
Teramac-Configurable Custom Computing
Rick Amerson, Richard J. Carter, W. Bruce Culbertson, Phil Kuekes, Greg Snider

Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto CA 94304

Abstract-The Teramac configurable hardware system
can execute synchronous logic designs of up to one mil-
lion gates at rates up to l megahertz. A fully configured
Teramac includes half a gigabyte of RAM and hardware
support for large multiported register files. The system
has been built from custom FPGA's packaged in large
multichip modules (MCMs). A large custom circuit
(-1,000,000 gates) may be compiled onto the hardware
in approximately 2 hours, without user intervention. The
system is being used to explore the potential of custom
computing machinery (CCM).

1 Teramac System Overview

Research on special purpose parallel architectures and
custom computing is very much an experimental sci-
ence dependent on the existence of prototypes. We have
built an FPGA-based configurable custom computing
engine to enable experiments on an interesting scale.

Teramac is a configurable hardware system comprising
1728 custom FPGAs and .5 gigabytes of RAM. It fea-
tures:

We are currently conducting experiments with an 8
board Teramac system.

2 Hardware

The Teramac system logically consists o f four major
components as shown in figure 1 :

4

t

programmable 1 hardware

FIGURE 1. System Block Diagram

(1) programmable hardware, which is configured to
functionally reproduce a user's circuit; (2) RAM, which
may be incorporated into user designs requiring mem-
ory; (3) a controller, which is responsible for controlling
the programmable hardware as well as exchanging con-
figuration and state data with an external host; and (4) a
host workstation which provides the center of control-
user interface, compiler, and debug environment. The
host connects to Teramac with a set of SCSI buses, mak-
ing it easy to upgrade the host without modifying the
Teramac hardware. The Teramac system is shown in fig-
ure 2.

"c's programmable hardware implementation is
uniform: sixteen identical PC boards are interconnected
with cables; each board carries four identical multichip
modules (MCMs); each MCM carries 27 identical

1,000,000 gate capacity for synchronous logic cir-
cuits.
up to 1 MHz clock rate.
.5 Gbytes of memory organized into 64 independent,
32-bit-wide banks, each with independent read and
write ports. Banks may be combined horizontally
and vertically to form large memories.

Fully automatic compilation.
Checkpoint restart capability.
Scalability. A minimum Teramac system (a single
board) supports designs of up to 64K gates. Addi-
tional boards may be added to expand the capacity
incrementally, up to maximum of 16 boards.

0-8186-7086-X/95 $04.00 0 1995 IEEE
32

Figure 2. Teramac Hardware

FPGAs. Thus, a fully configured Teramac contains
1,728 FPGAs.

2.1 PLASMA-custom FPGA
We investigated using standard FPGA's for Teramac,
but we ultimately designed our own-the PLASMA'
chip. PLASMA is a routing-rich FPGA that consists of
6-input, 2-output lookup tables (with configurable
latches and registers on their outputs), interconnected by
partially populated crossbar switches. We chose a cus-
tom approach for several reasons:

Compilation Time: Placement and routing time for
standard FPGA's is still much longer than is accept-
able for a custom computing machine (CCM).
Although the place and route times for a single chip

1. PLASMA: Programmable Logic And Switch MAtrix

33

Figure 3. PLASMA FPGA

ciently implemented by capitalizing on the structure
of the lookup tables in our logic cells-the lookup
table decoders could be reconfigured to implement
read and write ports; with the addition of some regis-
ter bits, we are able to configure some of the logic
cells to behave as a multiported register file slice.
The decode logic for a register file would have been
expensive to implement in standard FPGA's.

Proprietary Conjiguration Fomuzts: The vendors we
considered for supplying the PGA's had proprietary
formats for internal data they were unwilling to dis-
close to a research project with limited volume. Thus
we would have been required to use their software
tools to develop a design; our users would have
needed access to the same tools.

2.2 MCM Design

The Teramac MCM, a very large (6.13 by 7.4 inches)
MCM-C, has 27 chips, each with 408 pads [l]. The
problem we faced was one of wiring complexity in a
system which would contain hundreds of 408 pad ICs.
The total number of wires was such that we had to very
carefully balance the costs of the MCM level of connec-
tion, the PCB level, and board to board connections. By
using MCMs for the vast majority of the wires we were
able to relieve the pressure on the PCBs and the board to
board connections.

