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Abstract-The Teramac configurable hardware system 
can execute synchronous logic designs of up to one mil- 
lion gates at rates up to l megahertz. A fully configured 
Teramac includes half a gigabyte of RAM and hardware 
support for large multiported register files. The system 
has been built from custom FPGA's packaged in large 
multichip modules (MCMs). A large custom circuit 
(-1,000,000 gates) may be compiled onto the hardware 
in approximately 2 hours, without user intervention. The 
system is being used to explore the potential of custom 
computing machinery (CCM). 

1 Teramac System Overview 

Research on special purpose parallel architectures and 
custom computing is very much an experimental sci- 
ence dependent on the existence of prototypes. We have 
built an FPGA-based configurable custom computing 
engine to enable experiments on an interesting scale. 

Teramac is a configurable hardware system comprising 
1728 custom FPGAs and .5 gigabytes of RAM. It fea- 
tures: 

We are currently conducting experiments with an 8 
board Teramac system. 

2 Hardware 

The Teramac system logically consists o f  four major 
components as shown in figure 1 : 
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FIGURE 1. System Block Diagram 

(1) programmable hardware, which is configured to 
functionally reproduce a user's circuit; (2) RAM, which 
may be incorporated into user designs requiring mem- 
ory; (3) a controller, which is responsible for controlling 
the programmable hardware as well as exchanging con- 
figuration and state data with an external host; and (4) a 
host workstation which provides the center of control- 
user interface, compiler, and debug environment. The 
host connects to Teramac with a set of SCSI buses, mak- 
ing it easy to upgrade the host without modifying the 
Teramac hardware. The Teramac system is shown in fig- 
ure 2. 

"c's programmable hardware implementation is 
uniform: sixteen identical PC boards are interconnected 
with cables; each board carries four identical multichip 
modules (MCMs); each MCM carries 27 identical 

1,000,000 gate capacity for synchronous logic cir- 
cuits. 
up to 1 MHz clock rate. 
.5 Gbytes of memory organized into 64 independent, 
32-bit-wide banks, each with independent read and 
write ports. Banks may be combined horizontally 
and vertically to form large memories. 

Fully automatic compilation. 
Checkpoint restart capability. 
Scalability. A minimum Teramac system (a single 
board) supports designs of up to 64K gates. Addi- 
tional boards may be added to expand the capacity 
incrementally, up to maximum of 16 boards. 
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Figure 2. Teramac Hardware 

FPGAs. Thus, a fully configured Teramac contains 
1,728 FPGAs. 

2.1 PLASMA-custom FPGA 
We investigated using standard FPGA's for Teramac, 
but we ultimately designed our own-the PLASMA' 
chip. PLASMA is a routing-rich FPGA that consists of 
6-input, 2-output lookup tables (with configurable 
latches and registers on their outputs), interconnected by 
partially populated crossbar switches. We chose a cus- 
tom approach for several reasons: 

Compilation Time: Placement and routing time for 
standard FPGA's is still much longer than is accept- 
able for a custom computing machine (CCM). 
Although the place and route times for a single chip 

1. PLASMA: Programmable Logic And Switch MAtrix 
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Figure 3. PLASMA FPGA 



ciently implemented by capitalizing on the structure 
of the lookup tables in our logic cells-the lookup 
table decoders could be reconfigured to implement 
read and write ports; with the addition of some regis- 
ter bits, we are able to configure some of the logic 
cells to behave as a multiported register file slice. 
The decode logic for a register file would have been 
expensive to implement in standard FPGA's. 

Proprietary Conjiguration Fomuzts: The vendors we 
considered for supplying the PGA's had proprietary 
formats for internal data they were unwilling to dis- 
close to a research project with limited volume. Thus 
we would have been required to use their software 
tools to develop a design; our users would have 
needed access to the same tools. 

2.2 MCM Design 

The Teramac MCM, a very large (6.13 by 7.4 inches) 
MCM-C, has 27 chips, each with 408 pads [l]. The 
problem we faced was one of wiring complexity in a 
system which would contain hundreds of 408 pad ICs. 
The total number of wires was such that we had to very 
carefully balance the costs of the MCM level of connec- 
tion, the PCB level, and board to board connections. By 
using MCMs for the vast majority of the wires we were 
able to relieve the pressure on the PCBs and the board to 
board connections. 

Figure 4. MCM with 27 PLASMA chips 

The advantage to a very large MCM comes from Rent's 
Rule [2], 

110 wires = constant * average-pinout * chips OS 

By putting more chips on the MCM, a large 
of the total wires are removed from the PCBs, wh 
intrinsically have less capacity, being limited to un 
20 layers. By using an MCM C we reduced 
of pins to be connected on the PCB from 11 ,O 16 to 
3,264, a factor of 3.375 improvement compared to sin- 
gle chip modules (SCM's). Had we attempted to use 
SCM's, the area required just to mount the 27 chips on 
the board would have been over 5 times the area of the 
27 chip MCM, assuming the board could have been 
routed. 

