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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

Structured Signal Recovery: The question

I Can I recover a 256-length signal from only 80 samples?

(a) the unknown signal (b) its 80 time samples (red)

I If the signal has some structure: YES, e.g.,
I if it is bandlimited – use a low-pass filter
I if it is a weighted sum of only a few sinusoids – use sparsity

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Structured Signal Recovery: The question

I Can I recover a 256-length signal from only 80 samples?

(c) the unknown signal (d) its 80 time samples (red)

I If the signal has some structure: YES, e.g.,
I if it is bandlimited – use a low-pass filter
I if it is a weighted sum of only a few sinusoids – use sparsity

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

I This signal is Fourier sparse

(e) DFT of original signal

(f) recovered DFT: exact!

I Use its sparsity and ℓ1 minimization to recover its DFT exactly!
I one-to-one mapping between a signal and its DFT

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

I This signal is Fourier sparse

(g) DFT of original signal (h) recovered DFT: exact!

I Use its sparsity and ℓ1 minimization to recover its DFT exactly!
I one-to-one mapping between a signal and its DFT

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

Example 2: Magnetic Resonance Imaging (MRI)

(a) (b)

(c) (d)

I (a) Shepp-Logan phantom:
256× 256 image

I (b) MR imaging pattern:
256-point DFT along 22 radial
lines

I (c) Inverse-DFT
(min ℓ2 norm soln)

I (d) Basis Pursuit soln
(min ℓ1 norm soln)

Example taken from [Candes,Romberg,Tao,T-IT, Feb 2006]
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Sparse Recovery [Mallat et al’93], [Feng,Bresler’96], [Gordinsky,Rao’97], [Chen,Donoho’98]

I Reconstruct a sparse vector x , with support size s, from
y := Ax ,

I when A has more columns than rows (underdetermined sys)

I Solved if we can find the sparsest vector satisfying y = Aβ, i.e.

min
β

∥β∥0︸︷︷︸
# of nonzero elements

subject to y = Aβ

I and any set of 2s columns of A are linearly independent
I but exponential complexity – O(ms)

I Practical (polynomial complexity) approaches
I convex relaxation approaches

I ℓ1 minimization: replace ℓ0 norm by ℓ1 norm
I greedy methods [Mallat,Zhang’93], [Pati et al’93], [Dai,Milenkovic’09], [Needell,Tropp’09]

I many more . . .
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

Compressive Sensing (CS) [Feng,Bresler’96], [Gordinsky,Rao’97], [Candes,Romberg,Tao’05], [Donoho’05]

I Compressive Sense (CS):
I since most images are (approx) sparse, just “sense” less

I e.g., medical images are often wavelet sparse

I recover image from measurements using sparse recovery

I Applications: projection imaging, e.g., MRI, CT, astronomy,

I CS literature
I much stronger performance guarantees for ℓ1 minimization

than earlier work
I introduced a weaker notion of “incoherence” b/w

measurement and sparsity basis

I Sparse Recovery ⇔ CS ⇔ ℓ1 minimization

Namrata Vaswani Online Structured Signals’ Recovery 7
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

Structured Signals’ Recovery

I Sparse recovery is one example

I Other examples
I Block sparse signals’ recovery

I Low-rank matrix completion: recover a low-rank matrix from a
subset of its entries [Recht et al,2009],...

I Sparse matrix plus low-rank matrix recovery / robust PCA:
recover S , L from M := S + L or from undersampled
measurements [Candes et al,2011,Chandrasekharan et al,2011],...

I Applications: MRI, Netflix problem, foreground-background
separation in video or functional MRI, ...
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

Our Work: The question

I How to use the above ideas for dynamic medical imaging?
I e.g., dynamic MRI, functional MRI, dynamic CT

I Option 1: batch methods
I treat the entire sequence as one spatio-temporal structured

signal that is recovered jointly

I need few measurements, but slow and memory-intensive

I Option 2: simple CS
I recover each image in the sequence independently

I fast and memory-efficient, but will need more measurements

I Option 3: design recursive algorithms (our work)
I use previous recovered signal(s) and current measurements’

vector to recover current signal

Namrata Vaswani Online Structured Signals’ Recovery 9
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Problem 1: Recursive Recovery of Sparse Signal Sequences [Vaswani,ICIP’08]1

I Given measurements

yt := Axt + wt , ∥wt∥2 ≤ ϵ, t = 0, 1, 2, . . .