Figure 4. MCM with 27 PLASMA chips

The advantage to a very large MCM comes from Rent's
Rule [2],

110 wires = constant * average-pinout * chips OS

By putting more chips on the MCM, a large
of the total wires are removed from the PCBs, wh
intrinsically have less capacity, being limited to un
20 layers. By using an MCM C we reduced
of pins to be connected on the PCB from 11 ,O 16 to
3,264, a factor of 3.375 improvement compared to sin-
gle chip modules (SCM's). Had we attempted to use
SCM's, the area required just to mount the 27 chips on
the board would have been over 5 times the area of the
27 chip MCM, assuming the board could have been
routed.

The 27 chip MCM is shown in figure 4. Even though
much effort went into minimizing the number of layers
and vias (a major cost component), 39 layers were
required (12 layers for power planes and signal spread-
ing, 27 layers for signal routing) with 260,000 blind vias
buried in the MCM. The wire length in the vias alone is
over 2000 inches.

2.3 LogicBoards

Each board contains four MCMs which implement a
simple network of 108 identical chips. Up to 16 boards
may be interconnected via cables. Each board has 4032
signal YO pins through cables to other boards.

2.4 Controller Boards

Each logic board connects to a daughter controller board
containing four banks of 32-bit wide, 2 M deep, 2-port
static RAM, and control circuitry for interfacing the
board to the host computer. The RAM banks are con-
nected into the PLASMA network to support user
designs containing embedded memory. The controller
circuitry: (1) relays configuration data from the host, (2)
transfers state data between the memories, PLASMAS,
and the host, and (3) controls clocking and breakpoint-
ing of the PLASMA network.

3 Software

3.1 Compiler

The Teramac compiler was the principle driver of the
architecture. The desire for fast compilation of large
designs inspired separating the problem of mapping a
user circuit onto programmable hardware into smaller,
independent subproblems that could be attacked with

34

low computational complexity algorithms. This separa-
tion guided the hardware in directions that allowed for
fast compilation. As implementation problems devel-
oped or the need for choosing parameters arose, the
compiler then became a tool for exploring alternatives
and refinement.

The compiler operates on an input netlist in multiple
passes in order to perform the mapping to the Teramac
system:

Netlist Filter: The first pass of the compiler is
merely a filter that transforms the user’s input netlist
into an internal format used by the remaining passes
of the compiler. Filters have been built for Tsutsuji
netlists [3], and EDIF netlists.

Merger: The second pass transforms the original cir-
cuit of logic gates into a functionally equivalent cir-
cuit of lookup tables by f‘greedily” packing gates
into groups respecting the 6-input, 2-output limita-
tion of the lookup tables used in PLASMA, and then
computing the truth table for the resulting function
(additional heuristics in this pass also unpack and
repack groups and replicate gates to further reduce
the number of lookup tables).

Global Partitioning: The global partitioner takes the
circuit of truth tables generated by the merger and
partitions them into PLASMA chips in the Teramac
system. Partitioning begins by constructing a tree to
represent the user’s circuit. Hierarchical information
in the netlist, if present, is used to build the initial
tree, which is then refined through the use of ratio-
cut partitioning[4]. Applying the approach of Yeh
and Cheng [5], the tree guides the recursive parti-
tioning of the circuit onto the Teramac network using
min-cut partitioning algorithms [6,7]. The majority
of compiler processing time is spent in this pass.

Global Placement: Based on the results of global
partitioning, subcircuits are assigned to specific
PLASMA chips by a global placement pass.

Global Routing: The global router routes signals
between PLASMA chips. The signals to be routed
are sorted in order of fan-out, and routed one at a
time (highest fan-out first) through the network
using a “first-fit” algorithm. The output of this pass
is an assignment of signals to all of the PLASMA
pins in the network.

Local Place and Route: Once the signallpin assign-
ments have been completed by the global router,
each PLASMA chip can be individually placed and
routed. Since a PLASMA chip has the same topolog-

ical structure as the system, similar partitioning,
placement and routing algorithms are used. The
computation time depends on the complexity of the
subcircuit, with 3 seconds being a typical value.

Configuration Mapper: This pass of the compiler
simply maps the logical placement and routing of
PLASMA chips into a configuration bitstream that
can be downloaded to the Teramac hardware.

Timing Analyzer: Using a SPICE-based timing
model of PLASMA and the interconnect, along with
the placed and routed circuit, the timing analyzer
predicts the maximum clock rate at which the com-
piled circuit will run in Teramac. Measured maxi-
mum clock rates for the custom computers run thus
far on Teramac agree well with the timing analyzer’s
predictions.

The largest circuit we have compiled, containing
approximately 1,000,000 gates, required about 2 hours
of compilation time. Smaller circuits require much less
time: a 170,000 gate circuit requires about 18 minutes,
and a 60,000 gate circuit about 5 minutes (on an HP 735
workstation). After the Merger pass, compilation could
be distributed across several workstations via a network
to speed it up further, but we have not pursued this.

