NonStationary Shape Activities: Tracking & Abnormality Detection

 $Namrata\ Vaswani\ (namrata@iastate.edu)$

Dept. of ECE, Iowa State University

 $http://www.ece.iastate.edu/{\sim}namrata$

and

 $Rama\ Chellappa\ (rama@cfar.umd.edu)$

Dept. of ECE, Univ. of Maryland, College Park

 $http://www.cfar.umd.edu/{\sim}rama$

Outline

- Main Idea
- Landmark Shape Dynamical Model for an "Activity"
 - Tracking
- Abnormal Activity Detection: Change Detection
- Types of Shape Activity Models & Applications

Problem Formulation

- Modeling activity performed by a group of moving and interacting point "objects" ("landmarks").
- "Landmarks": People, Vehicles, Robots, Human body parts,...
- Changing configuration of the group: moving & deforming shape
- "Shape Activity": model activity performed by a group of moving & interacting "objects" by its shape dynamics
- "Abnormal Activity": change in learned shape dynamical model, which could be slow or sudden and whose parameters are unknown

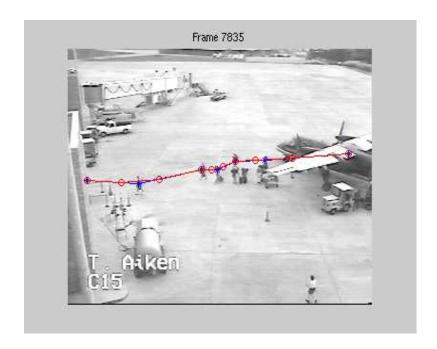
Landmark Shape

- Shape: geometric information that remains when location, scale & rotation effects are filtered out [Kendall]
- Shape of k landmarks in 2D
 - Represent the X and Y coordinates of the k points as a k-dimensional complex vector: Configuration
 - Translation Normalization: Centered Configuration
 - Scale Normalization: Pre-shape
 - Rotation Normalization: Shape
- Landmarks in 3D: represent by a $k \times 3$ matrix

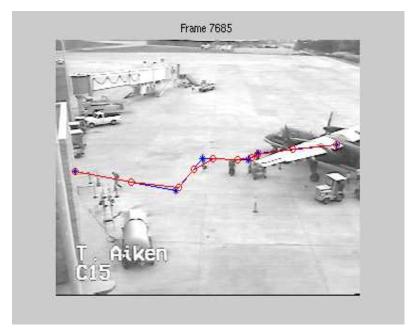
Example: Group of Robots

Example: Group of Passengers Deplaning

Each person forms a "landmark"



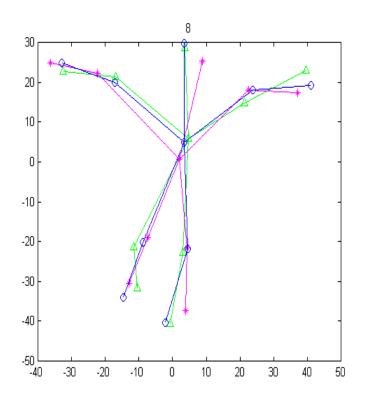
A 'normal activity' frame

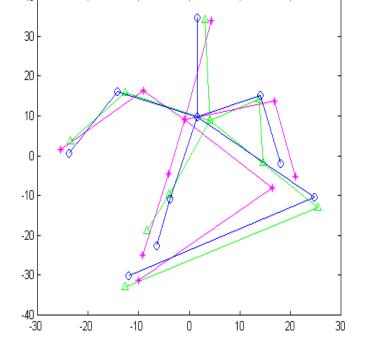


Abnormality

Human Actions

Each body part forms a landmark





Normal action

Abnormality

Human Actions (ongoing work)

Uniformly sampled points on outer contour form landmarks

Motivation

Track global motion (scale/rotation/translation in 2D) & shape. Use shape dynamics to represent/recognize activity

- Modeling & recognition invariant to global motion, e.g.:
 - Global scale change of activity, e.g. person taller/shorter
 - Scaled orthographic camera motion. Valid model for:
 - * Distant PTZ camera rotated to align with line of sight
 - * Random jitter of UAV looking down at activity
 - * Activity close to any camera's principal axis, little out-of-plane rotation
- Use estimated global motion to control a PTZ camera or a UAV to "follow" a "moving" activity

