
SPLASH 2

JEFFREY M. ARNOLD

DUNCAN A. BUELL

ELAINE G. DAVIS

Supercomputing Research Center

17100 Science Drive

Bowie, Maryland 20715

INTRODUCTION

The Splash attached processor board (referred to

as Splash 1) was designed and built at the SRC to

provide very high performance on a range of bit-

processing problems. It proved to be highly successful

[GOHKa]; notwithstanding the known dangers of Sec-

ond System Syndromel [B ROO], a follow-on system,

Splash 2, is being designed and built. The purpose

of this paper is to describe Splash 2, to compare it

with Splash 1 and to discuss both its programming

and two algorithmic applications.

Splash 1 was designed to be used as a systolic pro-

cessing system [KUNGa, KU NGb]. Although it was

very successful in that mode, there were many other

applications which were not systolic but nonetheless

successful on Splash 1 or which were not implemented

successfully due to one or more architectural limita-

tions, most notably 1/0 bandwidth and interproces-

sor communication. Although other uses to increase

computational performance have been found for the

Xilinx FPGAs which are Splash’s processing elements

(see, for example, [MOOR] or [SHAN]), Splash was

unique in its goal to be programmable in a general

sense.

Typeset by d~-~
1 ~~when one is desi~ng the successor to a relatively smaU,

elegant, and successful system, there is a tendency in one’s
success to become grandiose and design an elephantine feature-
laden monstrosity.”

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of tbe Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

THE HARDWARE

Splash 1.

Splash 1 is a single multiwire board that plugs into

the VMEbus of a Sun workstation. Each board con-

tains 32 Xilinx 3090 Field-Programmable Gate Ar-

ray (FPGA) chips XO through X31 as processing el-

ements. The FPGAs are connected in a linear array

by a 32-bit-wide path. Chips XO and X31 can be sim-

ilarly connected to form a ring. Data on and off the

board is handled by a pair of FIFOS controlled by XO

and X31, respectively. Between each pair of interior

Xilinx chips is a 128K x 8 RAM with an 8-bit-wide

path to the FPGAs.

The Xilinx 3090 chips have a maximum clock rate

of 32 Mhz. To accommodate Splash 1 designs which

could not be run at maximum speed, usually due to

placement and routing problems or to the inability

of the VMEbus to deliver data at a sufficiently high

rate, the clock rate could be set in factors of 2 from

1 Mhz to 32 Mhz.

Programming of Splash 1 was originally done with

a Xilinx-supplied software tool (the XACT editor).

Later tools included the Viewlogic schematic capture

package. To make the machine more accessible, re-

searchers at SRC developed the Logic Description

Generator (LDG), a higher-level language whose out-

put could be mapped to the Xilinx chips [GOKHb].

In addition to the software for direct execution, a de-

bugger called Trigger was extensively used.

Splash 2.

Comparisons wtth Splash 1.

The architecture of Splash 2, shown in Figures 1

and 2, reflects to a small extent the improvements

in technology since the design of Splash 1 but shows

much more the results of experience with Splssh 1 and

some of its correctable limitations. Before going into

a detailed description of the hardware, we compare it

with its predecessor.

SPAA ’92- 61921CA

@1992 ACM 0-89791-484-8/92/0006/0316 $1.50 316

Splash 1 was hosted by a Sun workstation over

the VMEbus, and there were many applications on

Splash 1 which were entirely 1/0 bound. Splash 2, in

contrast, uses a SPARC II as a host over the accom-

panying SBUS. While comparisons of peak ratings of

buses and of buses as used by particular machines can

be made, they do not usually reflect reality. In brief,

it is expected that the sustainable 1/0 rate of Splash

2 should be somewhere between 8 and 10 times that

of Splash 1.

The second technology-based change is to use the

new Xilinx 4010 chips. Three major differences be-

tween the 3090 and the 4010 chips are that the 4010’s

have 400 Combinatorial Logic Blocks (CLBS) instead

of the previous 320, that each CLB has 9 input lines

instead of 5, and that the maximum speed is 40 Mhz

instead of 32Mhz.

