Section 4.4 Recursive Algorithms

A recursive algorithm is one which calls itself to solve "smaller" versions of an input problem.

How it works:

- The current status of the algorithm is placed on a stack.

A stack is a data structure from which entries can be added and deleted only from one end.

- like the plates in a cafeteria:

PUSH: put a 'plate' on the stack.
POP: take a 'plate' off the stack.
When an algorithm calls itself, the current activation is suspended in time and its parameters are PUSHed on a stack.

The set of parameters need to restore the algorithm to its current activation is called an activation record.

Example:

```
procedure factorial (n)
/* make the procedure idiot proof */
    if \(\mathrm{n}<0\) return 'error'
    if \(\mathrm{n}=0\) then return 1
else
    return n factorial ( \(\mathrm{n}-1\) )
```

The operating system supplies all the necessary facilities to produce:
factorial (3): PUSH 3 on stack and call
factorial (2): PUSH 2 on stack and call
factorial (1): PUSH 1 on stack and call
factorial (0): return 1
POP 1 from stack and return (1) (1)
POP 2 from the stack and return (2) [(1) (1)]
POP 3 from the stack and return (3) [(2) [(1) (1)]]

Complexity:

Let $f(n)$ be the number of multiplications required to compute factorial (n).

$$
\begin{aligned}
& \mathrm{f}(0)=0: \text { the initial condition } \\
& \mathrm{f}(\mathrm{n})=1+\mathrm{f}(\mathrm{n}-1): \text { the recurrence equation }
\end{aligned}
$$

Example:

A recursive procedure to find the max of a nonvoid list.
Assume we have a built-in functions called

- Length which returns the number of elements in a list
- Max which returns the larger of two values
- Listhead which returns the first element in a list

Max requires one comparison.
procedure maxlist (list)
/* strip off head of list and pass the remainder */

if Length(list) $=1$ then return Listhead(list) else
return Max(Listhead(list), maxlist (remainder of list))

The recurrence equation for the number of comparisons required for a list of length $n, f(n)$, is

- $\mathrm{f}(1)=0$
- $\mathrm{f}(\mathrm{n})=1+\mathrm{f}(\mathrm{n}-1)$

Example:
If we assume the length is a power of 2 :

- We divide the list in half and find the maximum of each half.
- Then find the Max of the maximum of the two halves.

procedure maxlist2 (list)

/* a divide and conquer approach */
if Length (list) $=1$ then
return Listhead(list)
else
$\mathrm{a}=\operatorname{maxlist}$ (fist half of list)
$\mathrm{b}=$ maxlist (second half of list)
return $\operatorname{Max}\{\mathrm{a}, \mathrm{b}\}$
Recurrence equation for the number of comparisons required for a list of length $n, f(n)$, is

- $\mathrm{f}(1)=0$
- $\mathrm{f}(\mathrm{n})=2 \mathrm{f}(\mathrm{n} / 2)+1$
- There are two calls to maxlist each of which requires $f(n / 2)$ operations to find the max.
- There is one comparison required by the Max function.

If $\mathrm{n}=16$:

$$
\begin{aligned}
& \mathrm{f}(16)=2 \mathrm{f}(8)+1 \\
& \mathrm{f}(8)=2 \mathrm{f}(4)+1 \\
& \mathrm{f}(4)=2 \mathrm{f}(2)+1 \\
& \mathrm{f}(2)=2 \mathrm{f}(1)+1
\end{aligned}
$$

So

$$
\begin{aligned}
& \mathrm{f}(2)=1, \\
& \mathrm{f}(4)=2(1)+1=3 \\
& \mathrm{f}(8)=2(3)+1=7 \\
& \mathrm{f}(16)=2(7)+1=15 \\
& \mathrm{f}(\mathrm{n}) ?
\end{aligned}
$$

