
A Very Brief Introduction to pvs

Tamarah Arons

tamarah�wisdom�weizmann�ac�il

May ��� ����

The pvs system is an extensive� well�documented� deductive veri�cation system� It is
impossible to summarize all its features in a short document� The purpose of this document
is to brie�y introduce the user to the pvs system and some of the more frequently used
commands� The full pvs documentation is available at �verify�PVS����	�Doc� �

In Section 	 we give an overview of the sequent calculus which forms the theoretical basis
for the pvs proof system� In Section � we de�ne some basic concepts in the pvs system�
in Section 
 overview the speci�cation language� and in Section � explain how to run pvs�
Section � details some useful prover features� Appendices A and B summarize the most
frequently used system and prover commands� respectively�

� The Logic of pvs

In this section we examine the theoretical basis underlying the pvs logic�
The pvs prover maintains a proof tree� and it is the goal of the user to construct a proof

tree which is complete� in the sense that all the leaves are recognized as true� Each node of
the proof tree is a proof goal� from which its o�spring nodes follow by a proof step�

Each proof goal is a sequent consisting of a sequence of antecedent formulas� and a se�
quence of consequent formulas� Together� the antecedents and the consequents are called the
sequent formulas�

We will let  and � represent ��nite� sequences of formulas� and p q� pi and qi� represent
individual formulas�

Sequents are represented in the form p�� p�� � � � � pn � q�� q�� � � � � qm� where the formulas
preceding the turnstile are the antecedents� and the formulas after the turnstile are the
consequents� The intuitive interpretation of a sequent is that

�free � �p� � p� � � � � � pn�� �q� � q� � � � � � qm�

where free denotes the free �unbound� variables�
The system uses backwards reasoning� That is� each proof step results in sequent�s� that

are at least as strong as the previous one� The root of the tree is the sequent � q� where q
is the theorem to be proved�

	



��� Axioms

Three axioms are used to recognize leaf sequents as true�� They are�

A	 � � p � �� p
A� �  � ��t
A
 � � f � �

That is� A	 asserts that a sequent is true if any antecedent is the same as any consequent�
�Clearly� it is always the case that � p� �� p�� Axiom A� states that a sequent is true if
any of its consequents are true and axiom A
 that a sequent is true if any of its antecedents
are false�

��� Proof Rules

In this section we present some of the proof rules used to add subtrees to the proof tree�

����� Propositional Rules

We consider rules for the basic operators of conjunction� disjunction and negation� noting
that implications can be converted to these operators�

We �rst present four non�expanding propositional rules� These are rules in which a single
sequent is derived from a parent��

 � �� p � q � p � q � �
 � �� p� q � p� q � �

��p � �  � ���p
 � �� p � p � �

The �rst two rules allow consequent disjuncts and antecedent conjuncts to be �attened� so
that two formulas are obtained from one�

The second two rules allow negated antecedent or consequent formulas to become non�
negated consequent or antecedent formulas� respectively�

We next present two expanding propositional rules�� These rules derive a subtree of two
sequents�

� p � q � �  � �� p � q
� p � � � q � �  � �� p  � �� q

That is� the �rst rule states that in order to prove that  � �p � q� � � it is su�cient to
prove both that  � p� � and that  � q � ��

�The application of these three axioms corresponds roughly to the pvs assert command�
�The non�expanding propositional rules correspond to the pvs flatten command�
�The expanding propositional rules correspond to the split command�
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����� Quanti�er Rules

The notation pfx� tg represents the result of substituting the term t for all free occurrences
of x in p�

The following two rules represent the process of skolemization�� They require that t be
a new constant that does not occur in the sequent�

� ��x � p� � �  � �� ��x � p�

� pfx� tg � �  � �� pfx� tg

The next two rules represent the e�ect of instantiation���There is no requirement that t
be a new constant��

