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Abstract—We study Principal Component Analysis (PCA) in
a setting where a part of the corrupting noise is data-dependent,
and, as a result, the corrupting noise and the true data are
correlated. We provide a nearly optimal sample complexity
bound for the most common PCA solution, simple singular value
decomposition (SVD). Our bound, which holds under a bounded-
ness and mutual independence assumption on the true data
and a few assumptions on the data-noise correlation, is within
a logarithmic factor of the best achievable. We first studied
this problem in recent work (NIPS 2016) where we called it
“correlated-PCA”.

I. INTRODUCTION

We study Principal Component Analysis (PCA) in a set-
ting where a part of the corrupting noise is data-dependent,
and, as a result, the corrupting noise and the true data are
correlated (correlated-PCA [1]). Under a bounded-ness and
mutual independence assumption on the true data and a few
assumptions on the data-noise correlation (Assumption 2 given
later), we obtain nearly-optimal sample complexity guarantees
for the most commonly used PCA solution, singular value
decomposition (SVD) on the observed data matrix. Henceforth
we refer to this strategy as simple SVD or just SVD. For the
reader who is more familiar with eigenvalue decomposition
(EVD), this is equivalent to EVD of the sample covariance
matrix of the observed data.
Problem Setting. For t = 1, 2, . . . , we are given n-length
data vectors, yt, that satisfy

yt := `t +wt + vt, where `t = Pat, wt = Mt`t,

P is an n× r matrix with orthonormal columns and r � n;
`t is the true data vector that lies in a low (r) dimensional
subspace of Rn, range(P ); at is its projection into this sub-
space; wt is the data-dependent (correlated) noise component;
and vt is the uncorrelated noise component, i.e., it satisfies
E[`tvt′] = 0. The matrices Mt are unknown and such that
E[`tw′t] 6= 0 (holds if ‖E[Mt]‖ > 0). The goal is to estimate
range(P ). Since the matrices Mt are time-varying, observe
that, in general, the wt’s do not lie in a lower dimensional
subspace of Rn.
Examples. A motivating example for this study is the problem
of PCA in the presence of additive sparse outliers (“robust
PCA” [2]) when the corrupting sparse outlier values are data-
dependent. To be precise, let Tt denote the outlier support at
time t. Then, robust PCA with data-dependent outlier values
involves PCA from observed data yt := `t+ITtst+vt where
st = Ms,t`t with Ms,t being a |Tt|×n matrix. Here ITtMs,t

is the data-dependency matrix. This model is often a valid one
for video analytics applications, where `t is the background
layer of image frame t, Tt is the foreground support of frame
t, and st is the difference between foreground and background
intensities on Tt. Another related example is the subspace
update step of the Recursive Projected Compressive Sensing
(ReProCS) solution to the dynamic robust PCA problem [3].

As explained in [4], data-dependent noise also often occurs
in molecular biology applications when the noise affects the
measurement levels through the very same process as the
interesting signal.
Contributions. In recent work [1], we studied the correlated-
PCA problem described above. Our new result given here
addresses three important limitations of [1]. (1) It gives a
significantly improved sample complexity bound and one that
is within a logarithmic factor of the best achievable sample
complexity. (2) We generalize the observed data model to also
include an uncorrelated noise term. This is a more practically
valid noise model since the noise/corruption is typically not
fully data-dependent in most real applications. (3) We provide
a method for automatic data dimension estimation that does
not use knowledge of any model parameter (see Corollary 5).

To our best knowledge, most existing finite sample guar-
antees for the simple SVD solution to PCA, other than [1],
assume that the true data and the corrupting noise are inde-
pendent, or, at least uncorrelated, e.g., see [5] and references
therein, [6], and see the summary of existing batch PCA
guarantees given in [7]. This is valid in practice often, but
not always. There are, of course, a large number of works
on robust PCA that assume nothing about the dependence
between the outlier magnitudes and the true data, e.g., [2],
[8], [9], [10], [11]. In particular, these allow the outlier values
to be dependent on (correlated with) the true data. However,
these works focus on large magnitude sparse outliers and
hence (i) need more expensive solutions than simple SVD;
and (ii) need the columns of P to be dense (not sparse).
On the other hand, the simple SVD solution is faster and
does not require denseness of columns of P ; however it,
of course, only works for small magnitude outliers. This
point is demonstrated experimentally in Table I. We should
mention that there are some very recent works on fast robust
PCA methods such as [12], [13] that have the same order of
computational complexity as simple SVD. However, these still
require denseness of columns of P , and will be slower than
SVD in practice (since their initialization step itself involves
an r-SVD).