The 27 chip MCM is shown in figure 4. Even though 
much effort went into minimizing the number of layers 
and vias (a major cost component), 39 layers were 
required (12 layers for power planes and signal spread- 
ing, 27 layers for signal routing) with 260,000 blind vias 
buried in the MCM. The wire length in the vias alone is 
over 2000 inches. 

2.3 LogicBoards 

Each board contains four MCMs which implement a 
simple network of 108 identical chips. Up to 16 boards 
may be interconnected via cables. Each board has 4032 
signal YO pins through cables to other boards. 

2.4 Controller Boards 

Each logic board connects to a daughter controller board 
containing four banks of 32-bit wide, 2 M deep, 2-port 
static RAM, and control circuitry for interfacing the 
board to the host computer. The RAM banks are con- 
nected into the PLASMA network to support user 
designs containing embedded memory. The controller 
circuitry: (1) relays configuration data from the host, (2) 
transfers state data between the memories, PLASMAS, 
and the host, and (3) controls clocking and breakpoint- 
ing of the PLASMA network. 

3 Software 

3.1 Compiler 

The Teramac compiler was the principle driver of the 
architecture. The desire for fast compilation of large 
designs inspired separating the problem of mapping a 
user circuit onto programmable hardware into smaller, 
independent subproblems that could be attacked with 
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low computational complexity algorithms. This separa- 
tion guided the hardware in directions that allowed for 
fast compilation. As implementation problems devel- 
oped or the need for choosing parameters arose, the 
compiler then became a tool for exploring alternatives 
and refinement. 

The compiler operates on an input netlist in multiple 
passes in order to perform the mapping to the Teramac 
system: 

Netlist Filter: The first pass of the compiler is 
merely a filter that transforms the user’s input netlist 
into an internal format used by the remaining passes 
of the compiler. Filters have been built for Tsutsuji 
netlists [3], and EDIF netlists. 

Merger: The second pass transforms the original cir- 
cuit of logic gates into a functionally equivalent cir- 
cuit of lookup tables by f‘greedily” packing gates 
into groups respecting the 6-input, 2-output limita- 
tion of the lookup tables used in PLASMA, and then 
computing the truth table for the resulting function 
(additional heuristics in this pass also unpack and 
repack groups and replicate gates to further reduce 
the number of lookup tables). 

Global Partitioning: The global partitioner takes the 
circuit of truth tables generated by the merger and 
partitions them into PLASMA chips in the Teramac 
system. Partitioning begins by constructing a tree to 
represent the user’s circuit. Hierarchical information 
in the netlist, if present, is used to build the initial 
tree, which is then refined through the use of ratio- 
cut partitioning[4]. Applying the approach of Yeh 
and Cheng [5], the tree guides the recursive parti- 
tioning of the circuit onto the Teramac network using 
min-cut partitioning algorithms [6,7]. The majority 
of compiler processing time is spent in this pass. 

Global Placement: Based on the results of global 
partitioning, subcircuits are assigned to specific 
PLASMA chips by a global placement pass. 

Global Routing: The global router routes signals 
between PLASMA chips. The signals to be routed 
are sorted in order of fan-out, and routed one at a 
time (highest fan-out first) through the network 
using a “first-fit” algorithm. The output of this pass 
is an assignment of signals to all of the PLASMA 
pins in the network. 

Local Place and Route: Once the signallpin assign- 
ments have been completed by the global router, 
each PLASMA chip can be individually placed and 
routed. Since a PLASMA chip has the same topolog- 

ical structure as the system, similar partitioning, 
placement and routing algorithms are used. The 
computation time depends on the complexity of the 
subcircuit, with 3 seconds being a typical value. 

Configuration Mapper: This pass of the compiler 
simply maps the logical placement and routing of 
PLASMA chips into a configuration bitstream that 
can be downloaded to the Teramac hardware. 

Timing Analyzer: Using a SPICE-based timing 
model of PLASMA and the interconnect, along with 
the placed and routed circuit, the timing analyzer 
predicts the maximum clock rate at which the com- 
piled circuit will run in Teramac. Measured maxi- 
mum clock rates for the custom computers run thus 
far on Teramac agree well with the timing analyzer’s 
predictions. 

The largest circuit we have compiled, containing 
approximately 1,000,000 gates, required about 2 hours 
of compilation time. Smaller circuits require much less 
time: a 170,000 gate circuit requires about 18 minutes, 
and a 60,000 gate circuit about 5 minutes (on an HP 735 
workstation). After the Merger pass, compilation could 
be distributed across several workstations via a network 
to speed it up further, but we have not pursued this. 

3.2 Meltdown Protection 
Configurable hardware, while quite versatile, is at sig- 
nificant risk from user designs which may not work cor- 
rectly. Multiple outputs can be accidentally connected 
together damaging the system, requiring expensive 
component replacement. To prevent this, we developed 
a verification program which checks every design for 
consistency before it is downloaded to the Teramac 
hardware. This program, TMID (pronounced timid), 
short for “Three Mile Island Defense,” ensures that bugs 
in a user design will not physically damage the hard- 
ware. TMID verifies consistency between chips as well 
as within chips. 