I A = HΦ (given): n ×m, n < m
I H: measurement matrix, Φ: sparsity basis matrix
I e.g., in MRI: H = partial Fourier, Φ = inverse wavelet

I yt : measurements (given)
I xt : sparsity basis vector

I Nt : support set of xt
I wt : noise (ϵ = 0: noise-free, ϵ ≪ ∥xt∥: small noise)

I Goal: recursively reconstruct xt from y0, y1, . . . yt ,
I i.e. use only yt and x̂t−1 for recovering xt

1
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
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Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Key attributes we look for

1. measurements’-efficient: always needed
I use less meas’s than simple CS solutions for a given accuracy

I simple CS: recover each sparse signal separately at each time

2. fast and memory-efficient: always needed
I computational & memory complexity ∼ simple CS solutions

3. causal: needed for real-time applications

4. meaningful performance guarantees: desirable
I provably exact recovery with fewer meas’s: noise-free case
I time-invariant error bounds: noisy case

Batch methods don’t satisfy 2. and 3., sometimes not 1. either

Namrata Vaswani Online Structured Signals’ Recovery 11
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Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Existing Work

I In 2008: almost none

I Only batch methods
I [Wakin et al’06(video)],[Gamper et al’08 (MRI)]: exploit Fourier sparsity along

time axis
I multiple measurements’ vectors (MMV) approaches: assume

support does not change with time

I Limitations
I not causal
I slow and memory-intensive even for offline apps
I above assumptions may not hold

Namrata Vaswani Online Structured Signals’ Recovery 12
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The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Our solution approach [Vaswani,ICIP’08]2

I Exploit practically valid assumptions to get fast and
measurements’-efficient recursive algorithms

I Slow support change: (recall Nt = support(xt))

|Nt \ Nt−1| ≈ |Nt−1 \ Nt | ≪ |Nt |

I introduced in [Vaswani,ICIP’08] , verified in [Qiu, Lu, Vaswani,ICASSP’09]

I Slow signal value change (use when valid):

∥(xt − xt−1)∥2 ≪ ∥(xt)∥2

I commonly used in all tracking algo’s, adaptive filtering, etc

2
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
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The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Slow sparsity pattern change in medical image sequences [Qiu, Lu, Vaswani,ICASSP’09]

image sequences: http://www.ece.iastate.edu/∼luwei/modcs
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(b) slow support changes (removals)

I xt : wavelet transform of cardiac or larynx image at time t

I Nt : 99%-energy support set of xt

I All support changes are less than 2% of support size
Namrata Vaswani Online Structured Signals’ Recovery 14
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Modified-CS and exact recovery result
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First recursive solutions and their limitation

I Kalman filtered CS (KF-CS) and Least Squares CS (LS-CS)
[Vaswani,ICIP’08], [Vaswani, ICASSP’09, Trans-SP,Aug’10]3

I causal; fast and memory efficient; and measurements’-efficient
for accurate recovery;

I could get time-invariant error bounds under mild assumptions
for LS-CS

I But, neither was measurements’-efficient for exact
recovery

I Other parallel, somewhat related work:
I CS-diff [ Cevher-et-al,ECCV’08]: meas-efficient only if difference signal

sparser (not valid mostly); CS-time-varying [Angelosante et

al,ICASSP’09]: not fast (batch and causal); homotopies for
dynamic-ℓ1 [Asif-Romberg’09]: not measurements-efficient

3
N. Vaswani, ”Kalman Filtered Compressed Sensing”, ICIP 2008

N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans. Sig.
Proc., Aug. 2010
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3
N. Vaswani, ”Kalman Filtered Compressed Sensing”, ICIP 2008

N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans. Sig.
Proc., Aug. 2010
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Sparse recovery with partially known support [Vaswani,Lu, ISIT’09, T-SP, Sept’10]4

I To get measurements’-efficient exact recovery:
I reformulate problem as sparse rec with partially known support

I New problem: recover x with support, N, from y := Ax
I given partial and possibly erroneous support knowledge: T

I Rewrite the true support of x , N, as

N = T ∪∆ \∆e

I T : erroneous support estimate (use T = N̂t−1 at time t)
I ∆ := N \ T : errors (misses) in T – unknown
I ∆e := T \ N: errors (extras) in T – unknown

4
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010. (shorter version in ISIT’09)
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Modified-CS idea

I Given T , find x from y := Ax . True support, N = T ∪∆ \∆e .

