
Section 4.4
Recursive Algorithms

A recursive algorithm is one which calls    itself    to solve
“smaller” versions of an input problem.

How it works:

 • The current status of the algorithm is placed on a
stack.

A stack is a data structure from which entries can be added
and deleted only from one end.

- like the plates in a cafeteria:

TOP

PUSH: put a 'plate' on the stack.

POP: take a 'plate' off the stack.

When an algorithm calls itself, the current activation is
suspended in time and its parameters are PUSHed on a
stack.

The set of parameters need to restore the algorithm to its
current activation is called an activation record.

___________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 4.4

Prepared by: David F. McAllister TP 1 ©1999, 2007 McGraw-Hill



Example:

procedure factorial (n)
/* make the procedure idiot proof */

if n < 0 return 'error'
if n = 0 then return 1

else
return n factorial (n-1)

The operating system supplies all the necessary facilities to
produce:

factorial (3): PUSH 3 on stack and call

factorial (2): PUSH 2 on stack and call

factorial (1): PUSH 1 on stack and call

factorial (0): return 1

POP 1 from stack and return (1) (1)

POP 2 from the stack and return (2) [(1) (1)]

POP 3 from the stack and return (3) [(2) [(1) (1)]]

_________________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 4.4

Prepared by: David F. McAllister TP 2 ©1999, 2007 McGraw-Hill



Complexity:

Let f(n) be the number of multiplications required to
compute factorial (n).

f(0) = 0: the initial condition

f(n) = 1 + f(n-1): the recurrence equation
____________________

Example:

A recursive procedure to find the max of a    nonvoid    list.

Assume we have a built-in functions called

• Length which returns the number of elements in a
list

• Max which returns the larger of two values

• Listhead which returns the first element in a list

Max requires one comparison.

procedure maxlist (list)
/* strip off head of list and pass the remainder */

if Length(list) = 1 then
return Listhead(list)

else
return Max( Listhead(list), maxlist 

(remainder of list))

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 4.4

Prepared by: David F. McAllister TP 3 ©1999, 2007 McGraw-Hill



The recurrence equation for the number of comparisons
required for a list of length n, f(n), is

• f(1) = 0
• f(n) = 1 + f(n-1)

_________________

Example:

If we assume the length is a power of 2:

• We divide the list in half and find the maximum of
each half.

• Then find the Max of the maximum of the two
halves.

procedure maxlist2 (list)
/* a divide and conquer approach */

if Length (list) = 1 then
return Listhead(list)

else
a = maxlist (fist half of list)
b = maxlist (second half of list)

return Max{a, b}

Recurrence equation for the number of comparisons
required for a list of length n, f(n), is

• f(1) = 0
• f(n) = 2 f(n/2) + 1

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 4.4

Prepared by: David F. McAllister TP 4 ©1999, 2007 McGraw-Hill



• There are two calls to maxlist  each of which
requires f(n/2) operations to find the max.

• There is one comparison required by the Max
function.

If n = 16:

Divide list in half

Divide list in half Divide list in half

 X X X X X X X X X X X X X X X X

f(16) = 2 f(8) + 1
f(8) = 2 f(4) + 1
f(4) = 2 f(2) + 1
f(2) = 2 f(1) + 1

So

f(2) = 1,
f(4) = 2 (1) + 1 = 3
f(8) = 2 (3) + 1 = 7
f(16) = 2(7) + 1 = 15
f(n)?

_____________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 4.4

Prepared by: David F. McAllister TP 5 ©1999, 2007 McGraw-Hill