Downloading a design could potentially cause problems 
as configurations are being established, but the interme- 
diate state is invalid. Chips are disabled during configu- 
ration to prevent problems with the random bit patterns 
which appear. 

3.3 User Interface 
The Teramac user interface makes it easy to focus on 
results, not the tool. Custom screens can be configured 
to display the internal state of a design in a convenient 
format. A filter capability allows the user to intercept the 
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bits before they reach the output screen and transform 
them to a different format, even graphics if desired. 
Mnemonic signal names are easily handled in user dis- 
play windows. Assigning probe points on the design 
allows monitoring any signal in the original schematic. 
The user interface recreates signals that exist on the 
original schematic but were subsumed into lookup 
tables on the Teramac. Single stepping, tracing, and 
hardware breakpoints are built in. Breakpoints can be 
triggered by logic signals or configured to occur after a 
fixed number of cycles. 

4 Experiments 

Teramac has already given us some insight into the real 
challenges of reconfigurable computing. The following 
four custom engines have been implemented in Tera- 
mac. This is very much an experimental science and 
good debugging tools are essential when the bug in 
question may lie in the initial algorithm, the custom par- 
allel design, the mapping to PGA’s by the compiler, or 
the prototype hardware of Teramac 

Bubble Sort 

One of our first experimental designs was a bubble 
sort engine using the multiported register files. By 
cascading register slices it is possible to sort very 
wide fields. By using the multiple read and write 
ports the engine could read a consecutive pair of 
words, swap them if needed, and rewrite them in the 
sorted order. Four such engines run in parallel each 
working on a quarter of the list to be sorted. A 20-bit 
wide, 64 word deep bubble sorter has been run at 1 
MHz. 

Graph Partitioning 

The graph partitioning engine is a special purpose 
cellular automata which uses a random search to par- 
tition a graph into equal halves with a minimal num- 
ber of edges cut between the halves. As shown in 
figure 5 the automata (a simple 2D mesh for this 
example) begins with a random assignment of cells 
to the partitions, labeled 0 and 1. Logic in each cell 
computes the total number of edge crossings, the 
sum of edge crossings and the absolute difference of 
the number of 1 cells and 0 cells to determine a 
“cost” of a trial partition. The configuration is ran- 
domly perturbed and the best results are kept. A 
“temperature” which limits the freedom to explore 
the configuration space is adjustable. We have run a 
28 by 28 array (corresponding to a graph with 784 
nodes) on Teramac. It took 651,105 clocks to find the 
optimal solution shown in figure 6. (This test array 
has an obvious optimal solution; practical designs 
would not). The partitioning engine has 73,000 gates 
and runs at 480 kHz. 

Pi 

Another test design built on Teramac is a systolic 
array for computing pi to an arbitrary number of dig- 
its. The design shown in figure 7, uses the trigono- 
metric identity pi/4 = arctan(1R) + arctan( 1/3). All 
arithmetic is done in decimal. We add one cell for 
each digit of pi to be computed. A 120 digit pi 
engine has 200,000 gates and runs at 500,000 kHz. 

Figure 5. Initial configuration before partitioning. Figure 6. Configuration after partitioning. 
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PI-Engine Details 5 Conclusions 

pi/4 = arctan(ll2) + arctan(l/3) 

pi = 4( 1/2 - (1/3)(1/2)A3 + (1/5)(1/2)”5 - (1i7)(1/2)A7 + ...) + 
4( 1/3 - (1/3)(1/3)”3 + (1/5)(1/3)”5 - (1/7)(1/3)A7 + ...) 

1 2  3 4 5 6 7 8 9 10 11 12 

Figure 7. PI Engine 

Long Integer Multiply 

We have constructed some large multipliers on Tera- 
mac and believe that it holds promise for experi- 
ments with very long integer arithmetic. 

DNA String Matcher 

We have compiled a systolic string matcher which 
computes the similarity of DNA strings. It is a modi- 
fied version of a family of previous designs [8,9,10]. 
A 5000 cell long systolic string matcher compiles to 
a 500,000 gate, 1.5 MHz design on an eight board 
Teramac. 

Configurable custom computing has a promising future. 
Several researchers have used tens of FPGAs to create a 
variety of highly parallel custom machines [ll-141. 
Teramac will allow experiments using many hundreds 
of FPGAs. 

The Teramac architecture provides a routing-rich envi- 
ronment for implementing user designs due to an invest- 
ment in custom FPGA’s, MCM’s and PC boards. The 
resulting speed of compilation, tens of minutes rather 
than tens of hours, will allow another layer of abstrac- 
tion in defining highly parallel custom computers to be 
used by researchers. 

We have begun experiments on a variety of styles of 
design of custom computers. We hope that the speed of 
compilation and execution along with easy access to 
many large memory banks and multiported register files 
provided by Teramac will allow fruitful methods for the 
simple specification and synthesis of custom computers. 
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