II. ASSUMPTIONS AND MAIN RESULT

We assume the following about the true data `t and the
data-dependency matrix Mt.
Asssumption 1. The `t’s satisfy `t = Pat with at’s being
zero mean, mutually independent, and bounded r.v.’s, with
diagonal covariance matrix, Λ.

Define λ− := λmin(Λ), λ+ := λmax(Λ) and f := λ+

λ− .
Since the at’s are bounded, there exists a finite constant,
η, such that, maxj=1,2,...rmaxt

(at)
2
j

λj
≤ η. Observe that η

bounds the ratio of the square of the maximum magnitude of
at over t in any direction to its variance in that direction. For
most bounded distributions, it is a little more than one, e.g.,
if the at’s are i.i.d. uniform, then η = 3.
Asssumption 2. The data-dependency matrices Mt can be
split as Mt = M2,tM1,t with M2,t, M1,t satisfying the
following. For a q < 1, a b0 < 1, and a positive integer
α,

0 < ‖M1,tP ‖2 ≤ q < 1, ‖M2,t‖2 ≤ 1, and (1)∥∥∥∥∥ 1α
α∑
t=1

M2,tAtM2,t
′

∥∥∥∥∥
2

≤ b0 max
t∈[1,α]

‖At‖. (2)

for any α-length sequence of positive semi-definite Hermitian
matrices, At.

Assumption 1 just states mutual independence and bounded-
ness of the `t’s. The first part of Assumption 2 bounds
the instantaneous noise-to-signal ratio of the correlated (data-
dependent) component of the noise, wt: using it, ‖wt‖2 ≤
q‖at‖2 = q‖`t‖2 and ‖E[wtwt

′]‖2 ≤ q2‖E[`t`t′]‖2. The
second part can be understood as one way to reduce the time-
averaged power of wt. Observe that, ‖E[wtwt

′]‖2 ≤ q2λ+,
whereas, ‖ 1α

∑α
t=1 E[wtwt

′]‖2 ≤ b0q
2λ+. Thus, when b0 is

small, the expected value of the time-averaged correlated noise
power is much smaller than the instantaneous one. This is
useful because it helps to reduce the time-averaged signal-
noise correlation: using Cauchy-Schwartz, it is not hard to see
that ‖ 1α

∑α
t=1 E[`twt

′]‖2 ≤
√
b0qλ

+.
One example where Assumption 2 holds is when wt is

sparse with time-varying support sets, denoted Tt. In this case,
M2,t = ITt . If all the sets Tt are mutually disjoint, the matrix
on the LHS of (2) is either block-diagonal, or is permutation-
similar to a block-diagonal matrix, with blocks At. Thus, in
this case, (2) holds with b0 = 1/α. This example can be
generalized to also allow the support sets to change every so
often, and to not even be mutually disjoint; see [1].

With the above assumptions, we study Algorithm 1. We
bound the subspace recovery error,

SE(P̂ ,P ) := ‖(I − P̂ P̂ ′)P ‖2,

of its output1. For simplicity, we first study this simple
algorithm that assumes r known. We give corollaries for the
r unknown case later (see Corollary 4 and 5).

1SE(P̂ ,P ) quantifies the principal angle between the column spans of P̂
and P (this is a valid definition when P̂ and P have orthonormal columns).

Algorithm 1 Simple SVD (or EVD)

Let P̂ be the matrix of top r singular vectors of
[y1,y2, . . . ,yα]. Equivalently, P̂ is the matrix of top r eigen-
vectors of 1

α

∑α
t=1 ytyt

′.

Theorem 3. Assume that vt satisfies ‖E[vtvt′]‖2 ≤ λ+v
and ‖vt‖22 ≤ ηrvλ

+
v . For an εSE < 1, define d :=

max(1,
η(r log 9+10 logn)ε2SE

r(logn)q2 ) and

α0 := Cηd
(log n)max

(
rf2q2, rv(

λ+
v

λ− )2,max(rv, r)f
λ+
v

λ−

)
ε2SE

.

For an α ≥ α0, let P̂ be as defined in Algorithm 1. Assume
that Assumptions 1 and 2 hold with this α.