I If ∆e empty: above ⇔ find signal that is sparsest outside T

min
β

∥(β)T c∥0 s.t. y = Aβ

I the unknowns are ∆, (β)∆ and (β)T

I Same solution also works if ∆e is not empty but small

I Exact recovery condition: every set of (|N|+ |∆e |+ |∆|) columns of
A are linearly independent

I Compare: simple-ℓ0 needs this to hold for every set of 2|N|
columns of A

I Slow support change ⇒ |∆| ≪ |N| and |∆e | ≪ |N|:
modified-ℓ0 condition weaker
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Modified-CS [Vaswani,Lu, ISIT’09, T-SP,Sept’10]5

I Modified-CS
min
β

∥(β)T c∥1 s.t. y = Aβ

I Other related parallel work:
I [Khajenejad et al, ISIT’09]: probab. prior on support, studies exact

recon for weighted ℓ1
I [vonBorries et al, TSP’09]: no exact recon conditions or expts

5
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010.
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Exact reconstruction result [Vaswani,Lu, ISIT’09, T-SP,Sept.’10]

min
β

∥βT c∥1 s.t. y = Aβ (modified-CS)

Theorem (simplified condition)

x is the unique minimizer of (modified-CS) if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |+|∆| + δ2|N|+|∆e | + 2δ2|N|+|∆e |+|∆| < 1

I δS : RIP constant – smallest real number s.t. singular values of any
S-column sub-matrix of A lie in [

√
1− δS ,

√
1 + δS ] [Candes,Tao,T-IT’05]

Proof Outline: motivated by [Candes,Tao,Decoding by LP,T-IT,Dec’05]

I Obtain conditions on the Lagrange multiplier, w , to ensure that x is
a unique minimizer

I Find sufficient conditions under which such a w can be found
I key lemma: create a w that satisfies most conditions; apply

iteratively
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Exact reconstruction result [Vaswani,Lu, ISIT’09, T-SP,Sept.’10]

min
β

∥βT c∥1 s.t. y = Aβ (modified-CS)

Theorem (simplified condition)

x is the unique minimizer of (modified-CS) if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |+|∆| + δ2|N|+|∆e | + 2δ2|N|+|∆e |+|∆| < 1

I δS : RIP constant – smallest real number s.t. singular values of any
S-column sub-matrix of A lie in [

√
1− δS ,

√
1 + δS ] [Candes,Tao,T-IT’05]

Proof Outline: motivated by [Candes,Tao,Decoding by LP,T-IT,Dec’05]

I Obtain conditions on the Lagrange multiplier, w , to ensure that x is
a unique minimizer

I Find sufficient conditions under which such a w can be found
I key lemma: create a w that satisfies most conditions; apply
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Comparison

I CS (ℓ1 min) gives exact recon if [Candes’08, Candes-Tao’06]

δ2|N| <
√
2− 1 or δ2|N| + δ3|N| < 1

I If |∆| = |∆e | = 0.02|N| (typical in medical sequences),

I sufficient condition for CS to achieve exact recovery:

δ0.04|N| < 0.004

I sufficient condition for Mod-CS to achieve exact recovery:

δ0.04|N| < 0.008

I Mod-CS sufficient condition is weaker (needs fewer meas’s)
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Online Sparse + Low-rank Matrix Recovery

The Problem
Modified-CS and exact recovery result
Noisy Modified-CS and error stability (over time)

Simulations: exact reconstruction probability

Simulation setup:
I signal length, m = 256, supp size, |N| = 0.1m

I supp error sizes, |∆| = |∆e | = 0.08|N|
I used random-Gaussian A, varied n

I we say “works” (gives exact recon) if ∥x − x̂∥2 < 10−5∥x∥2

Conclusions:
I With 19% measurements:

I mod-CS “works” w.p. 99.8%, CS “works” w.p. 0

I With 25% measurements:
I mod-CS “works” w.p. 100%, CS “works” w.p. 0.2%

I CS needs 40% measurements to “work” w.p. 98%

recall: ∆: errors (misses) in T , ∆e : errors (extras) in T
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Modified-CS for time sequences

Support Estimation: use thresholding

N̂t := {i : |(x̂t,modCS)i | > α}

Initial time (t = 0):
I use T0 from prior knowledge, e.g. wavelet approximation coeff’s

I may need more measurements at t = 0
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Application: Dynamic MRI (larynx imaging example)

Original Sequence

ModCS Reconstruction

CS−diff Reconstruction

CS Reconstruction

I Recovering a larynx
sequence from only
19% simulated MRI
measurements

I Proposed algorithm:
Modified-CS. Here CS
⇔ ℓ1 min

I Modified-CS NRMSE
was 3%. Simple ℓ1-min
NRMSE was 10%. It
needed n = 30% meas’s
to get 3% error.
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Dynamic MRI (larynx imaging example)

I With only n = 19% measurements, modified-CS error is small
and stable below 3%

I Simple ℓ1 needs n = 30% for same error
Namrata Vaswani Online Structured Signals’ Recovery 24
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Modified-CS for noisy measurements

I Difficulty with one step support estimation:
I along T c : solution is biased towards zero
I along T : no cost and only data constraint – solution can be

biased away from zero
I the misses’ set ∆t ⊂ T c , while the extras’ set, ∆e,t ⊂ T

I Partial solutions: mod-CS-add-LS-del, regularized-mod-CS
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Error stability over time (time-invariant error bounds) [Vaswani,T-SP, Aug’10] 6

I Easy to bound the reconstruction error at a given time, t, but
I the result depends on the support errors |∆t |, |∆e,t |, and these

may increase over time
(recall: ∆t := Nt \ N̂t−1, ∆e,t := N̂t−1 \ Nt)

I Key question for a recursive algorithm: when can we get a
time-invariant and small bound on the error?