� ��x � p� � �  � �� ��x � p�

� ��x � p�� pfx� tg � �  � �� ��x � p�� pfx� tg

����� Strengthening Rules

The above rules neither strengthened or weakened the sequent� We present two rules which
allow a stronger sequent to be derived from a weaker one by removing formulas��

� p � �  � �� p
 � �  � �

� The pvs Veri�cation System � Basic De�nitions

Speci�cation �les are ordinary text �les� written in the pvs speci�cation language� generally
prepared using the pvs emacs editor interface� They have a �pvs extension� All such �les
must have the structure

theory�name� theory

begin

end theory�name

Where theory�name is the name of the theory� and should preferably match the �le name�
The body of the theory is placed between the begin and end statements�

Proof �les ��prf extension� save proofs that have been composed� They are also text
�les� but it is not advisable to try to edit them in any way�

A context is a set of speci�cation and proof �les found in one directory� The binary
�pvscontext �le saves the state of the veri�cation from one veri�cation attempt to another�
For this reason� all �les relating to one proof should be in one directory� Files relating to
unrelated proofs are best kept in a separate directory with a separate context�

The pvs interface is through an emacs editor� In di�erent bu�ers in the editor one can
write speci�cations and run proofs� pvs commands are entered in the emacs mini�bu�er
window and are preceded by M�x �alt�x or esc�x��

�Skolemization is e�ected in pvs by skolem� and related commands�
�The form of instantiation presented here is equivalent to the inst�cp command�
�The pvs delete and hide commands explicitly delete and hide formulas� respectively� Other commands�

such as inst� may also hide formulas�






� The Speci�cation Language

The pvs speci�cation is built on higher order logic�
Variables and constants have types � some types are inbuilt� and the user can build their

own �including arrays� records� etc�� pvs also allows the user to use uninterpreted types�
Frequently used inbuilt types include nat � int � real � bool �
Constants are declared as being elements of a type e�g�
z � nat

declares constant z of type natural�
To declare a variable one must simply precede the type with the VAR keyword e�g�
x � VAR nat

There are many di�erent possibilities in declaring types� One of the most basic� and most
useful� are tuples e�g�

T� � TYPE � �nat� nat�

Records are tuples with labeled �elds e�g�
T	 � TYPE � �
 first� second � nat 
�

Both T	 and T� contain two natural numbers� In the �rst case the �elds are unlabeled� in
the second they are labeled�

Another useful type is a function type� This is a mapping from a domain to a range� e�g�
A� � TYPE � �upto���� �� T��

is an array A	����	�� of elements of type �nat� nat��
The basic logical constructs are OR �also written n��� AND �also �� �n�� NOT ���� �� n�

�disequality�� IMPLIES ���� and IFF ������ The universal and existential quanti�ers are
FORALL and EXISTS � respectively�

��� Example � Hotel Reservations

As a very simple example we consider a hotel reservation system� For every room� for every
date� the name of the person reserving the room is stored in the register� If a room is free�
then it is recorded simply that it is registered to the constant name free �

We de�ne this as

reservation� theory

begin

room� type

date� type

name� type

free� name

reservations� type � �room� date � name�

end reservation

The room� date and name types are all uninterpreted� The reservations type is a mapping
from room and date to name� free is a constant of type name�

It is also useful to declare interpreted functions� For example� we can de�ne a function
which given a register� adds a booking and returns the updated register�

�



reserver� room� d� date� n� name� register� reservations�� reservations �

register with �r� d� �� n�

This demonstrates the use of the very important WITH expression� WITH is an override
expression used to modify the contents of a function� tuple� or record� register WITH �r� d�

�� n� is the same as register except that the argument at value �r� d� is replaced with n�
Instead of declaring the types when using variables �e�g� r� n� d above� we can de�ne

them as global variables once� and then use them without stating the types every time� Thus�
we de�ne the function cancel which cancels the reservation for a room� and the predicate
reserved which returns the true if a room is reserved�

r� var room

d� var date

n� var name

register� var reservations

cancelr� d� register�� reservations � register with �r� d� �� free�

reservedr� d� register�� bool � registerr� d� �� free

� Running pvs

To run pvs make and enter the directory you plan to work from� You can then open
pvs by calling the executables at �verify�PVS����	�pvs for sun machines� or �verify�PVS��
��	�pvs linux for linux machines�

This should open up an emacs window� You will be asked whether to create a new
context � answer yes�

We will continue with the reservation example� The �pvs �le can be copied from
�verify�Course��a�� or you can type it in�

Open the desired �le �emacs command C�x� C�f ��
It is important to typecheck the �le� Typechecking parses the �le� and checks for semantic

errors �e�g� undeclared names�� We typecheck the �le by typing M�x tc � pvs reports that
one type correctness condition� TCC� was generated� and that it is unproved� To view the
TCCs type M�x show�tccs � In this case the typecheck is trivial� and pvs can discharge it if
you ask it to prove the typechecks � M�x tcp � When pvs cannot discharge the typecheck
automatically� it must be done manually� This can be done by placing the cursor on the
TCC de�nition in the bu�er generated by M�x show�tccs � and proving it as you would any
other formula�

We prove a simple lemma � if a reservation for a room is canceled then the room is not
reserved�

canceled not reserved� lemma

� r� d� register� � reservedr� d� cancelr� d� register��

To prove this lemma put the cursor on the de�nition of the lemma and type M�x pr �
You will get a new bu�er� labeled �pvs�� containing the sequent�

�



canceled�not�reserved �

��������

��� FORALL r� d� register� NOT reservedr� d� cancelr� d� register��

pvs presents sequents as a list of negatively numbered antecedents above above a turnstile
symbol �������� � and a list of positively numbered consequent formulas below it�

The Rule� prompt indicates that pvs is waiting for a new command to be entered�
Prover commands use lisp�like syntax� and are always enclosed in round brackets�

We can skolemize and simplify by typing skosimp�� � This removes quanti�ed variables
and replaces them by skolem constants� Skolem constants have ��	� added to the variable
name�

We can now expand out the de�nitions of reserved and cancel by entering expand

�reserved�� and then expand �cancel�� � The proof is complete�
In fact� the grind� command can complete this proof in one step� grind� expands out

expressions� skolemizes� instantiates and simpli�es� It is often useful in very small proofs�
or towards the ends of large proofs� However� when it does not complete a proof� it can be
counterproductive� generating many similar subgoals�

We consider a second lemma�

is reserved� lemma

� r� d� n� register� reservedr� d� reserver� d� n� register��

The lemma is intended to show that after reserving� a room is reserved� The reader is
invited to try to prove it� It will soon be apparent that this cannot be done � in fact the
premise is false� The reader is encouraged to try to understand why this is the case and how
it could be recti�ed�

��� Example � Queues

As a second example� we consider a simple queue structure modeled as an array�nat� of
entries� The queue has a head pointer� pointing to its oldest element� It also has a size �eld�
indicating how many entries are currently occupied� The occupied entries are stored in an
array entries� from positions head to head � size � 	� inclusive�

That is� consider a queue with � entries� A and B� and its head at position �� entry���
� A and entry��� � B� The queue size is �� The contents of entry�x� is irrelevant for any
x 	� �� ��

This theory� presented in Fig� 	� can also be downloaded from �verify�Course��a�
A few notes on the data structures �


 QUEUE ENTRY is an uninterpreted type� We know nothing about it�


 QUEUE TYPE is a record with three �elds� head � size and entry �

There are two means of accessing record �elds � using a �� and using brackets� So�
queue�size and sizequeue� both return the size �eld of record queue�

�




 pushQentry � empty � popQentry � occupied and inQ are all functions�

Functions cannot modify their arguments�

Procedures are functions that return a boolean value�

We examine how the lemmas can be proved�
We start with empty no occupied � This lemma states that a queue is empty if and only if

none of its bu�ers are occupied�
We �rst skolemize skosimp�� to remove the quanti�cation� We then expand out the

terms � expand �empty�� � expand �occupied�� � arriving at the sequent

��������

��� sizequeue��� � � IFF

FORALL qPoint�

NOT qPoint �� queue���head AND

qPoint � queue���head � queue���size��

We use the split� command to split the IFF statement into its two directions� generating
two subgoals� one for the �if�� and one for the �only if��

You can view the second subgoal by typing postpone �� or Tab Shift�p�
The �rst subgoal�

��������

��� sizequeue��� � � IMPLIES

FORALL qPoint�

NOT qPoint �� queue���head AND

qPoint � queue���head � queue���size��

can be �attened flatten� � into a sequent where sizequeue��� � � is assumed�

���� sizequeue��� � �

��������

��� FORALL qPoint�

NOT qPoint �� queue���head AND

qPoint � queue���head � queue���size�

After skolemizing skosimp�� � an assert� completes the proof�
pvs now returns to the second goal� We again �atten it� generating the sequent

���� FORALL qPoint�

NOT qPoint �� queue���head AND

qPoint � queue���head � queue���size�

��������

��� sizequeue��� � �

The universal quanti�er must be instantiated� and we ask pvs to do so by typing inst�� �
Unfortunately� pvs guesses the instantiation incorrectly� so we must instantiate manually�

We undo the instantiation by typing undo� or Tab u� The correct instantiation is
queue�	�head� �The antecedent �	 asserts that it is NOT the case that qPoint �� queue�	�head
and qPoint � queue�	�head � queue�	�size� In other words� qPoint � queue�	�head or qPoint
�� queue�	�head � queue�	�size� Setting qPoint � queue�	�head therefore implies that
queue�	�size � ���

 



We instantiate with the command inst � �queue���head�� � The �rst parameter to the
inst command is the sequent number� the second the value to be instantiated� We could
have used ��	� as the sequent number� By typing ��� we tell pvs to substitute into the
�rst matching antecedent� In general� this is more robust than specifying exact line numbers
�should the speci�cation or proof later be changed� the line numbers may change and the
proof might no longer work if sequent numbers are fully speci�ed��

The proof is now completed with assert� �
We consider the second lemma� pushed entry in queue � We �rst try to complete it using

grind � Unfortunately� this does not work � grind instantiates the existential quanti�er
incorrectly�

We try grind without instantiation by typing grind �if�match nil� � The parameter
�if�match determines under which conditions grind will do instantiations� By setting it to
nil� we prevent grind from instantiating�

The resulting formula has all the expressions expanded� �The same e�ect could have
been obtained using the expand command��

��������

��� EXISTS index� nat��

index �� queue���head AND index � � � queue���head � queue���size�

AND

entryqueue��� WITH �headqueue��� � sizequeue���� �� qEntry���

index�

� qEntry��

The correct instantiation is inst � �queue���head � queue���size�� � The assert command
will now complete the proof�

The third lemma is left as an exercise�

!



queue� theory

begin

QUEUE ENTRY� type

QUEUE TYPE� type � �
 head� nat� size� nat� entry� �nat � QUEUE ENTRY� 
�

queue� var QUEUE TYPE

qEntry� var QUEUE ENTRY

qPoint� var nat

� Returns true if a queue is empty

emptyqueue�� bool � sizequeue� � �

� Pushes an entry onto a queue and returns the updated queue

pushQentryqueue� qEntry�� QUEUE TYPE �

queue with �size �� queue�size� ��
entry �� entryqueue� with �head	queue
 � size	queue
� �� qEntry��

� Pops an entry from a queue� It returns the new queue�

popQentryqueue�� QUEUE TYPE �

if � emptyqueue�

then queue with �head �� head	queue
 � �� size �� size	queue
� ��
else queue

endif

� Returns true if entry qPoint of the queue is occupied�

� i�e� lies between head and head � size

occupiedqueue� qPoint�� bool �

qPoint � queue�head � qPoint � queue�head� queue�size

� Checks whether there is an occupied entry in the queue with value

inQqueue� qEntry�� bool �

� index� nat�� occupiedqueue� index� � queue�entryindex� � qEntry

� If a queue is empty� no entries are occupied

empty no occupied� lemma

� queue� emptyqueue� iff � qPoint� � occupiedqueue� qPoint��

� After pushing an entry onto a queue� the entry is in the queue

pushed entry in queue� lemma

� queue� qEntry� inQpushQentryqueue� qEntry�� qEntry�

� If one pushes an entry onto an empty queue� and then pops one off�

� the queue is again empty�

empty push pop empty� lemma

� queue� qEntry� emptyqueue� � emptypopQentrypushQentryqueue� qEntry���

end queue

Figure 	� Theory queue�pvs

"



� Some Prover Features

In this Section we will discuss some useful features of the pvs environment�

��� Stepping Through a Proof

pvs allows you to walk through� or step through� a proof� viewing the e�ects of each com�
mand� The step through command M�x step�proof initiates a proof from the beginning� and
also opens a Proof bu�er in which the last saved proof is displayed�

The �rst command in the bu�er is highlighted� Typing Tab 	 will cause it to be executed�
Typing Tab n� for number n� will cause the next n commands to be implemented� If you put
the cursor in the Proof bu�er� Tab 	 will execute the next command after the cursor� and
not the highlighted command�

To break a continuous execution generated by Tab n� type C�g� This will complete the
currently executed command and highlight the next one�

At any point� you can enter commands at the Rule# prompt rather than from the proof
bu�er�

��� X�Displaying a Proof

One can generate an X�display of a proof� This is a window graphically showing the current
proof as a tree� Every sequent in the proof is represented by a � symbol� The root� at the
top� is the initial sequent� The proof commands used to create the proof are shown between
the � symbols� To see the full text of a sequent click on the � symbol�

Status information about the proof is indicated by colors� blue indicates a completed
branch� brown the current branch� purple the current sequent� and black any incomplete
branch which is not the current branch�

The proof tree is automatically updated as the proof is run�
To initiate a proof with its X�display enter M�x xpr when the cursor is on the formula�

Similarly� step through a proof with its X�display using M�x x�step�proof �
To open an X�display for a proof already in progress one must use the main pvs menu�

From the pvs menu go to display�commands then show�current�proof�
Warning� The X�display slows the proof down signi�cantly� Furthermore� trying to

access the display �either to start it� or to view sequents etc� while pvs is running �i�e�
�ILISP � run� displayed on the �pvs� bu�er label line� rather than �ILISP � ready�� can cause
pvs to be interrupted� The result of this is that pvs must be reset� and the proof restarted�

��� Hiding and Revealing Formulas

When a formula is instantiated� its uninstantiated copy is �hidden� by pvs� Hidden formulas
can be viewed by typing M�x show�hidden�formulas �

The formula can then be revealed by typing reveal fnum� where fnum is the sequent
number of the desired formula�

Formulas which are not needed can be hidden by typing hide fnum� �
�Both the hide and reveal commands can take lists of formulas��
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��� Strategies

The pvs user can construct strategies which combine proof rules together into more powerful
proof rules� Strategies are written in a lisp based language� and can include recursion�
branching and backtracking� �C�f� Chapter � of PVS Prover Guide��

At this point we will discuss only two basic� and useful� constructs� then and repeat �
The then keyword is used in the format �then step	� rest�steps�� Step	 is applied to the

current goal and then rest�steps to each of the sequents generated� For example� then split

���assert�� will split formula �	 and then apply assert to each of the sequents generated�
Iteration can be e�ected by using �repeat� step�� Rule step is replied iteratively along

all subgoals until its application has no e�ect e�g� repeat� split� would repeatedly split
until there is nothing more to split�

A Summary of Some Often�Used System Commands

We �rst list some pvs system commands� These commands are generally entered while the
�pvs speci�cation is the current bu�er� Command relating to a single formula require that
the cursor be on the formula� More information can be found in the PVS System Guide�

		



Command Alias Comments

Exiting and Interrupting pvs

M�x exit�pvs C�x C�c Exit pvs
C�c C�c Interrupt pvs process

�useful if pvs is taking unreasonably long��
Entering restore� allows you to resume the proof�

M�x reset�pvs C�z C�g Abort pvs and resynchronize�
You will have to restart the proof from the beginning

Initiating and Stepping Through Proofs

M�x prove� M�x pr C�c p Prove formula pointed to by cursor
M�x step�proof C�c C�p Step through an existing poof� �C�f� Section ����
M�x x�prove M�x xpr Prove with X�display� �C�f� Section ����
M�x x�step�proof Step through with X�Display
M�x prove�theory M�x prt Reruns all proofs in the theory �non�interactively��

Typechecking

M�x typecheck M�x tc Typecheck theories in current bu�er
M�x typecheck�prove M�x tcp Typecheck theories and try to prove TCCs
M�x show�tccs M�x tccs Show the TCCs of the current theories�

TCCs can be proved from the new bu�er created

Editing and Viewing Proofs

M�x edit�proof Edit 	 view the proof of the formula
M�x install�proof C�c C�i Installs a proof on a formula

The format must be like that obtained when editing
proofs� not the format in the �prf 
le�
You can highlight a proof bu�er of one formula
and install it on a second

Proof Status

M�x status�proof M�x sp Status of formula at cursor�
proved � complete � fully proved�
proved � incomplete � formula is proved but

depends on some unproved formula
unchecked � changes since the proof succeeded

may invalidate it�
You should rerun the proof �M�x pr��

untried � proof never attempted
un
nished � proof attempted� but never completed�

M�x status�proof�theory M�x spt Status of all formulas in theory
M�x status�proof�importchain M�x spi Status of formulas on importchain
M�x status�proofchain M�x spc Displays proofchain of formula at cursor

i�e� lists the formulas on which it is dependent

Context and Prelude Commands

M�x change context M�x cc Switch to a new context �new directory�
M�x load�prelude�library Allows the current context to use all theories

in the loaded context �directory��

	�



B Summary of Some Often�Used Prover Commands

This appendix lists a selection of the more frequently used prover commands� More infor�
mation can be obtained from the PVS Prover Guide�

Note that pvs is case insensitive regarding prover commands i�e� you may type the
command using any combination of upper and lower case letters�

B�� Parameters

Proof commands take a list of zero or more required and optional parameters� Each op�
tional parameter has an associated default value� In this appendix optional parameters are
bracketed with their default values� Required parameters are not bracketed�

We have not listed here all parameters to the commands� but only those that are fre�
quently used� When we have omitted some intermediate parameters� this is node by ����� in
the parameter listing�

When invoking a proof command actuals are associated with formal parameters according
to the order in which they are given� If there are fewer actuals than formals� then those
parameters for which no actual was provided are bound with their default values� To give
parameter values out of order� or without specifying a previous parameter in the list� one
must name the formal when giving the actual�

For example� consider the proof command
replace Parameters � fnum� �fnums ��� �dir LR�� �hide# nil�

This command takes the formula at line fnum �it must be an equality� and replaces it
in formulas fnums� The replacement is in direction LR �left to right�� and the formula is
hidden if hide# is set to t�

Consider� for example� a sequent with an antecedent
���� i�� � j��

Command �replace ��	 will replace i�	 with j�	 in all sequents�
Command �replace �� �
� �	 �hide t	 will replace i�	 with j�	 only in sequents �

and 
� and then hide �
�
Command �replace �� �dir rl �fnums �	 will replace j�	 with i�	 in all consequents