An additional feature of the new chip is a fast carry

internal to the CLBS, which makes arithmetic com-

putations faster and requires less programming and

fewer CLBS. Further, the number and quality of the

interconnection lines as well as the quality of the au-

tomatic place-and-route (APR) software used to con-

figure the chips have improved; this should help more

applications run at higher speeds. Finally, the new

chips allow for the use of CLBS as a 32-bit RAM,

configured either as 32 x 1 bit or as 16 x 2 bits.

Splash 2 has 17 Xilinx chips on a board instead of

the previous 32. This is both a conscious decision and

a necessity. The newer chips are physically larger, and

it is not possible to put 32 of them on a single board

along with the memories and the crossbar (to be de-

scribed below). However, since the newer chips are

each more powerful than the old chips, and since it

was more often the case with previous applications

that they were I/O-limited rather than processor-

limited, it does not seem unrealistic to expect that

a reasonable processor-to-I/O balance now exists.

Beyond mere technology upgrades are several ar-

chit ect ural enhancements.

s Data path: The only data path on Splash 1 was a

32-bit wide linear connection of the 32 Xilinx 3090

chips, with the end chips connected to the host

in FIFOS. Splash 2 retains this path but also has

broadcast (to multiple Splash boards), a memory

connection to the host, and interchip connections

on the Splash boards themselves, Also, in Splash

1, the data from the host passed directly into the

Splash board, so that handling of the FIFOS and

any preconditioning of the data (merging of two

input streams, for example) had to be done by the

Xilinx chips on the Splash board. These functions

have now been moved to an interface board, so

the Splash 2 boards will not be exposed to these

irregularities of data movement. Further, Splash 2

is designed throughout to be a 32-bit machine with

extra tag bits allowed where possible. On Splash

1 it was often observed that 32-bit data widths

were sufficient but that extra tag bits to be sent

along with the data would have been very useful.

The extension of the input width in the FIFOS

from 32 to 36 bits should remedy this shortcoming.

In addition, the extra 4 bits should accommodate

many of the requirements of a SIMD computing

mode—with a 36-bit-wide input word, 32 bits of

immediate data can be passed in along with a 4-

bit instruction opcode, or the extra bits can be

used to allow the Splash 2 boards to distinguish

instructions from data.

● Memory: The primary uses of the memory chips

in Splash 1 were for lookup tables and for stor-

ing microprograms to be executed by state ma-

chines implemented in the Xilinx chips. The mem-

ory use was, however, encumbered by problems

in sustaining peak rates, by the fact that mem-

ory loads had to be done down the systolic data

path of the Splash board, and by the fact that the

memories were connected to two Xilinx chips on

the systolic data path. This last problem required

programmers to exercise great care to separate in

time the access to memory and the transmission

of data from Xilinx to Xilinx. The memory chips

on Splash 2, by contrast, are directly connected

to a single Xilinx chip. The previous 128K x 8 bit

RAMs have been replaced by 256K x 16 bit RAMs.

These two changes make their memory much more

accessible by and useful to the Xilinx chips. The

memories can now be directly read/written from

the Sun host over the SBUS. They are not, how-

ever, dual-ported; the FPGAs must be inactive

during the read/write operations. This change al-

lows tables to be loaded in bulk and results to be

read from the memories without requiring the cir-

cuitous path through the Xilinx chips. One result

of this, as discussed below, is the natural use of

Splash 2 for SIMD computing,

● Crossbar: Splash 1 had only a single data path—a

systolic route through the 32 Xilinx chips. While

the systolic paradigm is very powerful and its ap-

plication to Splash has been very successful, there

were many applications that either could not be

done or whose efficiency suffered because the sys-

tolic path was the only data path. After a number

of possible configurations were discussed, it was

decided to use programmable crossbar chips to im-
plement a full 16 x 16 crombar among the Xilinx