I our work provides answers for modified-CS and
modified-CS-add-LS-del

6
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010
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Error stability over time (time-invariant error bounds) [Vaswani,T-SP, Aug’10] 6

I Easy to bound the reconstruction error at a given time, t, but
I the result depends on the support errors |∆t |, |∆e,t |, and these

may increase over time
(recall: ∆t := Nt \ N̂t−1, ∆e,t := N̂t−1 \ Nt)

I Key question for a recursive algorithm: when can we get a
time-invariant and small bound on the error?

I our work provides answers for modified-CS and
modified-CS-add-LS-del

6
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010
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Main idea [Vaswani,Allerton’10], [Zhan,Vaswani,ISIT’13]

I Bound modified-CS error at time, t, in terms of |∆t |, |∆e,t |
I require: number of support changes bounded by Sa ≪ S where

S is upper bound on |Nt |

I Ensure: within a finite delay d0, all newly added elements detected;
all decreasing elements get deleted from N̂t

I require: either every newly added support element is added at
a large enough value or added small, but increases to a large
enough value within a finite delay;

I and decreasing elements become zero within a finite delay
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Signal Change Model

1. Sa,t additions and Sr ,t removals from support at time t

2. a new element j gets added at an initial magnitude aj,t and its
magnitude increases at rate rj,τ (at time τ) for the next dj,t ≥ dmin

time units

3. Sd,t elements out of the “large elements” set Lt
7 leave the set and

begin to decrease at time t

4. elements in Lt either remain in Lt+1 (while increasing /decreasing
/constant) or decrease enough to leave it

5. all decreasing elements that have left Lt get removed from support
in at most b time units

6. 0 ≤ Sa,t ≤ Sa, 0 ≤ Sr ,t ≤ Sa, 0 ≤ Sd,t ≤ Sa, |Nt | ≤ S .

7Lt := {j /∈ ∪t
τ=t−dmin+1Aτ : |(xt)j | ≥ ℓ}
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Theorem (Modified-CS)

Assume signal model. If there exists a d0 ≤ dmin s.t.

1. support estimation threshold, α = 7.50ϵ

2. RIP condition: δS+kSa(At) ≤ 0.207, k := 3( (b+1)
2 + d0 + 1)

3. new elements’ initial mag or mag incr rate large enough

min{ℓ, min
j :tj ̸=∅

min
t∈tj

(aj,t +
t+d0∑

τ=t+1

rj,τ )} > α+ 7.50ϵ,

4. t = 0: δ2S(A0) ≤ (
√
2− 1)/2 and enough large elements

then, for all times, t,

1. |∆̃t | ≤ k ′Sa, |∆̃e,t | = 0, (with k ′ := (b+1)
2 + d0)

2. and ∥xt − x̂t,modcs∥2 ≤ 7.50ϵ
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Time-invariant Error Bounds: Summary

I Support recovery error is bounded by a small and time-invariant
value (small w.r.t. support size). Same true for recons error

I Results need weaker RIP conditions than simple ℓ1
I modified-CS needs δS+kSa(A) ≤ 0.2, ℓ1 needs δ2S(A) ≤ 0.2,

I Other assumptions needed
1. support threshold(s) appropriately set

2. support size below S , support change size below Sa

3. for any new element that is added to the support, either its
initial magnitude is large enough or for the first few time
instants, its magnitude increases at a large enough rate;

4. a decreasing element decreases to zero within a short delay

5. stronger RIP assumptions at t = 0
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Application: fMRI based brain activation detection

full sampling Modified-CS (proposed algo)

k-t-FOCUSS simple ℓ1

I Activation maps
I Used modified-CS for

reconstructing the fMRI
sequence; standard
tools for active region
detection

I Actual MRI scanner
data; retrospective
undersampling w/
n0 = 100%, n = 30%,

I Ongoing joint work with
Dr. Ian Atkinson (UIC)
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

Background: Robust PCA / Sparse + Low-Rank Recovery

I Most practical data are approximately low-dimensional. PCA:
recovers the low-dim subspace of the data

I Robust PCA: PCA in presence of outliers. Many useful heuristics in
older work, e.g., RSL [De la Torre et al,2003], others

I Recent work of Candes et al posed this as: separate a low-rank
matrix L & a sparse matrix X from