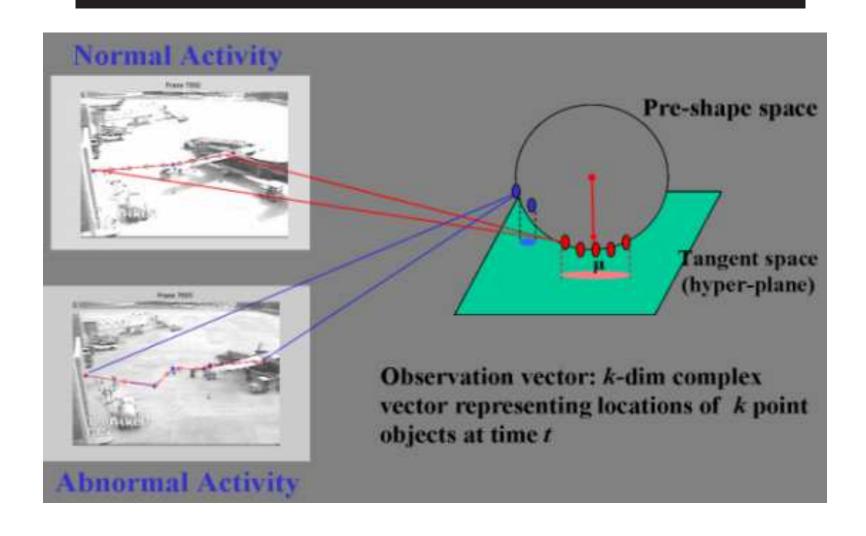
A Common Framework for...

- Tracking Groups of Moving/Interacting "Objects"
- Abnormal Activity Detection & Tracking
 - Suspicious behavior detection (people groups), Lane change detection (vehicle groups), Abnormal human action detection
- Sequence Identification & Tracking
 - Sequence of human actions, track & summarize video
- Activity Segmentation & Tracking
 - Video coding + summarization, Unsupervised learning
- Sensor independent approach
 - Observations may be obtained using any sensor, e.g. audio, infra-red, radar, fuse different sensors

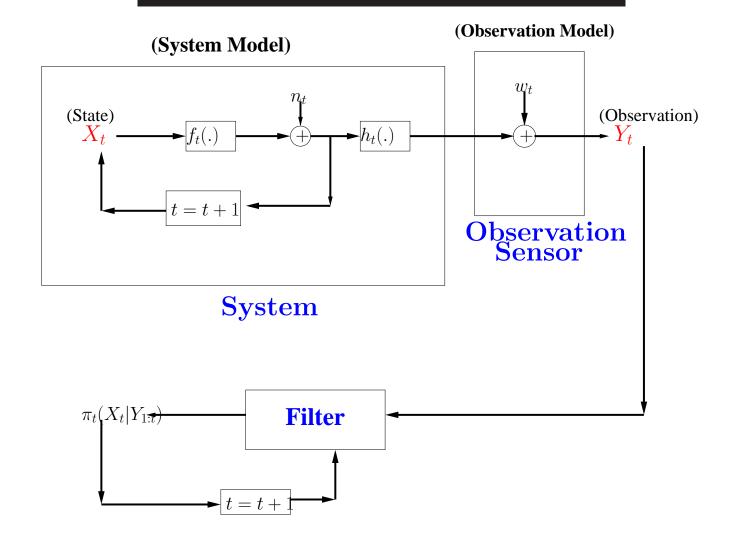
Existing Work

- Joint tracking and event recognition
 - DBN (or FS-HMM) tracked using a Rao-Blackwellized PF, e.g.
 Condensation for gesture tracking/recognition, figure
 tracking/recognition, traffic monitoring
 - Assume p.w. constant mode, sample from prior on mode, compute posterior, e.g. [Zhou et al]
- Tracking groups of moving/interacting objects, e.g. data association (JPDAF), Condensation, robot formation control.
- Activity/Action Recognition, e.g. space-time shapes, shape based factorization, view invariant approaches, multiple levels of zoom, DBN, co-occurrence statistics: tracks obtained by other means.

