Section 1.2
 Propositional Equivalences

A tautology is a proposition which is always true.
Classic Example: $\mathrm{P} \vee \neg \mathrm{P}$

A contradiction is a proposition which is always false.
Classic Example: $\mathrm{P} \wedge \neg \mathrm{P}$

A contingency is a proposition which neither a tautology nor a contradiction.

Example: $(P \vee Q) \rightarrow \neg R$

Two propositions P and Q are logically equivalent if $\mathrm{P} \leftrightarrow \mathrm{Q}$ is a tautology. We write

$$
\mathrm{P} \Leftrightarrow \mathrm{Q}
$$

Example: $(P \rightarrow Q) \wedge(Q \rightarrow P) \Leftrightarrow(P \leftrightarrow Q)$

Proof:

The left side and the right side must have the same truth values independent of the truth value of the component propositions.

To show a proposition is not a tautology: use an abbreviated truth table

- try to find a counter example or to disprove the assertion.
- search for a case where the proposition is false

Case 1: Try left side false, right side true
Left side false: only one of $P \rightarrow Q$ or $Q \rightarrow P$ need be false.

1a. Assume $P \rightarrow Q=\mathrm{F}$.
Then $P=T, Q=F$. But then right side $P \leftrightarrow Q=F$. Oops, wrong guess.

1b. Try $Q \rightarrow P=\mathrm{F}$. Then $\mathrm{Q}=\mathrm{T}, \mathrm{P}=\mathrm{F}$. Then $\mathrm{P} \leftrightarrow \mathrm{Q}$ $=\mathrm{F}$. Another wrong guess.

Case 2. Try left side true, right side false

If right side is false, P and Q cannot have the same truth value.

2a. Assume $\mathrm{P}=\mathrm{T}, \mathrm{Q}=\mathrm{F}$.
Then $P \rightarrow Q=\mathrm{F}$ and the conjunction must be false so the left side cannot be true in this case. Another wrong guess.

2b. Assume $\mathrm{Q}=\mathrm{T}, \mathrm{P}=\mathrm{F}$.
Again the left side cannot be true.
We have exhausted all possibilities and not found a counterexample. The two propositions must be logically equivalent.

Note: Because of this equivalence, if and only if or iff is also stated as is a necessary and sufficient condition for.

Some famous logical equivalences:

$$
\begin{aligned}
& P \wedge T \Leftrightarrow P \\
& P \vee F \Leftrightarrow P \\
& P \vee T \Leftrightarrow T \\
& P \wedge F \Leftrightarrow F \\
& P \vee P \Leftrightarrow P \\
& P \wedge P \Leftrightarrow P \\
& \neg(\neg P)) \Leftrightarrow P \\
& P \vee Q \Leftrightarrow Q \vee P \\
& P \wedge Q \Leftrightarrow Q \wedge P \\
& (P \vee Q) \vee R \Leftrightarrow P \vee(Q \vee R) \\
& (P \wedge Q) \wedge R \Leftrightarrow P \wedge(Q \wedge R)
\end{aligned}
$$

$$
\begin{array}{ll}
P \wedge(Q \vee R) \Leftrightarrow & \text { Distributivity } \\
(P \wedge Q) \vee(P \wedge R) & \\
P \vee(Q \wedge R) \Leftrightarrow & \\
(P \vee Q) \wedge(P \vee R) & \\
\neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q & \text { DeMorgan's laws } \\
\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q & \\
P \rightarrow Q \Leftrightarrow \neg P \vee Q & \text { Implication } \\
P \vee \neg P \Leftrightarrow T & \text { Tautology } \\
P \wedge \neg P \Leftrightarrow F & \text { Contradiction } \\
P \wedge T \Leftrightarrow P & \\
P \vee F \Leftrightarrow P & \\
(P \rightarrow Q) \wedge(Q \rightarrow P) \Leftrightarrow & \text { Equivalence } \\
(P \leftrightarrow Q) & \\
(P \rightarrow Q) \wedge(P \rightarrow \neg Q) \Leftrightarrow & \text { Absurdity } \\
\neg P & \\
(P \rightarrow Q) \Leftrightarrow(\neg Q \rightarrow \neg P) & \text { Contrapositive } \\
P \vee(P \wedge Q) \Leftrightarrow P & \text { Absorption } \\
P \wedge(P \vee Q) \Leftrightarrow P & \\
(P \wedge Q) \rightarrow R \Leftrightarrow & \text { Exportation } \\
P \rightarrow(Q \rightarrow R) &
\end{array}
$$

Note: equivalent expressions can always be substituted for each other in a more complex expression - useful for simplification.

Normal or Canonical Forms

Unique representations of a proposition

Examples:

Construct a simple proposition of two variables which is true only when

- P is true and Q is false:

$$
P \wedge \neg Q
$$

- P is true and Q is true:

$$
P \wedge Q
$$

- P is true and Q is false or P is true and Q is true: $(P \wedge \neg Q) \vee(P \wedge Q)$

A disjunction of conjunctions where

- every variable or its negation is represented once in each conjunction (a minterm)
- each minterms appears only once

Disjunctive Normal Form (DNF)

Important in switching theory, simplification in the design of circuits.

Method: To find the minterms of the DNF.

- Use the rows of the truth table where the proposition is 1 or True
- If a zero appears under a variable, use the negation of the propositional variable in the minterm
- If a one appears, use the propositional variable.

Example:
Find the DNF of $(P \vee Q) \rightarrow \neg R$
P
$(P \vee Q) \rightarrow \neg R$
0
0
0
0
1
1
1
1
Q
R
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1

There are 5 cases where the proposition is true, hence 5 minterms. Rows $1,2,3,5$ and 7 produce the following disjunction of minterms:
$(P \vee Q) \rightarrow \neg R$
$\Leftrightarrow(\neg P \wedge \neg Q \wedge \neg R) \vee(\neg P \wedge \neg Q \wedge R) \vee(\neg P \wedge Q \wedge \neg R)$
$\vee(P \wedge \neg Q \wedge \neg R) \vee(P \wedge Q \wedge \neg R)$
产

Note that you get a Conjunctive Normal Form (CNF) if you negate a DNF and use DeMorgan's Laws.