If 3.3
√
b0qf = εSE/4 and 1.3

λ+
v

λ− = εSE/4, then, with
probability at least 1− 10n−10,

SE(P̂ ,P ) ≤ εSE

III. DISCUSSION

Effect of correlated noise. To compare the effects of
correlated and uncorrelated noises, consider corollaries of the
above result when only one type of noise is present. For a
head-to-head comparison, equate the time-averaged correlated
noise power bound and the uncorrelated noise power bound,
and also equate the bounds on ‖wt‖2 and ‖vt‖2. Thus,
suppose that λ+v = b0q

2λ+ and ηrvλ
+
v = ηrq2λ+. Then, in

the only correlated-noise case (vt = 0), we need 3.3
√
b0qf <

εSE/2, and α ≥ Cηd (logn)rf2q2

ε2SE
. In the wt = 0 case, we

need 3.3b0q
2f < εSE/2 and α ≥ Cηd

(logn) rb0
(b0q

2f)f

ε2SE
=

Cηd (logn)rf2q2

ε2SE
. Thus the α required in both cases is the same.

However, the upper bound on f needed in the correlated noise
case is stronger. For example, say εSE = q/4. Then, in the only
correlated noise case, one needs f < 1(25

√
b0q), while, in the

only uncorrelated noise case, one needs f < 1(25b0q
2).

The reason that the correlated noise case is harder is as
follows. The bound on SE(P̂ ,P ), given by the Davis-Kahan
sin θ theorem [14], is governed by the ratio between the
spectral norm of the perturbation matrix, H := 1

α

∑
t ytyt

′−
1
α

∑
t `t`t

′, and the minimum eigenvalue along the principal
subspace, λ−. In the correlated noise case, the dominant terms
in H are the signal-noise correlation terms, 1

α

∑
t `twt

′ and its
transpose. Since the noise is smaller than signal (q < 1), these
terms are larger than the noise power terms 1

α

∑
twtwt

′ or
1
α

∑
t vtvt

′. In the only uncorrelated noise case (wt = 0 case),
the signal-noise correlation terms are nearly zero with high
probability and the only non-negligible term is 1

α

∑
t vtvt

′.
We should mention here that there is work in linear algebra

on studying the effect of multiplicative perturbations of Her-
mitian matrices on their principal subspaces, e.g., see [15] and
references therein. This line of work provides a tighter bound
than Davis-Kahan for the subspace error between principal
subspaces of a Hermitian matrix A and of its perturbed version



D′AD for a non-singular matrix D. However, such results are
not applicable for our problem since Mt is time-varying.

Comparison with [1]. The result of [1] assumed that
vt = 0. Thus, to compare with it let vt = 0 so that λ+v = 0
and rv = 0 in Theorem 3. First consider the case where the
desired final error is smaller than the noise level, i.e., εSE < q.
In this case, d = 1, and so, Theorem 3 shows that the sample
complexity, α, is lower bounded by Cf2r(log n) q

2

ε2SE
. This

bound holds as long as
√
b0qf < εSE/6.6. Thus, to get the

subspace error to below εSE = q/4, we need
√
b0f < 1/28

and α ≥ 16Cr(log n)f2 samples. This is much better than
our earlier sample complexity bound [1] of Cr2(log n) f

2

ε2SE
[1]

which implies that we need α ≥ 16Cr2(log n) f
2

q2 to achieve
the above subspace error level. This inverse dependence on
noise level, q, of our earlier bound is counter-intuitive, we
should not need more samples when q is smaller. Moreover,
our current bound replaces r2(log n) by r(log n). We get
the first improvement by bounding the r-th eigenvalue of∑
t `t`t

′ = P (
∑
t atat

′)P ′ by using a result of Vershynin
[16, Theorem 5.39] to bound the minimum eigenvalue of∑
t atat

′. In [1], we had used matrix Hoeffding for doing this.
We get the second improvement by using matrix Bernstein to
replace matrix Hoeffding to get high probability bounds on
time-averaged signal-noise correlation and noise power.

If εSE > q (this is a useful scenario only when q is
small) and n is small enough, d =

η(r log 9+10 logn)ε2SE
r(logn)q2

and, so, in this case, our result needs an even smaller α:
α ≥ Cf2(r log 9+ 10 log n) suffices. In fact, in this scenario,
if we let the subspace error bound hold with probability only
at least 1− c exp(−cr), we will only need α ≥ Cf2r.