Defining Dynamics in Shape Tangent Space



State Space Model, Tracking



- Observation (Y_t) :
 Observed object locations after centering
- State, X_t :
 [Shape z_t , "Velocity Coefficients" c_t , Log Scale s_t , Rotation θ_t]
- Observation Model:

Observation = $h_t(Shape,Scale,Rotation) + observation noise$

$$h_t(X_t) = z_t e^{s_t + j\theta_t}$$

- Can use edge image as observation as in Condensation incorporates clutter probability (ongoing work)
- System model, f_t : Dynamics of shape, scale, rotation
 - Gauss-Markov model on shape "velocity coefficients"

$$c_t = A_c c_{t-1} + n_{c,t}$$

- Parallel transport c_t to tangent space at z_{t-1} , $T_{z_{t-1}}$

"velocity":
$$v = U(z_{t-1})c_t$$
, $U = \text{basis for } T_{z_{t-1}}$

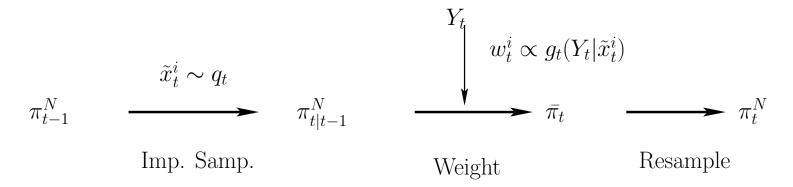
 Move on current tangent plane by "velocity" and project back to shape space: shape at next time

$$z_t = \sqrt{1 - v^* v} \ z_{t-1} + v$$

- Random walk model for log scale, rotation, translation (if needed)
- Goal: Track observed landmark locations to estimate posterior shape & shape velocity distribution, $\pi_t(x_t|Y_{1:t})$
 - Use a particle filter: computationally efficient & provably stable (for large N) solution for nonlinear, multimodal, large dim state tracking.

Particle Filter (PF) [Gordon et al'93]: Basic Idea

- Sequential Monte Carlo method, approx. true filter as number of Monte Carlo samples ("particles"), $N \to \infty$
- Given π_{t-1}^N , **perform importance sampling & weighting**, followed by **resampling** to approx. the Bayes' recursion to get π_t^N



• Using $q_t(x_t|x_{t-1}^{(i)})$ as importance sampling density at t

Abnormal Activity Detection: Change Detection

- "Normal Activity": Modeled as a landmark shape dynamical model
 - Partially observed system(observations are noisy & nonlinear functions of state), satisfying HMM property
- "Abnormality": Change w.r.t. learned shape dynamics
 - Parameters of changed system unknown
 - Change can be slow or sudden
- Detect changes in shape using the PF estimate of posterior of shape and/or shape velocity

Slow v/s Sudden Change

- Slow change: small change magnitude per unit time, "tracked" by the tracker.
 - Error b/w estimate of posterior using the tracker with unchanged system model and the true posterior is small.
- Sudden change: mostly "filtered out" ("loses track")
 - Duration much smaller than "response time" of filter.
- Quantify "rate of change", r, w.r.t. a filter: For an additive change with magnitude b per unit time, $r^2 = b^T \Sigma_{sus}^{-1} b$.

Existing Work

Abnormal activity detection provides the problem definition: Given the observations $Y_1, Y_2, ... Y_t$, detect, as quickly as possible, if a change occurred in the dynamics of the state X_t

- Change parameters unknown
 - Cannot use CUSUM (or its modifications [Azimi et al]).
 - Generalized CUSUM intractable [Andrieu et al'04].
 - Residue statistics [Basseville] for fault detection, e.g.
 - * Tracking Error (TE) [Bar-Shalom]
 - * negative log of Observation Likelihood (OL)
 - * Score function [Basseville]
- Slow or sudden change
 - TE, OL, Score function miss slow changes

Notation

• Prior state distribution:

Given no observations, $X_t \sim p_t(.)$

- Superscripts: 0 (unchanged system), c (changed system) e.g. $X_t^0 \sim p_t^0(.)$, $X_t^c \sim p_t^c(.)$
- Prediction distribution:

For $\tau < t$, $X_t | Y_{1:\tau} \sim \pi_{t|\tau}(.)$

• Posterior (or Filtering distribution):

For $\tau = t$, $X_t | Y_{1:t} \sim \pi_{t|t}(.) \stackrel{\triangle}{=} \pi_t$

Slow change detection, Unknown parameters

- Fully observed state (no observation noise & h_t^{-1} exists):
 - negative Log Likelihood of state of unchanged system

$$-\log p_t^0(X_t) = -\log p_t^0(h_t^{-1}(Y_t))$$

- * Most commonly used when have a set of i.i.d. observations, compute average LL, e.g. [Kulhavi,CDC'00]
- Partially observed state (significant observation noise):
 - Why not use Min. Mean Square Error estimate of this?
 - Our detection statistic is exactly this MMSE estimate
 [Vaswani,ACC'04]:

$$\mathbf{ELL}(\mathbf{Y_{1:t}}) \triangleq \mathbb{E}[-\log \mathbf{p_t^0}(\mathbf{X})|\mathbf{Y_{1:t}}]$$

Computing ELL

• Linear and Gaussian system model:

$$X_{0} \sim \mathcal{N}(x; 0, \sigma_{0}^{2}), \quad X_{t} = AX_{t-1} + n_{t}, \quad n_{t} \sim \mathcal{N}(0, \sigma_{n}^{2})$$

$$- A < 1 \& \sigma_{0}^{2} = \frac{\sigma_{n}^{2}}{1 - A^{2}} \text{ (stationary): } p_{t}^{0}(x) = \mathcal{N}(x; 0, \sigma_{0}^{2})$$

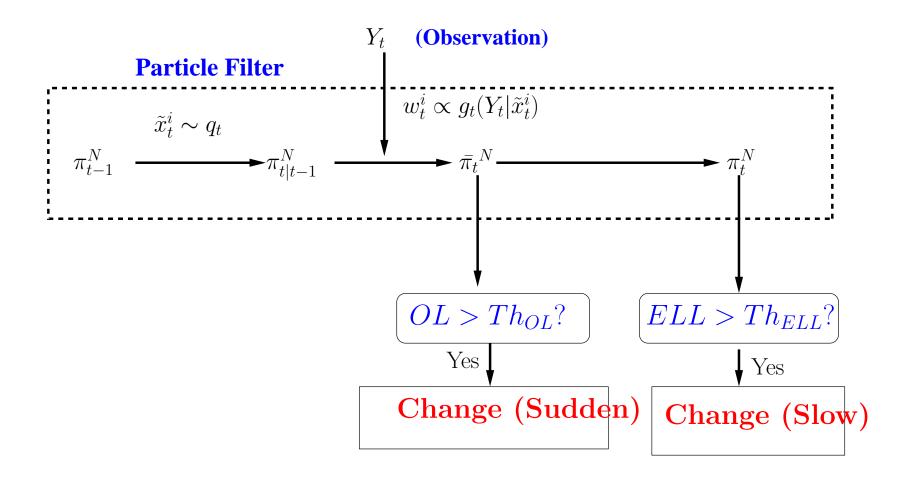
$$- \log p_{t}^{0}(X) = \frac{X^{2}}{2\sigma_{0}^{2}} + const$$

$$ELL(Y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_{t}^{i})^{2}}{2\sigma_{0}^{2}}, \quad x_{t}^{i} \sim \pi_{t|t}(x)$$

- -A = 1 (nonstationary): $ELL(Y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_t^i)^2}{2(\sigma_0^2 + t\sigma_n^2)}$
 - * Problem: variance of p_t^0 increases with t: longer to detect a change for large t

