbits of information per flow.

Instead, the amount of storage required is reduced by
only storing the CIDs and HIDs of matching criteria for
the flow. These are the addresses of set bits in the respec-
tive bit-vectors. When the need to perform a context switch
arises, buffers of matching criteria are sent to off-chip mem-
ory, and the locations specified by the IDs are cleared in
the bit-vectors. Thus, when retrieving context information,
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the returned addresses are used to set the appropriate bits in
the bit-vectors. To simplify the design, 512 bytes of storage
space are allocated per flow, which can be stored or retrieved
in 32 clock cycles.

4.5 Evaluation

The system can provide high throughput over all packet
sizes in the average case. The lowest system throughput
occurs when minimum sized TCP packets arrive belonging
to different flows that contain the signature that is present in
the most number of rules. For the current rule set, this would
occur for TCP packets with 4 bytes of payload containing
|00 00 00 00|. This results in 135 RIDs being processed.

The average-case and worst-case throughput of the rule
processor is plotted in Figure 7 versus the number of pay-
load bytes. Note that as packet size increases for the worst-
case signature, the throughput of the system increases to the
maximum value since it takes longer to receive the packet.

Since only 18 signatures appear in more than 10 rules,
this worst-case performance can be alleviated by using spe-
cialized modules to process them. The frequently occur-
ring CIDs are forwarded to these modules instead of into
the pipeline. The modules check each HID with which the
CID can be associated and inserts only those RIDs into the
pipeline that contain matching HIDs. Since at most 10 HIDs
can match for a given packet, at most 10 RIDs will be in-
serted into the pipeline.

4.6 Implementation Results

The rule processor has been implemented using a Xilinx
Virtex 2000E FPGA on the FPX platform. The FPX gives
access to 2 banks of zero bus turnaround (ZBT) SRAM and
2 banks of 512 MB SDRAM. The FPGA and memory on



Group and Component Device Logic Cell % Throughput (Gbps)
GaTech Stream Assembler[11] Virtex 1000 10% 3.21

Northwestern U. Flow Monitor [10] Virtex2-8000 - 48.32

WashU TCP Processor [8] Virtex4 140 35% 10.3
WashU BV-TCAM [14] Virtex4 100 10% 10

Crete Pre-decoded CAMs[20] Virtex2-6000 95% 9.7
GaTech Decoder Trees [17] Virtex2-8000 81% 7
Tokyo Trie-based Hash [21] Virtex2-6000 7 % 10
UCLA Packet Filters [19] Spartan 3 2000 40% 3.2

USC Partitioning [16] Virtex2 Pro 100 15% 10.3
WashU Bloom Filters Virtex4 100 85% 20.4
WashU Rule Processor Virtex4 100 95% 15.9

Table 1. The table above gives the device utilization and throughput for TCP processing, header
processing, and string matching components involved in rule processing. Logic cell percentage is
based on the number of slices used in a particular device.

LUTs 4,738 (12%)

Slices 4,838 (25%)

Block RAMs 142 (88%)

Input Size 32 bits

Frequency 80.07 MHz

Max Throughput 2.56 Gbps

Table 2. A summary of the resource utilization
of the rule processor on the FPX Platform.

this platform were more than adequate to implement the sys-
tem. Table 2 summarizes the results obtained for the rule
processor.

FPGA features were extensively used to improve the ef-
ficiency of the rule processor. As Table 2 shows, 142 of
the fast, on-chip block RAMs were used and proved to be
the critical resource of the circuit. By utilizing these fast
memories to hold the large bit-vectors, the throughput of the
system dramatically increases while the latency decreases.

4.7 Component Resource Requirements

Rule processing is very resource-intensive task. The con-
stituent components can require an entire FPGA in them-
selves. Table 1 shows representative requirements for com-
ponents developed by various groups. The first group shows
TCP flow processing components. The next group shows a
header processing technique. The largest group shows string
matching techniques. The final group shows the rule proces-
sor.

1This assumes a single TCP stream.
2This assumes 40 Byte packets.

Figure 8. The FPX platform in a stacked con-
figuration allows network processing to occur
across multiple FPGAs to perform intrusion
detection operations. IP data enters at the top
of the system and exits at the bottom. Con-
trol information and alerts are sent through
the interface on the bottom.

4.8 Implementation

To demonstrate use of this framework, a system was im-
plemented using multiple FPX devices [24]. The framework
allows each of the modules to be dynamically reconfigured
into the system to perform rule processing functions in a
modular way. The system integrates modules that scan for
regular expressions and static signatures. These components
are configured in the FPX platform in a stacked configura-
tion. Figure 8 shows how the components are arranged in
the system.

Internet traffic enters the system via a Gigabit Ethernet
line card. Data is processed by the TCP Processor, Bloom
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filter module, regular expression module, and rule proces-
sor, and the data is passed out of the system via another Gi-
gabit Ethernet line card. Matching signatures are detected
and forwarded to the rule processor. The rule processor was
configured to toggle including header information in the rule
match determination in order to test functionality without
actually having an implementation of a header processing
module.

To make the system more cost effective for wide-scale
deployment, the same logic currently implemented in the
multiple, stacked Virtex 2000E chips could be integrated to-
gether into a single bigger FPGA. Given the size of each cir-
cuit and the speed at which it operates on the Virtex 2000E,
the entire resulting Snort processing system could fit into a
single Virtex 4 FX100. This chip has 94K logic cells (LCs),
as compared to the Virtex 2000E’s 43K LCs. Additionally,
8 Mbits of block RAM are available, as compared to the
Virtex 2000E’s 655 Kbits.

To expand the rule processor to operate at higher
throughput and support additional rules, parallel copies of
the pipeline can be instantiated and the size of the bit-
vectors can be increased. Using the Virtex 4, over 3x as
many rules can be stored and a 6x improvement to through-
put can be achieved, as shown in Figure 9. The figure shows
the immediate improvements available for the number of
rules, the frequency, and the throughput of the rule proces-
sor by targeting a newer FPGA.

5 Conclusions

FPGAs are well suited for implementing complex rule
processing components, as needed for intrusion detection
systems like Snort and intrusion prevention systems that
protect the Internet. Reconfigurable hardware is efficient for
header processing, string matching, and flow processing. To
be an useful tool for network administrators, a framework

was needed that puts these components together in an effi-
cient way. Software-based implementations of complex rule
processors have been shown to be too slow for processing
data in high-speed networks. Hardware parallelism greatly
improves performance. Through the use of FPGAs, rule
processing systems can be deployed that provide the flex-
ibility of adapting to the persistent changes required to be
an effective network defense mechanism.

In this paper, a rule processing framework was presented
that combines the three crucial components of network in-
trusion detection and prevention in a single system. The
framework allows integration of modularized header and
payload processing systems by adhering to well-structured
interfaces.
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