Y := X + L

I PCP (convex opt sol): [Candes et al, Chandrasekharan et al, 2011]

min
X̃ ,L̃

∥L̃∥∗ + λ∥X̃∥1 s.t. Y = X̃ + L̃

I If (a) left and right singular vectors of L dense enough; (b) rank of
L small; (c) support of X generated uniformly at random; then PCP
gives exact recovery w.h.p.
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Background: Robust PCA / Sparse + Low-Rank Recovery

I Most practical data are approximately low-dimensional. PCA:
recovers the low-dim subspace of the data

I Robust PCA: PCA in presence of outliers. Many useful heuristics in
older work, e.g., RSL [De la Torre et al,2003], others

I Recent work of Candes et al posed this as: separate a low-rank
matrix L & a sparse matrix X from

Y := X + L

I PCP (convex opt sol): [Candes et al, Chandrasekharan et al, 2011]

min
X̃ ,L̃

∥L̃∥∗ + λ∥X̃∥1 s.t. Y = X̃ + L̃

I If (a) left and right singular vectors of L dense enough; (b) rank of
L small; (c) support of X generated uniformly at random; then PCP
gives exact recovery w.h.p.
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Online Sparse + Low-rank Matrix Recovery

The Problem
Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

The need for a recursive / online solution

I Causal: needed for video surveillance, Netflix problem, ...

I Fast and memory efficient compared to batch solutions

I Exploit temporal dependencies in the dataset; sometimes no
practical (polynomial complexity) way to do this in a batch
fashion w/o putting (Bayesian) priors
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Recursive Sparse + Low-Rank Recovery [Qiu,Vaswani,Allerton’10,’11]8

The Problem:
I Given sequentially arriving data vectors

yt := xt + ℓt , t = 1, 2, . . .

I xt ’s are sparse vectors,

I Tt := support(xt) changes over time (not constant),

I ℓt ’s lie in a fixed or “slowly changing” low-dimensional
subspace,

I ℓt ’s are dense,

I and given an estimate of span([ℓ1, ℓ2, . . . ℓt0 ]),

I Goal: recursively recover xt and ℓt at all t > t0.

8
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Recursive Sparse + Low-Rank Recovery [Qiu,Vaswani,Allerton’10,’11]8

The Problem:
I Given sequentially arriving data vectors

yt := xt + ℓt , t = 1, 2, . . .

I xt ’s are sparse vectors,

I Tt := support(xt) changes over time (not constant),

I ℓt ’s lie in a fixed or “slowly changing” low-dimensional
subspace,

I ℓt ’s are dense,

I and given an estimate of span([ℓ1, ℓ2, . . . ℓt0 ]),

I Goal: recursively recover xt and ℓt at all t > t0.

8
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Background
Recursive/Online Recovery of Sparse Signal Sequences

Online Sparse + Low-rank Matrix Recovery

The Problem
Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

I Various interpretations:

I Recursive sparse recovery in large but structured noise
I large noise: ∥ℓt∥ can be much larger than ∥xt∥
I extension to the yt := Axt + Bℓt is easy

I Recursive robust PCA:
I xt is outlier, recover ℓt and span([ℓ1, ℓ2, . . . ℓt ])

I Recursive matrix completion: simpler special case of above

I Applications: fg and bg extraction in video (e.g. for surveillance
apps), brain activity detection in fMRI, dynamic Netflix problem,
. . .

I Almost all existing work with performance guarantees: batch
solutions.
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Our Solution: Recursive Projected CS (ReProCS)[Qiu,Vaswani,Allerton’10,Allerton’11]9

Recall that yt := xt + ℓt

Initialize: SVD on training background data to compute P̂0

For t > t0

I Projection: compute ỹt := Φ(t)yt , where Φ(t) := I − P̂(t−1)P̂
′
(t−1)

I then ỹt = Φ(t)xt + βt , βt := Φ(t)ℓt is small “noise”

I Sparse Recovery: ℓ1 min + support estimation + LS: get x̂t

I Get ℓ̂t = yt − x̂t

I Subspace update: use the last α ℓ̂t ’s to update P̂(t):
projection-PCA or its practical version

I simple PCA not work: et := ℓ̂t − ℓt = xt − x̂t correlated with
ℓt

9
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Our Solution: Recursive Projected CS (ReProCS)[Qiu,Vaswani,Allerton’10,Allerton’11]9

Recall that yt := xt + ℓt

Initialize: SVD on training background data to compute P̂0

For t > t0

I Projection: compute ỹt := Φ(t)yt , where Φ(t) := I − P̂(t−1)P̂
′
(t−1)

I then ỹt = Φ(t)xt + βt , βt := Φ(t)ℓt is small “noise”