chips. Up to eight configurations can be preloaded

into the crossbar control, and selection among the

317

eight configurations can be done dynamically. In

this way, the realization of common communica-

tion patterns is relatively straightforward. For ex-

ample, a 4-dimensional binary cube is realized as

follows: View the linear array as a hamiltonian

path through the 4-cube. Properly chosen, and

with an appropriate coordinate labelling, this path

provides all the connections in the x-dimension,

four of eight in the y-dimension, and two and one,

respectively, in the z- and w-dimensions. Six cross-

bar configurations, one for each direction for each

of the y-, z-, and w-dimensions, now provide the

additional connections to realize a 4-cube. Al-

though arbitrary communication is not possible—

only three and not four ports exist per chip—it is

possible to communicate one dimension at a time,

and many cube algorithms exhibit this character-

ist ic pattern. In an analogous way one can realize

a 4 x 4 mesh, although in one of the two dimen-

sions only half the needed communication paths

are available at a time.

The Sp!ash 2 System.

The system-level view of Splash 2 is shown in Fig-

ure 1. (This shows a 3-board system; a system can

contain 1 to 16 boards.) The Splash 2 boards plug

into an enclosure cent aining two 9-slot backplanes.

An interface board and its expansion board plug into

the two center slots to drive the two backplanes in

parallel, and an SBUS adapter board plugs into a Sun

SPARC 2 workstation to run the Splash 2 system via

the interface board.

The interface board extends the address and data

buses from the Sun into the address/data buses in

the backplane. The Sun can read from and write to

memory and memory-mapped control registers on the

Splash 2 boards via these buses. The Sun provides

only 25 address bits (which we take to be 23 since

we deal only with data on 32-bit-word boundaries),

which is inadequate to address the 16(boards) x

16(memories) x 512 K(bytes) of Splash 2 memory, so

the interface board contains an address bank register

which selects the Splash 2 board in the system.

There are three data paths into the Splash 2 sys-

as input to the Xl chip of the second board,

and so on. Output from X16 of the last board

in the daisy chain returns on the Rbus to the

interface board.

(3) A SIMD path exists by using the SIMD bus

for broadcast. The SIMD bus has a data path

into Xilinx chip XO on each board, which can

then inject the SIMD instruction or data into

the crossbar and thus broadcast to the other

Xilinx chips on that board.

Remarks:

(1)

(2)

(3)

A multiplexer exists on the Splash 2 board

for selecting whether the data path into Xl is

from the SIMD bus or from the J 1 connection

from the “previous” Splash 2 board.

The address/data path into the memories on a

Splash 2 board, the SIMD bus, and the Rbus

are bus connections in the backplane. The

connections from the output of X 16 on one

board into Xl of the next board use connec-

tions on the backplane.

A Splash 2 board must be present in the first

slot of a system. A selection register exists on

the interface board to enable “the last Splash

2 board” to deliver data to the Rbus. The

selection register can be dynamically changed

so that the interface board can enable the de-

livery of data to the Rbus from any Splash 2

board in a multi-board system.

There are three modes for sending data into the

Splash 2 system.

(1)

(1)

(2)

On the memory bus, data can be read and

written into memories attached to each Xilinx

processing chip.

A “systolic data path” exists down the SIMD

bus into the first Xilinx chip, Xl, in the linear

array of the first Splash 2 board in a daisy

chain which can include as many as 16 Splash

2 boards. Output from the last Xilinx chip in

the linear array, X16, of the first board passes

318

(2)

(3)

Splash 2 can communicate with the Sun via

DMA transfers to and from the FIFOS of Fig-

ure 1. The two input FIFOS are lK x 36-bits;

the two output FIFOS are lK x 32-bits. For

these transfers, the interface board becomes a

master on the Sun SBUS and transfers bursts

of data to or from the FIFOS. In typical op-

eration the Sun programs and initializes the

Splash 2 boards via memory-mapped trans-

fers and then enables DMA for data transfer

to/from Splash 2. In this mode, the 32 bits

of data form the low 32 of the 36 bits in the

FIFO. The high 4 bits are taken from a tag
register.