3.2 Meltdown Protection
Configurable hardware, while quite versatile, is at sig-
nificant risk from user designs which may not work cor-
rectly. Multiple outputs can be accidentally connected
together damaging the system, requiring expensive
component replacement. To prevent this, we developed
a verification program which checks every design for
consistency before it is downloaded to the Teramac
hardware. This program, TMID (pronounced timid),
short for “Three Mile Island Defense,” ensures that bugs
in a user design will not physically damage the hard-
ware. TMID verifies consistency between chips as well
as within chips.

Downloading a design could potentially cause problems
as configurations are being established, but the interme-
diate state is invalid. Chips are disabled during configu-
ration to prevent problems with the random bit patterns
which appear.

3.3 User Interface
The Teramac user interface makes it easy to focus on
results, not the tool. Custom screens can be configured
to display the internal state of a design in a convenient
format. A filter capability allows the user to intercept the

35

bits before they reach the output screen and transform
them to a different format, even graphics if desired.
Mnemonic signal names are easily handled in user dis-
play windows. Assigning probe points on the design
allows monitoring any signal in the original schematic.
The user interface recreates signals that exist on the
original schematic but were subsumed into lookup
tables on the Teramac. Single stepping, tracing, and
hardware breakpoints are built in. Breakpoints can be
triggered by logic signals or configured to occur after a
fixed number of cycles.

4 Experiments

Teramac has already given us some insight into the real
challenges of reconfigurable computing. The following
four custom engines have been implemented in Tera-
mac. This is very much an experimental science and
good debugging tools are essential when the bug in
question may lie in the initial algorithm, the custom par-
allel design, the mapping to PGA’s by the compiler, or
the prototype hardware of Teramac

Bubble Sort

One of our first experimental designs was a bubble
sort engine using the multiported register files. By
cascading register slices it is possible to sort very
wide fields. By using the multiple read and write
ports the engine could read a consecutive pair of
words, swap them if needed, and rewrite them in the
sorted order. Four such engines run in parallel each
working on a quarter of the list to be sorted. A 20-bit
wide, 64 word deep bubble sorter has been run at 1
MHz.

Graph Partitioning

The graph partitioning engine is a special purpose
cellular automata which uses a random search to par-
tition a graph into equal halves with a minimal num-
ber of edges cut between the halves. As shown in
figure 5 the automata (a simple 2D mesh for this
example) begins with a random assignment of cells
to the partitions, labeled 0 and 1. Logic in each cell
computes the total number of edge crossings, the
sum of edge crossings and the absolute difference of
the number of 1 cells and 0 cells to determine a
“cost” of a trial partition. The configuration is ran-
domly perturbed and the best results are kept. A
“temperature” which limits the freedom to explore
the configuration space is adjustable. We have run a
28 by 28 array (corresponding to a graph with 784
nodes) on Teramac. It took 651,105 clocks to find the
optimal solution shown in figure 6. (This test array
has an obvious optimal solution; practical designs
would not). The partitioning engine has 73,000 gates
and runs at 480 kHz.

Pi

Another test design built on Teramac is a systolic
array for computing pi to an arbitrary number of dig-
its. The design shown in figure 7, uses the trigono-
metric identity pi/4 = arctan(1R) + arctan(1/3). All
arithmetic is done in decimal. We add one cell for
each digit of pi to be computed. A 120 digit pi
engine has 200,000 gates and runs at 500,000 kHz.

Figure 5. Initial configuration before partitioning. Figure 6. Configuration after partitioning.

36

PI-Engine Details 5 Conclusions

pi/4 = arctan(ll2) + arctan(l/3)

pi = 4(1/2 - (1/3)(1/2)A3 + (1/5)(1/2)”5 - (1i7)(1/2)A7 + ...) +
4(1/3 - (1/3)(1/3)”3 + (1/5)(1/3)”5 - (1/7)(1/3)A7 + ...)

1 2 3 4 5 6 7 8 9 10 11 12

Figure 7. PI Engine

Long Integer Multiply

We have constructed some large multipliers on Tera-
mac and believe that it holds promise for experi-
ments with very long integer arithmetic.

DNA String Matcher

We have compiled a systolic string matcher which
computes the similarity of DNA strings. It is a modi-
fied version of a family of previous designs [8,9,10].
A 5000 cell long systolic string matcher compiles to
a 500,000 gate, 1.5 MHz design on an eight board
Teramac.

