Section 1.2 Propositional Equivalences

A *tautology* is a proposition which is always <u>true</u>.

Classic Example: $P \neg P$

A contradiction is a proposition which is always false.

Classic Example: $P \neg P$

A *contingency* is a proposition which neither a tautology nor a contradiction.

Example: $(P \ Q) \neg R$

Two propositions P and Q are *logically equivalent* if P = Q is a tautology. We write

P Q

Example: $(P \quad Q) \quad (Q \quad P) \quad (P \quad Q)$

Proof:

The left side and the right side must have the same truth values <u>independent</u> of the truth value of the component propositions.

To show a proposition is not a tautology: use an *abbreviated* truth table

- try to find a *counter example* or to *disprove* the assertion.

- search for a case where the proposition is false

Case 1: Try left side false, right side true

Left side false: only one of P Q or Q P need be false.

1a. Assume P = Q = F. Then P = T, Q = F. But then right side P = Q = F. Oops, wrong guess.

1b. Try Q P = F. Then Q = T, P = F. Then P Q = F. Another wrong guess.

Case 2. Try left side true, right side false

If right side is false, P and Q cannot have the same truth value.

2a. Assume P =T, Q = F. Then P = Q = F and the conjunction must be false so the left side cannot be true in this case. Another wrong guess.

2b. Assume Q = T, P = F. Again the left side cannot be true.

We have exhausted all possibilities and not found a counterexample. The two propositions must be logically equivalent.

Note: Because of this equivalence, *if and only if* or *iff* is also stated as *is a necessary and sufficient condition for*.

Some famous logical equivalences:

Р	Т	Р	Logical Equivalence Identity	S
P P	$F \\ T$	Р Т	Dominatio	n
P P	F P	F P	Idempoten	су
P	$P \rightarrow P$	P P	Double ne	gation
P	Q	Q P	Commutat	ivity
Р (Р	Q Q)	Q P R F	(Q R) Associativ	ity
(<i>P</i>	Q)	R P	(Q R)	

P (Q R)	Distributivity
(P Q) (P R)	
P (Q R)	
$(P Q) (P R) \neg (P Q) \neg P \neg Q$	DeMorgan's laws
$\neg (P Q) \neg P \neg Q$ $P Q \neg P Q$ $P \neg P T$	Implication Tautology
$\begin{array}{ccc} P & \neg P & F \\ P & T & P \end{array}$	Contradiction
$\begin{array}{ccc} P & F & P \\ (P & Q) & (Q & P) \end{array}$	Equivalence
$(P Q) \\ (P Q) (P \neg Q)$	Absurdity
$ \begin{array}{c} \neg P \\ (P Q) \\ P (P Q) \end{array} \begin{pmatrix} \neg Q & \neg P \end{pmatrix} \\ P (P Q) P \end{array} $	Contrapositive Absorption
$\begin{array}{ccc} P & (P & Q) & P \\ (P & Q) & R \end{array}$	Exportation
P (Q R)	

Note: equivalent expressions can always be substituted for each other in a more complex expression - useful for simplification.

Normal or Canonical Forms

Unique representations of a proposition

Examples:

Construct a <u>simple</u> proposition of two variables which is true only when

- P is true and Q is false: $P \neg Q$
- P is true and Q is true: $P \quad Q$
- P is true and Q is false or P is true and Q is true: $(P \neg Q) \quad (P Q)$

A disjunction of conjunctions where

- every variable or its negation is represented once in each conjunction (a *minterm*)

- each minterms appears only once

Disjunctive Normal Form (DNF)

Important in switching theory, simplification in the design of circuits.

Method: To find the minterms of the DNF.

• Use the rows of the truth table where the proposition is 1 or True

• If a zero appears under a variable, use the negation of the propositional variable in the minterm

• If a one appears, use the propositional variable.

Example:

Find the DNF of $(P \ Q) \neg R$

Р	Q	R	(P Q)	$\neg R$
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

There are 5 cases where the proposition is true, hence 5 minterms. Rows 1,2,3, 5 and 7 produce the following disjunction of minterms:

$$(P \ Q) \neg R$$

$$(\neg P \ \neg Q \ \neg R) (\neg P \ \neg Q \ R) (\neg P \ Q \ \neg R)$$

$$(P \ \neg Q \ \neg R) (P \ Q \ \neg R) (P \ Q \ \neg R) (P \ Q \ \neg R)$$

Note that you get a *Conjunctive Normal Form* (CNF) if you negate a DNF and use DeMorgan's Laws.