The Sun host can also perform direct writes

to the input FIFOS of Splash 2. In this mode

the high 4 bits of the 36-bit FIFO word are

bits 5-2 of the address.

Splash 1 was and Splash 2 will be a useful

processor for handling digital signals gener-

ated external to the Sun host. The external

input accommodates input of such a signal di-

rectly to Splssh 2. Further details of this are

given below.

The Splash .21nterjace.

The interface board and its expansion board plug

into the center slot pair of the enclosure and are re-

sponsible for generating all the signals necessary in

the backplane for running up to 16 Splash 2 boards.

The Sun data bus is latched and buffered to drive

the backplane data bus for memory-mapped reads

and writes. The Sun address lines are latched and

buffered to feed the backplane, and the Sun can load

an address bank register with a 7-bit address exten-

sion to obtain 30 bits of 32-bit-word addresses.

A clock generator provides the clock signal to the

Splash 2 boards, can be programmed by the Sun

to various frequencies, and can be programmed to

single-step, N-step, or to stop on an interrupt.

Interrupts can be requested by any Splash 2 board

and the DMA controller can request an interrupt

when transfers are completed. An interrupt regis-

ter permits the Sun interrupt program to enable or

disable interrupts and to read which interrupt source

generated an interrupt. FIFO full/empty determina-

tion is under the control of Xilinx chips XL and XR.

The inclusion of Xilinx chips XL and XR was to

provide for control of data transfer, clock (even a

clock supplied by the external input), and tag bits

independent of the Splash 2 boards. In Splash 1,

such control was usually done in the first array chip,

leading to asymmetry and crowded designs. With

proper programming of XL and XR, the asynchronies

of DMA transfer and external input and clock should

not be seen by the Splash 2 boards themselves, and

the XL and XR programs should function much like

a system 1/0 library.

A size register indicates the number of Splash 2

boards in a system, providing a signal to the Splash

2 boards so that one board is enabled to deliver data

to the Rbus.

A DMA controller performs S13us-compatible burst

DMA transfers to and from the FIFOS in 16-word

bursts.

To accommodate variable modes of data entry into

a Splash 2 system, provision for an external signal in-

put exists in the form of a daughterboard attached

to the interface board. In this way, small changes

in input signal conditioning can be made without re-

quiring the entire board to be re-engineered.

The daughter board can be configured to provide

an external clock, thus allowing the Splash 2 system

to be run synchronously with external data.

The Splash 2 Processing Boards.

The Splash 2 board is detailed in Figure 2. Each

board contains 17 Xilinx 4010 chips. Sixteen of these,

X1-X16, form the processor array, connected both lin-

early and via the crossbar by 36-bit-wide data paths.

The 17th chip, XO, has several uses to be mentioned

later. Each of chips X1-X16 is connected via a 36-

bit-wide path (18 address, 16 data, 2 control) to the

256K x 16-bit memories. The memories can be read

from or written to directly by the Sun on a 32-bit

data path.

The systolic data path brings data from either the

previous Splash 2 board or from the SIMD bus into

Xl, through the linear array, and out from X16 to

either the next Splash 2 board or to the Rbus and

thence to the interface board.

Among the many control lines on Splash 2 is a sin-

gle interrupt line from each Xilinx chip back through

the interrupt latch and mask to the host. This is

useful for applications such as searches in which a

Xilinx chip which found the solution can signal that

fact back to the host and interrupt the processing. In

addition, a global AND/OR and a global VALID line

(GOR, GORV) extend from each Xilinx chip to the

control chip XO, and a system global AND/OR runs

from each Splash 2 board to the interface board.

A final feature of the Splash 2 board is the ability

to load or store a configuration state into the Xilinx

chips. Readout of the state was possible in Splash

1 and was invaluable for debugging and program op-

timization; the new ability also to load the Xilinx

chips with a starting state configuration will greatly

enhance the ability to monitor program behavior.