Matching lower bound. The minimum number of sam-
ples required to estimate the subspace range(P ) is r. Thus,
if f = O(1), up to constants, a sample complexity of
α ≥ Cf2r(log n) is only (log n) times larger than the best
achievable. We get the dependence on n because the wt’s lie
in Rn (and not in a lower dimensional subspace of it).

Logarithmic dependence on signal dimension n. The reason
that we get a logarithmic dependence on n is because of
the boundedness assumption on both `t and wt. If this were
removed, our guarantees would require O(n) samples. This
sample complexity would then be similar to that of existing
results for the uncorrelated (or independent) noise cases, e.g.,
[5] (finite sample guarantee for r = 1 dimensional PCA)
or [7] (finite sample guarantee for memory-limited streaming
PCA), all of which assume Gaussian noise. Since the latter
is a memory-limited streaming algorithm, it, in fact, needs
O(n log n) samples. We note here that there is a large amount
of literature on online PCA which we do not cite or discuss
here (since it is not a problem this work is solving).

Automatically estimating r. There are two easy and com-
monly used ways to automatically estimate r. As the next
two corollaries show, both will return the correct estimate r
with the probability stated in Theorem 3. The first is as done
in [1]. This computes r̂ as the smallest index j for which
λj(
∑α
t=1 ytyt

′) ≥ 0.5αλ− and thus requires knowledge of

λ−. We have the following corollary.

Corollary 4. In the setting of Theorem 3, if εSE < 1/2, then,
with probability ≥ 1− 10n−10,

1) λr( 1
α

∑α
t=1 ytyt

′) ≥ λ−(0.98− εSE/2) ≥ 0.73λ−, and
2) λr+1(

1
α

∑α
t=1 ytyt

′) ≤ (εSE/2)λ
− < 0.25λ−,

and thus, the above approach returns r̂ = r.

An alternate way to estimate r is as r̂ :=
argmaxj [λj(

∑α
t=1 ytyt

′) − λj+1(
∑α
t=1 ytyt

′)]. This
does not require knowledge of λ−. But, it is more expensive
(needs all eigenvalues), and, as we see below, it needs one
extra assumption.

Corollary 5. In the setting of Theorem 3, let εSE < 1/4.
Assume also that λj(Λ) − λj+1(Λ) ≤ 0.45λ− for all j =
1, 2, . . . , r. Then, with probability ≥ 1− 10n−10,

1) for a j < r, λj( 1
α

∑α
t=1 ytyt

′)−λj+1(
1
α

∑α
t=1 ytyt

′) ≤
0.45λ− + 2(εSE/2)λ

− < 0.7λ−,
2) for a j > r, λj( 1

α

∑α
t=1 ytyt

′)−λj+1(
1
α

∑α
t=1 ytyt

′) ≤
2(εSE/2)λ

− < 0.25λ−, and
3) for j = r, λj( 1

α

∑α
t=1 ytyt

′) − λj+1(
1
α

∑α
t=1 ytyt

′) ≥
λ−(0.98− 2(εSE/2)) > 0.73λ−,

and thus, the above approach returns r̂ = r.

IV. PROOF OF THEOREM 3

To see a simple proof first, suppose that vt = 0. In a
few places in this proof, we have missed the subscript 2, but
everywhere the norm used is the spectral norm (induced l2-
norm) only.

Proof of Theorem 3 with vt = 0. Using the Davis-Kahan
sin θ theorem [14] followed by Weyl’s inequality (see [1]),

SE(P̂ ,P )

≤
2‖ 1α

∑
t `twt

′‖2 + ‖ 1α
∑
twtwt

′‖2
λr(

1
α

∑
t `t`t

′)− (2‖ 1α
∑
t `twt

′‖2 + ‖ 1α
∑
twtwt

′‖2)

if the denominator is positive. The two numerator terms can be
bounded using the matrix Bernstein inequality [17]. Observe
that λr( 1

α

∑
t `t`t

′) = λmin(
1
α

∑
t atat

′). We can bound
λmin(

1
α

∑
t atat

′) using Theorem 5.39 of [16]. Since the at’s
are bounded, they are sub-Gaussian with sub-Gaussian norm
bounded by

√
ηλ+. Because the at’s are r-length vectors,

the Vershynin theorem gives a much higher concentration
probability than if we use matrix Bernstein for this term.