- Nonlinear, Gaussian system: linearize system model equation at each t, to get a Gaussian approx. to p_t^0
- Training sequence available: learn a p.w. constant $p_t^0(x)$
- Handle increasing variance: Replace p_t^0 by Δ -step ahead prediction, $\pi^0_{t|t-\Delta}$
 - Variance bounded, Use to detect multiple changes
 - Approx $\pi^0_{t|t-\Delta}$ as:
 - * Approx. PF estimate of $\pi^0_{t-\Delta|t-\Delta}$ by a Gaussian mixture
 - * Apply linearized system model Δ times to approx $\pi^0_{t|t-\Delta}$
- Detection Threshold: $\mathbf{Th_{ELL}} = \mathbb{E}_{\mathbf{Y_{1:t}^0}}[\mathbf{ELL^0}] + \mathbf{k}\sqrt{\mathbf{Var}(\mathbf{ELL^0})}$ $\mathbb{E}_{\mathbf{Y_{1:t}^0}}[\mathbf{ELL^0}] = \mathbf{h}(\mathbf{p_t^0}) = \text{differential entropy of } X_t^0$

Change Detection Algorithm [ACC'04]



ELL v/s OL (or TE): Slow & Sudden Changes

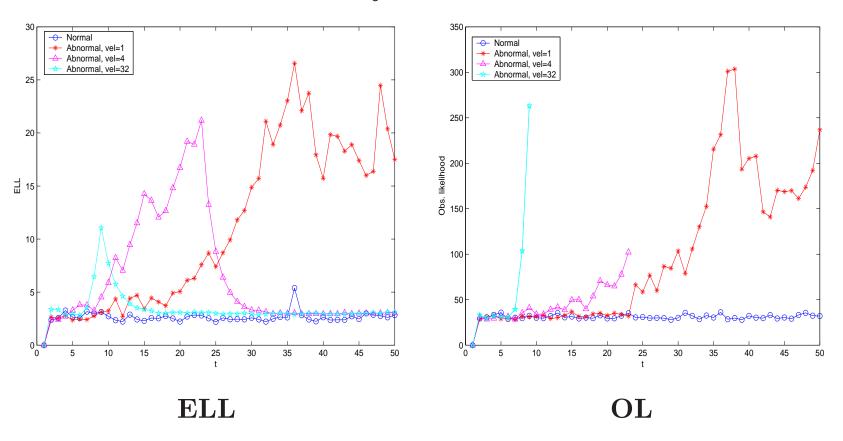
- OL (or TE) rely on loss of track to detect a change
- ELL detects based on "tracked part of the change"
- ELL detects change before loss of track: very useful
- Slow Change:
 - PF: stable under mild assumptions, tracks slow change well
 - Loss of track small: OL, TE fail or take longer
 - Estimated posterior close to true posterior of changed system
 - ELL detects as soon as change becomes "detectable"
- Sudden Change: PF loses track
 - OL (or TE) detect immediately, ELL fails/takes longer

NonStationary Shape Activity Models

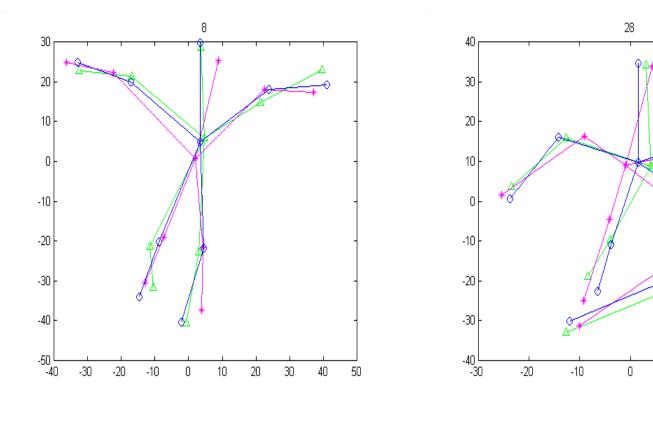
- Full NonStationary SA Model (discussed earlier):
 - Track & detect abnormality, Sequence id, Activity segmentation
 - Markov model on shape velocity: "moves" current shape
- Simpler Special cases:
 - Strict Sense Stationary SA(SSA) & Constant Mean
 SSA (CMSA): Abnormality Detection [Trans. IP, Oct'05]
 - Piecewise CMSA: Activity Sequence Id
 - * Slow mean shape change: approx. as piecewise constant
 - * Sequence of CMSAs with nonstationary transition period

Group of People: Abnormality Detection Using SSA

- Abnormality (one person walking away) begins at t = 5.
- ELL detects abnormality faster than OL