The 17th Xilinx chip XO serves several func-

tions. Its primary purpose is to control the cross-

bar. The crossbar itself is bit-sliced from nine TI

SN74ACT8841 4bit crossbar chips. Up to eight dif-

ferent configurations can be chosen; XO is used to se-

lect which configuration is in effect at any given cycle,

and the crossbar control determines the direction in

which data is transferred. Using multiple configura-

tions can, for example, allow the 16 chips to be viewed

as a two-dimensional mesh, or a 4-dimensional binary

cube, provided that only one data path per Xilinx

chip is used in any given cycle (since only one path

exists). Switching among chosen configurations, for

example, would allow cube-connected data paths to

be used in one dimension at a time.

A second function of XO is to provide a broad-

cast capability into the crossbar. Splash 2 can be

used aa a SIMD computing engine, as will be dis-

cussed below, and the connection from the systolic
data path through XO into the crossbar allows for a

broadcast of instruction and immediate data to all

3119

chips on a board at a time, using the lines into the

crossbar shared by XO and X16 (which lines must not

be driven by X16 when broadcast is to take place).

To allow XO to be sent “subroutine calls” in SIMD

mode and to execute stored subroutines, and to allow

for the lookup tables which can be expected to be

heavily used, XO possesses its own local memory.

One complication exists in that the memories are

16 and not 32 bits wide. To allow for both the host

and the Splash 2 boards to view the normal data

width as 32 bits, the memories on the Splash 2 board

are double-cycled; the host and the interface board

pass 32 bit data to/from the Splash 2 board, and

the board reads/writes 32 bits on word boundaries

by using two cycles for every data transfer to/from

the interface board. This design decision was based

on the 1/0 pin count of the Xilinx 4010 chips. Many

designs were considered, but it proved impossible to

retain the linear array data path (2 x 36 bits), add a

crossbar connection (1 x 36 bits), add a direct connec-

tion to memory (18 bits address, 32 data), and have

any of the 160 1/0 pins left over for control.

SIMD COMPUTING MODE

A Splash 2 board allows a 256-bit load/store in

parallel to 16 Xilinx processing chips. The combina-

tion of crossbar and the linear array provides a pow-

erful parallel data transfer capability similar to a net-

work. With this view of the Splash 2 board, its use

for SIMD computing is quite natural. To effect this

mode of computing it is necessary to support broad-

cast of instructions and/or immediate data. This is

possible by lines down the SIMD bus into Xilinx chip

XO of every board and from there directly to Xilinx

chips Xl through X16 over the crossbar. In this mode

chip XO could be explicitly programmed to serve as an

instruction decode module and possibly also to con-

vert from a vertical to a horizontal encoding of the

instructions.

PROGRAMMING

There are three levels at which the Splash 2 sys-

tem must be programmed: the Splash board, the in-

terface, and the host. At the Splash board level the

programmable components consist of the Xilinx pro-

cessing chips, Xl through X16; the control chip, XO;

and the crossbar. At the interface level the Xilinx

chips XL and XR are user programmable. The host

interface must provide input data streams and con-

trol the operation of the Splash system. A library of

common control functions is provided for the interface

board chips, XL and XR, and for the Splash board

control chip, XO. Many systolic and SIMD applica-

tions use only a single crossbar configuration, which

can also be provided in a library. The host interface

can be driven from either a C program that makes

calls to a package of control routines or through an

interactive graphical debugger. Therefore, the mini-

mal Splash 2 program consists of a single replicated

Xilinx program for Xl through X16 and a selection

of library components for the rest of the system.

The programming environment for Splash 2 is

based upon the VHSIC Hardware Description Lan-

guage (VHDL). VHDL is a hardware specification

language with many modern programming language

features such as block structured control; user de-

fined data types; and overloaded procedures, func-

tions, and operators. VHDL programs can freely mix

behavioral specifications with more traditional struc-

tural descriptions. The VHDL programming model

includes the concept of time, so VHDL specifications

can be simulated directly.