Matrix Bernstein for rectangular matrices, Theorem 1.6 of
[17] says the following. For a finite sequence of d1 × d2 zero
mean independent matrices Zk with

‖Zk‖2 ≤ R, max(‖
∑
k

E[Zk′Zk]‖2, ‖
∑
k

E[ZkZk′]‖2) ≤ σ2,

we have P(‖
∑
k Zk‖2 ≥ s) ≤ (d1 + d2) exp

(
− s2/2
σ2+Rs/3

)
.

Let Zt := `twt
′. We apply this result to Z̃t := Zt−E[Zt]

with s = εα. To get the values of R and σ2 in a simple
fashion, we use the facts that (i) If ‖Zt‖2 ≤ R1, Then
‖Z̃t‖ ≤ 2R1; and (ii)

∑
t E[Z̃tZ̃t′] 4

∑
t E[ZtZt′]. Thus,



we can set R to two times the bound on ‖Zt‖2 and we can
set σ2 as the maximum of the bounds on ‖

∑
t E[ZtZt′]‖2

and ‖
∑
t E[Zt′Zt]‖2.

It is easy to see that R = 2
√
ηrλ+

√
ηrq2λ+ = 2ηrqλ+.

To get σ2, observe that∥∥∥∥∥∑
t

E[wt`t
′`twt

′]

∥∥∥∥∥
2

≤ α(max
`t
‖`t‖2) · ‖E[wtwt

′]‖

≤ αηrλ+ · q2λ+ = αηrq2(λ+)2.

Repeating the above steps, we get the same bound on
‖
∑
t E[ZtZt′]‖2. Thus, σ2 = αηrq2(λ+)2.

Thus, we conclude that∥∥∥∥∥∑
t

`twt
′ − E[

∑
t

`twt
′]

∥∥∥∥∥
2

≥ εα

w.p. at most 2n exp
(
− ε2α2/2
αηrq2(λ+)2+ηrqλ+εα/3

)
.

If ε < qλ+, the above probability is bounded by
2n exp

(
− ε2α

4ηrq2(λ+)2

)
.

Thus, with probability at least 1−2n exp
(
−α ε2

4ηrq2(λ+)2

)
,∥∥∥∥∥ 1α∑

t

`twt
′

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1αE[∑
t

`twt
′]

∥∥∥∥∥
2

+ ε ≤
√
b0qλ

+ + ε

as long as ε < qλ+. Set ε = ε0λ
−, then we get: as long as

ε0 < qf , with probability at least 1− 2n exp
(
−α ε20

4ηrq2f2

)
,∥∥∥∥∥ 1α∑

t

`twt
′

∥∥∥∥∥
2

≤
√
b0qλ

+ + ε = [
√
b0qf + ε0]λ

−

Thus, the above event holds w.p. at least 1− 2n−10 if

α ≥ α0 = (11 log n)4ηr
q2f2

ε20
= 44ηr(log n)

q2f2

ε20

and ε0 ≤ qf .
Consider the second term. Proceeding as above, we get

R = 2ηrq2λ+ and σ2 = ασ2
1 , σ2

1 = ηrq4(λ+)2. Thus, with

probability at least 1− 2n exp

(
−α 1

4 σ2

ε22(λ−)2
+4 R

ε2λ
−

)
,∥∥∥∥∥ 1α∑

t

wtwt
′

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1αE[∑
t

wtwt
′]

∥∥∥∥∥+ε2λ− ≤ [b0q
2f+ε2]λ

−

Thus, the above event holds w.p. at least 1− 2n−10 if

α ≥ α2 = 44ηr(log n)max(
q4f2

ε22
,
2q2f

ε2
)

Using Theorem 5.39 of [16] applied to 1
α

∑
t atat

′,
and using the fact that the at’s are r-length independent
sub-Gaussian vectors with sub-Gaussian norm bounded by√
ηλ+, we get the following: with probability at least 1 −

2 exp
(
r log 9− α c(ε1λ

−)2

(4ηλ+)2

)
= 1−2 exp

(
r log 9− α cε21

16η2f2

)
,

λr

(
1

α

∑
t

`t`
′
t

)
= λmin

(
1

α

∑
t

ata
′
t

)
≥ λ−(1− ε1)

Thus, the above event holds w.p. at least 1− 2n−10 if

α ≥ α1 =
(r log 9 + 10 log n) · 16η2f2

ε21
= 16η2c(r log 9+10 log n)

f2

ε21

Thus, we have the following result.

