Section 1.3
 Predicates and Quantifiers

A generalization of propositions - propositional functions or predicates.: propositions which contain variables

Predicates become propositions once every variable is bound- by

- assigning it a value from the Universe of Discourse U
or
- quantifying it

Examples:

Let $\mathrm{U}=\mathrm{Z}$, the integers $=\{\ldots-2,-1,0,1,2,3, \ldots\}$

- $\mathrm{P}(\mathrm{x}): \mathrm{x}>0$ is the predicate. It has no truth value until the variable x is bound.

Examples of propositions where x is assigned a value:

- $\mathrm{P}(-3)$ is false,
- $P(0)$ is false,
- $\mathrm{P}(3)$ is true.

The collection of integers for which $\mathrm{P}(\mathrm{x})$ is true are the positive integers.

- $P(y) \vee \neg P(0)$ is not a proposition. The variable y has not been bound. However, $P(3) \vee \neg P(0)$ is a proposition which is true.
- Let R be the three-variable predicate $R(x, y z): x+y$ $=\mathrm{Z}$

Find the truth value of

$$
\mathrm{R}(2,-1,5), \quad \mathrm{R}(3,4,7), \mathrm{R}(\mathrm{x}, 3, \mathrm{z})
$$

Quantifiers

- Universal

$P(x)$ is true for every x in the universe of discourse.
Notation: universal quantifier

$$
\forall x P(x)
$$

'For all x, P(x)', 'For every x, P(x)'
The variable x is bound by the universal quantifier producing a proposition.

Example: $\mathrm{U}=\{1,2,3\}$

$$
\forall x P(x) \Leftrightarrow P(1) \wedge P(2) \wedge P(3)
$$

- Existential

$\mathrm{P}(\mathrm{x})$ is true for some x in the universe of discourse.
Notation: existential quantifier

$$
\exists x P(x)
$$

'There is an x such that $\mathrm{P}(\mathrm{x})$,' 'For some $\mathrm{x}, \mathrm{P}(\mathrm{x})$ ', 'For at least one $\mathrm{x}, \mathrm{P}(\mathrm{x})$ ', 'I can find an x such that $\mathrm{P}(\mathrm{x})$.'

Example: U=\{1,2,3\}

$$
\exists x P(x) \Leftrightarrow P(1) \vee P(2) \vee P(3)
$$

- Unique Existential

$\mathrm{P}(\mathrm{x})$ is true for one and only one x in the universe of discourse.

Notation: unique existential quantifier

$$
\exists!x P(x)
$$

'There is a unique x such that $\mathrm{P}(\mathrm{x})$, ,' There is one and only one x such that $\mathrm{P}(\mathrm{x})$, , 'One can find only one x such that $\mathrm{P}(\mathrm{x})$.'

Example:

$$
\mathrm{U}=\{1,2,3\}
$$

Truth Table:

$\mathrm{P}(1)$	$\mathrm{P}(2)$	$\mathrm{P}(3)$	$\exists!x P(x)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

How many minterms are in the DNF?

Note:

REMEMBER!

A predicate is not a proposition until all variables have been bound either by quantification or assignment of a value!

Equivalences involving the negation operator

$$
\begin{aligned}
& \neg \forall x P(x) \Leftrightarrow \exists x \neg P(x) \\
& \neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)
\end{aligned}
$$

Distributing a negation operator across a quantifier changes a universal to an existential and vice versa.

Multiple Quantifiers: read left to right . . .

Example: Let $\mathrm{U}=\mathrm{R}$, the real numbers,
$P(x, y): x y=0$

$$
\begin{aligned}
& \forall x \forall y P(x, y) \\
& \forall x \exists y P(x, y) \\
& \exists x \forall y P(x, y) \\
& \exists x \exists y P(x, y)
\end{aligned}
$$

The only one that is false is the first one.
Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is the predicate $\mathrm{x} / \mathrm{y}=1$?