The Splash 2 programming methodology relies

heavily upon simulation and logic synthesis. Users

develop applications by writing VHDL behavioral

models of their algorithms, which are then simulated

and debugged within the Splash 2 simulator. Once an

algorithm is determined to be functionally correct, it

is compiled into a set of Xilinx chip configurations

and the timing analyzed and optimized.

The Splash 2 simulator is a hierarchical model of

the Splash 2 system comprising a set of VHDL mod-

els for each of the components of the system. When

an application program is simulated, it is able to in-

teract with the system exactly as it would with the

physical hardware. The system models also verify

that the application program meets any hardware

constraints such as memory sequencing and setup and

hold times. Because the simulator is based upon com-

mercial tools, a full source level debugging interface

is available to the user.

A mix of logic synthesis and standard compilation

techniques are used to compile VHDL programs into

Xilinx configurations. A commercial logic synthesis

tool is used to map the VHDL code into a gate list,

where a peephole optimizer is used to perform a vari-

et y of Xilinx- and Splash-specific optimization, The

resulting gate list is then mapped into the CLBS and

placed and routed using the Xilinx tool package. The

XiIinx tools are also used to extract the detailed tim-

ing information from the placed and routed design.

This information is used to construct a new VHDL

model for each chip, which is then fed back to the

Splash 2 simulator for timing analysis.

320

Two APPLICATIONS

Keyword searching/dictionary searching.

References for this include [LOPR, MCHEa,

MCHEb] .

One kind of dictionary searching is a spell program

such as exists in Unix. One has a dictionary of several

thousand words and wishes to determine if any words

in a document or documents are not in the dictionary.

Another kind of searching is exactly the opposite of a

spelling checker; one haa a list of several thousand key

words and wishes to determine if any words in a doc-

ument or documents are in the list. A computational

difference between these two applications is that in

checking spelling one is likely to have a single docu-

ment which may be quite long. In keyword searching,

one is probably going to have many documents, most

of which will be rather short.

This application is common in what the infor-

mation business calls SDI–Selective Dissemination of

Information–in which a user or users list keywords as

a profile of interest and a computer run is made peri-

odically against bodies of text to pull out articles of

interest (i.e., that match the profile). The bodies of

text frequently are news stories, product announce-

ments, compendia of trade magazines, the text of le-

gal decisions, etc. In this scenario, we assume that

the text is not indexed but appears simply as free full

text of the articles. Another application might have

indexed articles in a bibliographic system. Given an

index, searches are almost always faster using the in-

dex, and Splash 2 is unlikely to be able to be of much

assistance. However, it is becoming more and more

common even in bibliographic databases to have text

present (such as abstracts or summaries of journal ar-

ticles or technical reports) which is not indexed. In

such circumstances, one still has a full text search to

perform.

The basic technique one is likely to explore in

Splash 2 was outlined by Dan Lopresti in his short

note [LOPR] and resembles the Unix spell checker.

Given a dictionary D of iV words, one constructs a

hash function j’(w) and a memory array. Stored in

the memory array is a 1 at locations ~(w) for words

w c D and a O at locations to which no word in the

dictionary hashes. Given an input string of charac-

ters s, ~(s) = O implies s # D. If ~(s) = 1, then

with some probability p (depending on f and on the

lengths of the dictionary and the memory array) we

know that s E D. If we apply n hash functions ~~(w),

for each of which we have probability p that ~(s) = 1

implies that s is in the dictionary, and we assume the
functions are independent, and if ~i (w) = 1 for all i,

then with probability (1 – p)n the string s is not in

the dictionary. Searching for words in the dictionary

or words not in the dictionary is merely a matter of

inverting the 1‘s and O‘s in the memory array.