Theorem 6. For an α ≥ max(α0, α1, α2), let P̂ be the
matrix of top r eigenvectors of 1

α

∑α
t=1 ytyt

′. Assume that
Assumptions 1 and 2 hold for the chosen α. Then w.p.
≥ 1− 6n−10,

SE(P̂ ,P ) ≤ 2qf
√
b0 + q2fb0 + 2ε0 + ε2
1− ε1 − numer

as long as numer < 1 − ε1, ε0 < qf . Here numer refers to
the numerator term.

Set ε2 = ε0 = 0.1
√
b0qf and ε1 = 0.02. Then, α2 < α0 =

44ηr(log n) 100b0 = 4400ηr(log n) 1
b0

, α1 = 16η2c(r log 9 +

10 log n)(25f2), and

SE(P̂ ,P ) ≤ 3.3qf
√
b0

0.98− 3.3qf
√
b0

if denominator is positive. To set the RHS equal to an εSE < 1,
it suffices to let

3.3qf
√
b0 = 0.98

εSE
2

= 0.49εSE

This means,

b0 =
0.492ε2SE
3.32q2f2

= 0.022
ε2SE
q2f2

and so
1

b0
=

3.32q2f2

0.492ε2SE
= 45.36

q2f2

ε2SE

With this,

α0 = 4400ηr(log n)
1

b0
= Cηr(log n)

q2f2

ε2SE

Recall that

α1 = Cη2(r log 9 + 10 log n)f2

Define

d = max

(
1, η

(r log 9 + 10 log n)ε2SE
r(log n)q2

)
Thus, if

α ≥ Cdη r(log n)q
2f2

ε2SE

and if b0 = 0.022
ε2SE
q2f2 , then

SE(P̂ ,P ) ≤ εSE

�

Now consider the general case vt 6= 0. We get the final
result for this case by also using the following lemma (which
again follows by matrix Bernstein).

Lemma 7. Pick an ε0,v > 0.



1) With probability at least 1 −
2n exp

(
−α (ε0,vλ

−)2

4ηmax(rv,r)λ+λ+
v

)
,∥∥∥∥∥ 1α∑

t

`tvt
′

∥∥∥∥∥
2

≤ ε0,vλ−

2) With probability at least 1− 2n exp(−α(ε0,vλ
−)2

4ηrv(λ
+
v )2

),∥∥∥∥∥ 1α∑
t

vtvt
′

∥∥∥∥∥
2

≤ λ+v + ε0,vλ
−

V. EXPERIMENTS

We repeat the experiments from [1] here. The results of
three experiments are shown in Table I. Experiment 1:
We generated data with n = 500. We let `t = Pat
with columns of P being sparse. These were chosen as the
first r = 5 columns of the identity matrix. We generate
at’s iid uniformly with zero mean and covariance matrix
Λ = diag(100, 100, 100, 0.1, 0.1). Thus the condition number
f = 1000. The data-dependent noise wt is generated as
wt = ITtMs,t`t with Tt generated so that Assumption 2 holds
with α = 300 and b0 = 4/α (the sets Tt follow Assumption
1.3 of [1] with s = 5, ρ = 2, and β̃ = 1). The entries of
Ms,t were iid N (0, q2) with q = 0.01. The uncorrelated noise
vt = 0. Observe that, since the columns of P are sparse, both
PCP (Principal Components’ Pursuit [2]) and AltMinRPCA
[10] fail. Both have average SE(P̂ ,P ) close to one whereas
the average SE of SVD is 0.0911. Moreover, both of these
are much slower than SVD as well. Experiment 2: Data
was generated as above, but columns of P were dense. In this
case, of course the robust PCA solutions PCP and A-M-RPCA
outperform simple SVD. However, they are still much slower
than simple SVD.

Experiment 3: We used images of a low-rankified real
video sequence (escalator sequence from http://perception.
i2r.a-star.edu.sg/bk model/bk index.html) as `t’s.We made it
exactly low-rank by retaining its top 5 eigenvectors and
projecting onto their subspace. This resulted in a data matrix
L of size n × r with n = 20800 and r = 5. We overlaid a
simulated moving foreground block on it. The intensity of the
moving block was controlled to ensure that q is small.

VI. CONCLUSIONS AND EXTENSIONS

In this work, we studied the PCA problem when the noise
and data are correlated (a part of the noise is data-dependent).