Configurable custom computing has a promising future.
Several researchers have used tens of FPGAs to create a
variety of highly parallel custom machines [ll-141.
Teramac will allow experiments using many hundreds
of FPGAs.

The Teramac architecture provides a routing-rich envi-
ronment for implementing user designs due to an invest-
ment in custom FPGA’s, MCM’s and PC boards. The
resulting speed of compilation, tens of minutes rather
than tens of hours, will allow another layer of abstrac-
tion in defining highly parallel custom computers to be
used by researchers.

We have begun experiments on a variety of styles of
design of custom computers. We hope that the speed of
compilation and execution along with easy access to
many large memory banks and multiported register files
provided by Teramac will allow fruitful methods for the
simple specification and synthesis of custom computers.

6 Acknowledgments

Teramac was originally conceived by Barry Shackleford
and Bob Rau. Greg Snider has been the chief architect
and compiler writer. Rick Amerson has provided man-
agement and contributed to the PLASMA architecture.
Phil Kuekes is project manager and has contributed to
both the architecture and the MCM design. Brian Jung,
Sue Blockstein, Lyle Albertson, and Tom Myers
designed PLASMA. Peter Maxwell developed the chip
yield model for PLASMA. Dick Carter defined the user
interface, created numerous custom computing designs,
and contributed to the compiler. Bruce Culbertson cre-
ated the system test code. Wulf Rehder developed test
algorithms. Arnie Berger and Andy Blasciak designed
and implemented the system hardware. Dan Kary devel-
oped the control and user interface software. Martin
Guth developed the MCM wire-bonding process.

References

[l] R. Amerson and P. Kuekes, “A Twenty-Seven Chip MCM-
c,” Proceedings of the 1994 International Conference on Mul-
tichip Modules, pages 578-582.
[2] B. Landman and R. Russo, “On a Pin vs. Block Relation-
ship for Partitions of Logic Graphs,” IEEE Transactions on
Computers, December 1971, pages 1469-1479.

In addition we are developing applications in the areas
of cellular automata, stochastic neural nets, and multi-
dimensional convolution. The compiler predicts that
highly pipelined designs will run at close to 3 MHz.

37

[3] W. B. Culbertson, T. Osame, Y. Otsuru, J. B. Shackleford,
M. Tanaka, “The HP Tsutsuji Logic Synthesis System,”
Hewlett-Packard Journal, August 1993, pages 38-51.
[4] Y. C. Wei and C. K. Cheng, “Toward Efficient Hierarchical
Designs by Ratio Cut Partitioning,” Proc. IEEE International
Conference on Computer- Aided Design, 1989, pages 298-
301.
[5] Ching-Wei Yeh and Chung-Kuan Cheng, “A General Pur-
pose Multiple Way Partitioning Algorithm,” Roc. 28th ACW
IEEE Design Automation Conference, 1991, pages 421-426

[6] Balakrishnan Krishnamurthy, “An Improved Min- Cut
Algorithm For Partitioning VLSI Networks,” IEEE Transac-
tions on Computers, Vol C-33, No 5, May 1984, pages 438-
446.
[7] Laura A. Sanchis, “Multiple-Way Network Partitioning,”
IEEE Transactions on Computers, Vol. 38, No. 1, January
1989, pages 62-81.
[8] R. J. Lipton and D. P. Lopresti, “A Systolic Array for
Rapid String Comparison,” 1985 Chapel Hill Conference on
VLSI, H. Fuchs, Ed. Computer Science Press, pages 363-376.

[9] Daniel P. Lopresti, “P-NAC: a Systolic Array for Compar-
ing Nucleic Acid Sequences,” Computer, July 1987, pages 98-
99.
[101 Dzung T. Hoang, “Searching Genetic Databases on
Splash 2,” Proceedings of IEEE Workshop on FPGAs for Cus-
tom Computing Machines, 1993, pages 185-191.
[111 Patrice Bertin, Didier Roncin, and Jean Vuillemin, “Intro-
duction to programmable active memories,” in Systolic Array
Processors, Prentice-Hall, 1989, pages 301-309.

[12] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,”
Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1992, pages 3 16-322.

[131 J. Babb, R. Tessier, and A. Agarwal, “Virtual Wires:
Overcoming Pin Limitations in FPGA-based Logic Emula-
tors,” Proceedings, IEEE Workshop on PGA-based Custom
Computing Machines, Napa, CA, April 1993, pages 142-151.
[14] S. Casselman, “Virtual Computing, “ Proceedings of the
IEEE Workshop on FPGAs for Custom Computing Machines,
Napa, CA, April 1993, pages 43-48.

38