This basic approach has been programmed on

Splash 1 using a number of hash functions. Charac-

ters are streamed into the processors, each of which

implements a single hash, and those words which

“survive)’ through the pipeline of hash functions are

scored as hits. The same approach would work for

Splash 2, but some enhancements are obvious. Cer-

tainly the larger memories will allow for larger mem-

ory arrays and thus hash functions with a higher

probability of success. Next, the crossbar or the more

global communication lines could be used to transmit

success or failure information. The limiting factor

in this application will still be bandwidth—Splash 2

can process words (compute hash functions) as fast

as they can be input to the system over the SBUS.

DNA Pattern Matching.

The DNA pattern matching problem is by now

fairly well known. Given two strings of DNA, repre-

sented as strings in a four-character alphabet (A, C,

G, T), the problem is to compute the edit distance

between the two strings (based on character inser-

tions, deletions, and substitutions in the usual case

of imperfect mat thing of the strings). A common al-

gorithm is the construction of a matrix of distances

between strings al az.. .am and blb2.. .bn using the re-

cursive formulas

{

di-l,j + del(ai)

di,j = min di,j-l + ins(bj)

di-l,j-l + sub(ai, bj) }

where dei(.), ins(.), sub(., .), the deletion, insertion,

and substitution costs, are often taken to be 1, 1, and

2, respectively.

This application maps well to Splash [GOHKa] but

on Splash 1 was only able to run with a 1 Mhz clock

due to 1/0 limitations. Even with these limitations,

it was competitive with or much faster than super-

computers; with the improved speed due to increased

1/0 on the SPARC SBUS, yet another order of mag-

nitude speed increase can be expected.

Acknowledgements.

We acknowledge those who have contributed to

Splash 2, including at least Neil Coletti, Steve

Cuccaro, Maya Gokhale, William Gromen, William

Holmes, Wally Kleinfelder, Daniel Kopetzky, Andrew

Kopser, James Kuehn, Sara Lucas, Ronald Minnich,

Michael Mascagni, Fred More, Louis Podrazik, Daniel

Pryor, Craig Reese, Judith Schlesinger, David Smit-
ley, Douglas Sweely, Mark Thistle, Chris Tscharner,

Paul Schneck, and Ken Wallgren.

REFERENCES

[BROO] Fred Brooks, The Mythical Man-Month, Addison-

Wesley, Reading, Massachusetts, 1975, The no-

tion of “second-system effect” seems to come from
Brooks, although this precise definition comes from

The Hacker’s Dictionary, by Guy L. Steele, Jr..
[GOHKa] Maya Gokhale, W,lliam Holmes, Andrew Kopser,

Sara Lucas, Ronald Minuich, Douglas Sweely, and

Daniel Lopresti, Building and using a highly par-

allel programmable logic array, IEEE Computer 24

(1991), 81-89.
[GOKHb] Maya Gokhale, Andrew Kopser, Sara Lucas, and

Ronald Minnich, The Logic Description Generator,
SRC Technical Report SRC-TR-90-011 (1990).

[KUNGa] H. T. Kung, Why systolic architectures?, IEEE

Computer 15 (1991), 37-46.
[KUNGb] H. T. Kung and C. E. Leiserson, Systolic am-rays

for VLSI, Introduction to VLSI Systems, by C. A.
Mead and L. C. Conway, Addison-Wesley, Reading,
Massachusetts, 1980, pp. 271-292.

[LOPR] Daniel P, Lopresti, Fast dictionary searching on

Splash, SRC report (1991).
[MCHEa] John T. McHenry, Dictionary search application on

Splash, SRC report (1991).

[MCHEb] John T, M.Henry and Andrew Kopser, Keyword

searching on Splash, SRC report (1991).
[MOOR] Will B, Moore and Wayne Luk (eds.), FPGAs,

Abingdon EE & CS Books, Abingdon, England,

1991.
[SHAN] M. Shand, P. Bertin, and J. Vuillemin, Hardware

speedups for long integer multiplication, Proceed-
ings, ACM Symposium on Parallel Algorithms and

Architectures (1990), 138-145.

322