Mean Subspace Error (SE) Execution Time (seconds)

SVD PCP A-M-RPCA SVD PCP A-M-RPCA

Experiment 1 0.0911 1.0000 1.0000 0.0255 0.2361 0.0810
(`t = Pat, P sparse)

Experiment 2 0.07233 0.00000015686 0.000011865 0.0237 0.6989 0.1504
(`t = Pat, P dense)

Experiment 3 0.3821 0.4970 0.4846 0.0223 1.6784 5.5144
(`t’s from real video)

TABLE I: Comparison of SE(P̂ ,P ) and execution time (in seconds).
We compare SVD (Algorithm 1) with two robust PCA solutions - PCP
(Principal Components’ Pursuit [2]) and A-M-RPCA (Alt-Min-RPCA
[10]). Table taken from [1].

We showed that, with as few as α = Cr(log n)f2 samples,
one can achieve subspace recovery error that is a constant
fraction of q. Recall that q bounds the noise-to-signal ratio. If
the condition number f is assumed to be a constant, then, up
to constants, this is only (log n) times the minimum required
which would be r.

Further improvements. The result given here assumes
that the `t’s are bounded and mutually independent random
variables. Both assumptions can be relaxed. Mutual indepen-
dence can be replaced by an autoregressive model on the
`t’s, then, as long as the autocorrelation parameter is not
too large, it is be possible to get a result that is slightly
weaker than the one above by using the matrix Azuma
inequality [17] (the approach will be similar to that used to
analyze the subspace update step of ReProCS in [18]; this
step also involves a correlated-PCA problem). It will require
r2 log n samples instead of r log n. We can also replace the
boundedness assumption by a sub-Gaussianity assumption, as
long as α ≥ Cf2n. Thus, in the unbounded case one would
need O(n) samples; this is similar to the sample complexity
of various other PCA results for uncorrelated or independent
Gaussian noise, e.g., [5], [7].

A. Extensions - cluster-EVD (cluster-SVD)

In [1], we introduced an improvement of simple SVD
(simple EVD) called cluster-EVD. This assumes that the
eigenvalues of Λ are clustered, i.e., there exists a partition
of the index set {1, 2, . . . , r} into subsets G1,G2, . . .GK so
that λ+k := maxi∈Gk λi(Λ) and λ−k := mini∈Gk λi(Λ) satisfy
the following: λ+k+1 < λ−k , λ+k /λ

−
k ≤ g < f and λ+k+1/λ

−
k <

χ < 1. In words, the clusters are arranged in decreasing order
of eigenvalues; the condition number within a cluster is at
most g, and the normalized gap between consecutive clusters’
eigenvalues is at least 1− χ. We say that the eigenvalues are
well-clustered when g � f and χ� 1.

To understand the basic idea of the cluster-EVD algorithm,
suppose that the clusters are known2. Thus rk := |Gk|
is also known. Let Gk := (P )Gk and let Ĝk denote its
estimate. Cluster-EVD computes Ĝ1 as the top r1 eigen-
vectors of

∑α
t=1 ytyt

′. For each k > 1, it computes Ĝk

as the top rk eigenvectors of Φ
∑kα
t=(k−1)α+1 ytyt

′Φ where
Φ := I − Ĝ1Ĝ1

′ − Ĝ2Ĝ2
′ − . . . Ĝk−1Ĝk−1

′. After K such
steps, it sets P̂ = [Ĝ1, Ĝ2, . . . ĜK ].

By using the Vershynin result and matrix Bernstein to
replace matrix Hoeffding at various places in the cluster-
EVD proof of [1], we can significantly improve its sample
complexity (as compared to the result given in [1]). It is
possible to show that, to get SE(P̂ ,P ) ≤ Kε, cluster-EVD
needs

α ≥ Cηd r(log n+ logK)
q2

ε2
max(g, (εf))2

This will hold as long as
√
b0gq < 0.15ε, χ < 0.4, and

εf < g. By substituting ε ≤ g/f , we get α ≥ Cηdr(log n +

2As explained in [1], these can be estimated automatically also.

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html


logK)q2f2. The sample complexity is Kα. On the other hand,
for such an ε, EVD needs α ≥ Cηdr(log n)q2f2(f/g)2. Thus,
when ε < g/f , and K is small, say K = 2, the cluster-EVD
sample complexity is roughly (g/f)2 times smaller than that
of EVD.
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