Human Actions: Tracking Using NSSA



Normal action

Abnormality Tracked

10

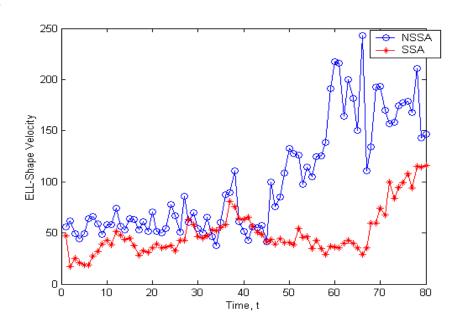
20

30

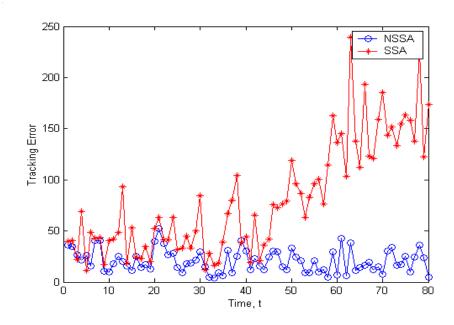
Green: Observation, Blue: Ground Truth, Magenta: Tracked

Human Actions: Abnormality Detection Using NSSA, SSA

- Abnormality begins at t = 20
- SSA cannot track, only detects using TE
- NSSA detects using ELL & also does not lose track



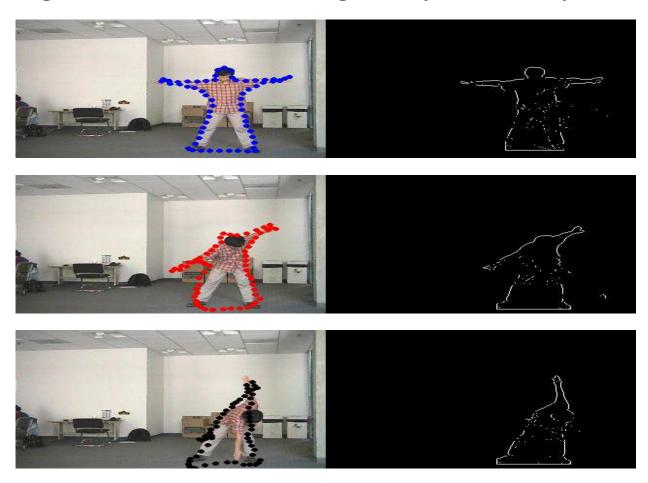
 \mathbf{ELL}



Tracking Error (TE)

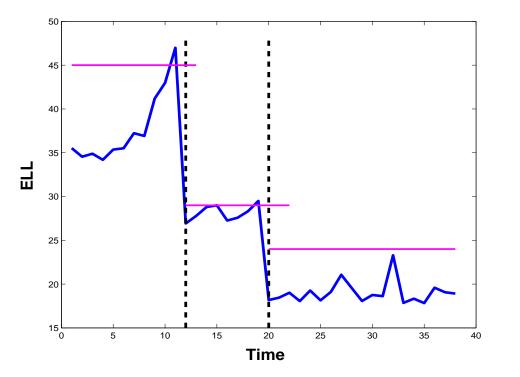
Human Actions: Tracking a Sequence Using PCMSA

• Ongoing collaboration with Song & RoyChowdhury at UCR



Human Actions: Sequence Identification Using PCMSA

• Detect change in activity model, recognize new CMSA, begin tracking with it. **ELL detects faster than TE**



120 100 100 20 20 20 5 10 15 20 25 30 35 40

Sequence Id using ELL

Sequence Id using TE

Summary

- Proposed a common framework for:
 - Tracking Groups of Moving/Interacting "Objects"
 - * "Objects": Human body parts or people or vehicles or robots
 - Abnormal Activity Detection & Tracking
 - Sequence Identification & Tracking
 - Activity Segmentation & Tracking
- Ongoing/Future work:
 - Activity segmentation using NSSA
 - PTZ camera control to "follow" activity
 - 3D landmark shape dynamics, 2D affine shape dynamics