�reversing the direction of replacement��

B�� Formula and Truth Value Selection

Many commands have arguments taking the number�s� of the sequent formulas where the
rule is to be applied� By convention� a single formula is called �fnum� �for �sequent formula
number��� a list is �fnums��

The list of antecedent sequent formulas can be indicated by ���� the list of consequent
sequent formulas by ���� and the list of all sequent formulas by ����

Where truth values are requested� �t� stands for true� �nil� for false�

	




Command Parameters Comments

Control Rules

quit Terminates the proof attempt
postpone Go to next remaining goal� Alias Tab shift�p
undo �to �� Undoes commands�

If �to� is a number� n� the last n commands are undone
If �to� is a proof rule� undoes the proof to the last
occurrence of this proof rule
�undo undo� Undoes the undo� if it was the last command executed�
Alias  Tab u

Propositional Rules

case exprs Introduces case split�
On one branch exprs is assumed to be true� on another false�
exprs must be in double�quotes e�g� �case �i�� � j����

split �fnum �� Conjunctive splitting�
Splits one formula to generate � subgoals 
Antecedent A �B into antecedent A and antecedent B�
Antecedent A implies B into antecedent B and consequent A
Consequent A �B into consequent A and consequent B
Antecedent IF �A�B�C� into antecedents A �B and �B � C

Consequent IF �A�B�C� into consequents A implies B and �A implies C
�atten �fnums �� Disjunctive Simpli
cations� Generates � subgoal converting 

Antecedent formula �A into consequent A
Antecedent formula A �B into � antecedent formulas� A and B�
Consequent formula �A into antecedent A
Consequent formula A �B into two consequent formulas� A and B�

i� �fnums �� Converts boolean equality ��� into equivalence �i��
lift�if �fnums �� Lifts the left�most if or cases statement to the topmost level

Quanti
er Rules

skosimp� Repeatedly skolemizes then �attens
inst fnum� terms Instantiates formula fnum with terms in terms
inst�cp fnum� terms Instantiates� retaining a copy of the uninstantiated formula
inst� �fnums ������� pvs chooses the terms to instantiate into formula fnums�

�copy� nil� Retains a copy of uninstantiated formula if copy� is t�

Equality Rules

replace fnum� Rewriting using equalities
�fnums ��� Formula fnum must be of form l � r�
�dir LR�� All occurrences of l in formulas fnums are replaced with r�
�hide� nil�� Instead� replace r with l if dir RL speci
ed�

Formula fnum is hidden if hide� is t�
replace� fnums Replace formulas in fnums into all formulas�

	�



Using De
nitions and Lemmas

expand name� �fnum �� Expands the de
nition of name in formulas fnum
e�g� �expand �empty� � ��� expands empty in formulas � and ��

expand� names Expands all occurrences of all expressions listed in names
lemma name Introduces an instance of lemma name�

e�g� �lemma �empty no occupied�� introduces forall queue ���

Simpli
cation with Decision Procedures

simplify Simpli
es using decision procedures
assert More aggressive simpli
cation� �Calls simplify��
grind ��� �if�match t� Expands all de
nitions� replaces� simpli
es� skolemizes� splits etc�

Can be used to automatically complete a proof�
Performs instantiation unless if�match is set to nil�

ground Invokes propositional simpli
cation� splits and asserts�

Making Type Constraints Explicit

typepred exprs If exprs is of type p� antecedent p�exprs� is introduced�
E�g� �typepred �head�queue����� introduces head�queue��� �� �

Structural Rules � Hiding and Revealing Formulas

hide fnums Moves formulas fnums to the Hidden bu�er �C�f� Section ����
hide�all�but keep�fnums� Hides all the formulas in fnums except those in keep�fnums

�fnums ��
reveal fnums Copies formulas fnums from Hidden bu�er to sequent�

Annotation Rules � Labeling

label string� fnums� Attaches the label string to formulas fnums
�push� nil� If push� is t� then any previous label is retained�

Else� the label replaces previous labels
unlabel �fnums �� Removes all labels from formulas fnums
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