Example:

Let $\mathrm{U}=\{1,2,3\}$. Find an expression equivalent to

$$
\forall x \exists y P(x, y)
$$

where the variables are bound by substitution instead:

Expand from inside out or outside in.

Outside in:

$$
\begin{aligned}
& \exists y P(1, y) \wedge \exists y P(2, y) \wedge \exists y P(3, y) \\
& \Leftrightarrow[P(1,1) \vee P(1,2) \vee P(1,3)] \wedge \\
& {[P(2,1) \vee P(2,2) \vee P(2,3)] \wedge} \\
& {[P(3,1) \vee P(3,2) \vee P(3,3)]}
\end{aligned}
$$

Converting from English

(can be very difficult)

Examples:

$F(x): x$ is a fleegle
$S(x)$: x is a snurd
$T(x)$: x is a thingamabob
$\mathrm{U}=\{$ fleegles, snurds, thingamabobs $\}$
(Note: the equivalent form using the existential quantifier is also given)

- Everything is a fleegle

$$
\begin{aligned}
& \forall x F(x) \\
& \Leftrightarrow \neg \exists x \neg F(x)
\end{aligned}
$$

- Nothing is a snurd.

$$
\begin{aligned}
& \forall x \neg S(x) \\
& \Leftrightarrow \neg \exists x S(x)
\end{aligned}
$$

- All fleegles are snurds.

$$
\begin{aligned}
& \forall x[F(x) \rightarrow S(x)] \\
& \Leftrightarrow \forall x[\neg F(x) \vee S(x)] \\
& \Leftrightarrow \forall x \neg[F(x) \wedge \neg S(x)] \\
& \Leftrightarrow \neg \exists x[F(x) \wedge \neg S(x)]
\end{aligned}
$$

- Some fleegles are thingamabobs.

$$
\begin{aligned}
& \exists x[F(x) \wedge T(x)] \\
& \Leftrightarrow \neg \forall x[\neg F(x) \vee \neg T(x)]
\end{aligned}
$$

- No snurd is a thingamabob.

$$
\begin{gathered}
\forall x[S(x) \rightarrow \neg T(x)] \\
\Leftrightarrow \neg \exists x[S(x) \wedge T(x)]
\end{gathered}
$$

- If any fleegle is a snurd then it's also a thingamabob

$$
\begin{gathered}
\forall x[(F(x) \wedge S(x)) \rightarrow T(x)] \\
\Leftrightarrow \neg \exists x[F(x) \wedge S(x) \wedge \neg T(x)]
\end{gathered}
$$

Extra Definitions:

- An assertion involving predicates is valid if it is true for every universe of discourse.
- An assertion involving predicates is satisfiable if there is a universe and an interpretation for which the assertion is true. Else it is unsatisfiable.
- The scope of a quantifier is the part of an assertion in which variables are bound by the quantifier

Examples:
Valid: $\forall x \neg S(x) \leftrightarrow \neg \exists x S(x)$
Not valid but satisfiable: $\forall x[F(x) \rightarrow T(x)]$
Not satisfiable: $\forall x[F(x) \wedge \neg F(x)]$
Scope: $\forall x[F(x) \vee S(x)]$ vs. $\forall x[F(x)] \vee \forall x[S(x)]$

Dangerous situations:

- Commutativity of quantifiers

$$
\begin{gathered}
\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y) ? \\
\text { YES! } \\
\forall x \exists y P(x, y) \Leftrightarrow \exists y \forall x P(x, y) ? \\
\text { NO! } \\
\text { DIFFERENT MEANING! }
\end{gathered}
$$

- Distributivity of quantifiers over operators

$$
\begin{gathered}
\forall x[P(x) \wedge Q(x)] \Leftrightarrow \forall x P(x) \wedge \forall x Q(x) ? \\
\mathrm{YES}! \\
\forall x[P(x) \rightarrow Q(x)] \Leftrightarrow[\forall x P(x) \rightarrow \forall x Q(x)] ? \\
\mathrm{NO}!
\end{gathered}
$$