I Sparse Recovery: ℓ1 min + support estimation + LS: get x̂t

I Get ℓ̂t = yt − x̂t

I Subspace update: use the last α ℓ̂t ’s to update P̂(t):
projection-PCA or its practical version

I simple PCA not work: et := ℓ̂t − ℓt = xt − x̂t correlated with
ℓt

9
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Our Solution: Recursive Projected CS (ReProCS)[Qiu,Vaswani,Allerton’10,Allerton’11]9

Recall that yt := xt + ℓt

Initialize: SVD on training background data to compute P̂0

For t > t0

I Projection: compute ỹt := Φ(t)yt , where Φ(t) := I − P̂(t−1)P̂
′
(t−1)

I then ỹt = Φ(t)xt + βt , βt := Φ(t)ℓt is small “noise”

I Sparse Recovery: ℓ1 min + support estimation + LS: get x̂t

I Get ℓ̂t = yt − x̂t

I Subspace update: use the last α ℓ̂t ’s to update P̂(t):
projection-PCA or its practical version

I simple PCA not work: et := ℓ̂t − ℓt = xt − x̂t correlated with
ℓt

9
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

Application: Video Layering (Fg and Bg extraction)

original ReProCS PCP RSL GRASTA ReProCS PCP RSL

video fg fg fg fg bg bg bg

I Separating fg and bg layers in a real video seq: bg is window
curtains moving due to wind

I Proposed algorithm: ReProCS; RSL: [de la Torre et al, 2003], GRASTA:
[Balzano et al,CVPR 2012]
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Quantifying Denseness of span(B) [Qiu,Vaswani, ISIT’2013, ICASSP 2013]10

I Define the denseness coefficient for a matrix/vector B as

κs(B) = κs(span(B)) := max
|T |≤s

∥IT ′Q(B)∥2

where Q(B) is an ortho basis for span(B)

I intuition: if B is a vector, then Q = B/∥B∥2, κs small means
B is a dense vector

Lemma (relation to RIC)

Let Φ := I − Q(B)Q(B)′. Then δs(Φ) = κs(B)
2.

10
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large

but Structured Noise, revised for IEEE Trans. IT, 2013, shorter versions in ISIT and ICASSP 2013
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Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

Model on ℓt

I ℓt = P(t)at where P(t) = Pj for t ∈ [tj , tj+1 − 1],

I Pj : tall n × rj matrix with ortho col’s that changes as

Pj = [Pj−1, Pj,new]

I rj ≪ n, rj ≪ (tj+1 − tj), 0 ≤ rank(Pj,new) ≤ c

I at is a zero mean bounded random variable: ∥at∥∞ ≤ γ∗

I at ’s mutually independent over time

I j = 1, 2, . . . J (total of J subspace change times)

I Define f := maxt λmax(Λt)
mint λmin(Λt)

where Λt := Cov(at)

No bound needed on f or on γ∗: allow large but structured ℓt
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Model on ℓt

I ℓt = P(t)at where P(t) = Pj for t ∈ [tj , tj+1 − 1],

I Pj : tall n × rj matrix with ortho col’s that changes as

Pj = [Pj−1, Pj,new]

I rj ≪ n, rj ≪ (tj+1 − tj), 0 ≤ rank(Pj,new) ≤ c

I at is a zero mean bounded random variable: ∥at∥∞ ≤ γ∗

I at ’s mutually independent over time

I j = 1, 2, . . . J (total of J subspace change times)

I Define f := maxt λmax(Λt)
mint λmin(Λt)

where Λt := Cov(at)

No bound needed on f or on γ∗: allow large but structured ℓt
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Subspace update: Projection PCA

Assume tj+1 − tj > Kα; recall: tj : subspace change times

Projection PCAProjection PCA

at t = tj + kα, compute P̂j,new,k as the c “top” left singular vectors of

(I − P̂j−1P̂
′
j−1)[ℓ̂tj+(k−1)α, . . . ℓ̂tj+kα−1]; update P̂(t) = [P̂j−1, P̂j,new,k ]
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Theorem
Pick ζ ≤ min( 10−4

(r0+Jc)2f ,
1

(r0+Jc)3γ2
∗
). Assume the model on ℓt , algorithm

parameters appropriately set & ∥(I − P̂0P̂
′
0)P0∥2 ≤ r0ζ. If

1. slow subspace change holds:

I minj(tj+1 − tj) ≥ Kα and

I maxt∈[tj+(k−1)α,tj+kα) ∥P ′
j,newℓt∥∞ ≤ 1.2k−1γnew with γnew

small enough

2. denseness of subspace holds:

max
j

κ2s(Pj) ≤ 0.3, and max
j

κs(Pj,new) ≤ 0.15,

3. c = 1 or condition number of Cov(at,new) below 1.4 at all times,

4. maxk=1,2,...K κs(Dnew,k) ≤ 0.153,

Dnew,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,k P̂

′
j,new,k)Pj,new,

then, w.p. > 1− n−10, T̂t = Tt and ∥xt − x̂t∥2 ≤ b ≪ ∥xt∥2
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Theorem
Pick ζ ≤ min( 10−4

(r0+Jc)2f ,
1

(r0+Jc)3γ2
∗
). Assume the model on ℓt , algorithm

parameters appropriately set & ∥(I − P̂0P̂
′
0)P0∥2 ≤ r0ζ. If

1. slow subspace change holds:

I minj(tj+1 − tj) ≥ Kα and

I maxt∈[tj+(k−1)α,tj+kα) ∥P ′
j,newℓt∥∞ ≤ 1.2k−1γnew with γnew

small enough

2. denseness of subspace holds:

max
j

κ2s(Pj) ≤ 0.3, and max
j

κs(Pj,new) ≤ 0.15,

3. c = 1 or condition number of Cov(at,new) below 1.4 at all times,

4. maxk=1,2,...K κs(Dnew,k) ≤ 0.153,

Dnew,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,k P̂

′
j,new,k)Pj,new,

then, w.p. > 1− n−10, T̂t = Tt and ∥xt − x̂t∥2 ≤ b ≪ ∥xt∥2
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Theorem
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(r0+Jc)2f ,
1

(r0+Jc)3γ2
∗
). Assume the model on ℓt , algorithm

parameters appropriately set & ∥(I − P̂0P̂
′
0)P0∥2 ≤ r0ζ. If

1. slow subspace change holds:

I minj(tj+1 − tj) ≥ Kα and

I maxt∈[tj+(k−1)α,tj+kα) ∥P ′
j,newℓt∥∞ ≤ 1.2k−1γnew with γnew

small enough

2. denseness of subspace holds:

max
j

κ2s(Pj) ≤ 0.3, and max
j

κs(Pj,new) ≤ 0.15,

3. c = 1 or condition number of Cov(at,new) below 1.4 at all times,

4. maxk=1,2,...K κs(Dnew,k) ≤ 0.153,

Dnew,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,k P̂

′
j,new,k)Pj,new,
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Theorem
Pick ζ ≤ min( 10−4

(r0+Jc)2f ,
1

(r0+Jc)3γ2
∗
). Assume the model on ℓt , algorithm

parameters appropriately set & ∥(I − P̂0P̂
′
0)P0∥2 ≤ r0ζ. If

1. slow subspace change holds:

I minj(tj+1 − tj) ≥ Kα and

I maxt∈[tj+(k−1)α,tj+kα) ∥P ′
j,newℓt∥∞ ≤ 1.2k−1γnew with γnew

small enough

2. denseness of subspace holds:

max
j

κ2s(Pj) ≤ 0.3, and max
j

κs(Pj,new) ≤ 0.15,

3. c = 1 or condition number of Cov(at,new) below 1.4 at all times,

4. maxk=1,2,...K κs(Dnew,k) ≤ 0.153,

Dnew,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,k P̂

′
j,new,k)Pj,new,

then, w.p. > 1− n−10, T̂t = Tt and ∥xt − x̂t∥2 ≤ b ≪ ∥xt∥2
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Proposed online Robust PCA solution: ReProCS
Performance guarantees
Proof Outline

Discussion: Main Limitations and Ongoing Work

I Result is not a correctness result because the Dnew,k assumption
depends on algorithm estimates

I Ongoing work (to be submitted to NIPS 2014):
I replaces this by an assumption on support change of xt ’s,

gives a correctness result

I Result assumes independence of ℓt ’s over time

I Ongoing work (ISIT 2014):
I replaces this by an autoregressive model on the ℓt ’s

I Algorithm that is analyzed assumes knowledge of subspace change
times and number of changed directions
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Discussion: Main Limitations and Ongoing Work

I Result is not a correctness result because the Dnew,k assumption
depends on algorithm estimates

I Ongoing work (to be submitted to NIPS 2014):
I replaces this by an assumption on support change of xt ’s,

gives a correctness result

I Result assumes independence of ℓt ’s over time

I Ongoing work (ISIT 2014):
I replaces this by an autoregressive model on the ℓt ’s

I Algorithm that is analyzed assumes knowledge of subspace change
times and number of changed directions
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Discussion: Contributions

I Among the first works to analyze the online (recursive) robust PCA
problem

I equivalently also among the first results for recursive sparse
recovery in large but low-dimensional noise

I New proof techniques needed to obtain the result

I all existing robust PCA results are for batch approaches

I all previous finite sample PCA results assume et := ℓ̂t − ℓt is
uncorrelated with ℓt

I Result 2: allows subspace removals, Advantage:

I no bound needed on # of subspace changes, J, as long as
(tj+1 − tj) increases in proportion to log J ⇔ no bound on
rank(L)
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Proof Outline: Overall idea

In the figure: St ≡ xt , Lt ≡ ℓt

Let Φ := (I − P̂(t−1)P̂
′
(t−1)), βt := Φℓt (noise seen by ℓ1 step)
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Proof Outline: Key steps

I Define subspace error, SE(P, P̂) := ∥(I − P̂P̂ ′)P∥2.

I Start with SE(Pj−1, P̂j−1) ≤ rj−1ζ ≪ 1.

I Key steps

1. Analyze projected sparse recovery for t ∈ [tj , tj + α)

2. Analyze projection-PCA at t = tj + α− 1

3. Repeat for each of the K projection-PCA intervals: show that
SE(Pnew, P̂new,k) ≤ 0.6k + 0.4cζ

4. Pick K so that 0.6k + 0.4cζ ≤ cζ

I Thus,
SE(Pj , P̂j) ≤ SE(Pj−1, P̂j−1) + SE(Pnew, P̂new,K ) ≤ rj−1ζ + cζ = rjζ
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Proof Outline: Projected sparse recovery for t ∈ [tj , tj + α)

1. Recall: P(t) = [Pj−1,Pnew], P̂(t−1) = P̂j−1, ỹt := Φyt = Φxt + βt ,

where Φ := I − P̂(t−1)P̂
′
(t−1) and βt := Φℓt

2. Using slow subspace change,

∥βt∥2 ≤
√
ζ +

√
cγnew

3. Using denseness,

δs(Φ) = κs(P̂j−1)
2 ≤ κs(Pj−1)

2 + rζ ≤ 0.1

4. Thus, ∥x̂t,cs − xt∥ ≤ 7
√
cγnew

5. Appropriate support threshold & γnew small ⇒ T̂t = Tt

6. LS step: get exact expression for et := xt − x̂t = ℓ̂t − ℓt

et = ITt [ΦTt

′ΦTt ]
−1ITt

′Φℓt
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Proof Outline: Projection-PCA at t = tj + α− 1

1. Bound SE(Pnew, P̂new,1) in terms of minimum eigenvalue of the
signal subspace part of the true data matrix,

∑
t Φj,0ℓtℓ

′
tΦ

′
0, and the

maximum eigenvalue of the perturbation matrix,∑
t Φ0(ℓtℓ

′
t − ℓ̂t ℓ̂

′
t)Φ

′
0

I use sin θ theorem: 1970s linear algebra result of Kahan,Davis

2. Get high probability bounds on each of the terms in this bound
I use the matrix Hoeffding inequality: Tropp 2012

3. Simplify using denseness of Dnew := (I − P̂j−1P̂
′
j−1)Pnew to get

SE(Pnew, P̂new,1) ≤ 0.6
I easy to see κs(Dnew) ≤ 1.01κs(Pnew) + 0.01 ≤ 0.153
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Proof Outline: k-th projection PCA interval

I P(t) = [Pj−1,Pnew], P̂(t−1) = [P̂j−1, P̂new,k−1].

I Using slow subspace change,

∥βt∥2 ≤
√
ζ + 0.6k−1

√
cγnew

I Smaller βt ⇒ smaller et = xt − x̂t = ℓ̂t − ℓt ⇒ smaller
SE(Pnew, P̂new,k) ⇒ even smaller βt at next iteration

I Can show SE(Pnew, P̂new,k) ≤ 0.6k + 0.4cζ

I Pick K so that SE(Pnew, P̂new,k) ≤ cζ

I Thus, SE(Pj , P̂j) ≤ SE(Pj−1, P̂j−1) + SE(Pnew, P̂new,K ) ≤ rjζ
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Conclusions and Future Directions I

I Studied two recursive structured signals’ recovery problems

1. recursive sparse signals’ recovery
2. recursive sparse plus low-dimensional signals’ recovery

I Problem 1: reformulate as sparse rec w/ partial support knowledge

I Modified-CS has significantly improved recovery for
proof-of-concept dynamic MRI expts

I its exact recovery conditions weaker than those for simple ℓ1

I its error is bounded by a time-invariant and small value under
mild assumptions in the noisy case

I Problem 2:
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Conclusions and Future Directions II

I ReProCS has significantly improved performance compared w/
existing robust PCA solutions for difficult videos

I Obtained conditions for its exact support recovery w.h.p.

I Future Directions

I Correctness result for ReProCS: ongoing
I ReProCS for other “big-data” applications
I ReProCS for fMRI based brain activity detection
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