Bounded, Subgaussian and Subexponential r.v.s High Dim Probability & Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

500

Chapter 2 of book (Vershynin's book)

E

イロト イヨト イヨト イヨト

For a non-negative r.v. Z,

$$\Pr(Z > s) \leq \frac{\mathbb{E}[Z]}{s}$$

Proof: easy application of integral identity

$$\mathbb{E}[Z] \geq \int_0^s \Pr(Z > \tau) d\tau \geq \Pr(Z > s) (\int_0^s d\tau) = \Pr(Z > s) s$$

Applications: basic ideas

- **1** Apply this to $Z = |X \mu|$ with $\mu = \mathbb{E}[X]$, to get Chebyshev's inequality.
- 2 Apply this to $Z = e^{tX}$ for any $t \ge 0$. notice e^{tX} is always non-negative.

$$\Pr(X > s) = \Pr(e^{tX} > e^{ts}) \le e^{-ts} \mathbb{E}[e^{tX}] = e^{-ts} M_X(t)$$

Since this bound holds for all $t \ge 0$, we can take a min_{t \ge 0} of the RHS or we can substitute in any convenient value of t.

3 To get a bound for
$$Pr(X < -s)$$
, use $Z = e^{-tX}$ for $t \ge 0$.

Markov inequality and applications II

O Useful for sums of independent r.v.s: if $S = \sum_{i=1}^{m} X_i$ with X_i 's independent, then $M_X(\lambda) = \prod_i M_{X_i}(\lambda)$. So then we get

$$\Pr(\sum_{i} X_{i} > s) \leq \min_{\lambda \geq 0} e^{-\lambda s} M_{\sum_{i} X_{i}}(\lambda) = \min_{\lambda \geq 0} e^{-\lambda s} \prod_{i} \mathbb{E}[e^{\lambda X_{i}}]$$

- Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding's lemma bounds the MGF of any bounded r.v.)
- Followed by often using $1 + x \le e^x$ or using $\cosh(x) \le e^{x^2/2}$ (or other bounds) to simplify things. Basic point is to try to get a summation over *i* in the exponent.
- **(2)** Final step: either minimizer over $\lambda \ge 0$ by differentiating the expression or a pick a convenient value of $\lambda \ge 0$ to substitute.
- **3** Similar approach to bound $Pr(\sum_i X_i < -s)$. Combine both to bound $Pr(|\sum_i X_i| > s)$.
- **9** disregard this in first read: Final final step that is used sometimes: suppose get a bound g(s) but want to show $g(s) \le f(s)$ for some simpler expression f(s): try to show that g(s) f(s) is a decreasing function for the desired range of s values with g(0) f(0) = 0 or something similar: this is used in Chernoff inequality for $Bern(p_i)$ r.v.s. for small s setting.

Given *n* independent r.v.s X_i with variance $\sigma^2 < \infty$. Then,

$$\Pr(|\sum_{i}(X_i - \mathbb{E}[X_i])| > t) \le n\sigma^2/t^2$$

Proof:

• apply Markov's inequality to $|\sum_{i}(X_{i} - \mathbb{E}[X_{i}])|^{2}$, and then use independence to argue that $\mathbb{E}[|\sum_{i}(X_{i} - \mathbb{E}[X_{i}])|^{2}] = \sum_{i} \mathbb{E}[(X_{i} - \mathbb{E}[X_{i}])^{2}] = n\sigma^{2}$.

Notice that this does not make any assumption on the distribution of the r.v.s, does not require bounded-ness or sub-Gaussianity or sub-expo. Tradeoff: the probability bound is much looser

Hoeffding's inequality

Symmetric Bernoulli: Hoeffding inequality Let X_i, i = 1, 2, ..., n are independent symmetric Bernoulli r.v.s. Then

$$\Pr(|\sum_{i} a_i X_i| \ge t) \le 2 \exp\left(-\frac{t^2}{2\|\mathbf{a}\|^2}\right)$$

Proof idea

•
$$\mathbb{E}[\exp(\lambda a_i X_i)] = (e^{\lambda a_i} + e^{-\lambda a_i})/2 = \cosh(\lambda a_i)$$

- Show $cosh(x) \le e^{x^2}/2$ (Ex 2.2.3)
- conclude $\Pr(|\sum_{i} a_i X_i| \ge t) \le exp(-\lambda t + \lambda^2 \sum_{i} a_i^2/2)$; minimize over λ .

(a) General bounded r.v.s (including $Bern(p_i)$): Hoeffding inequality Let X_i , i = 1, 2, ..., n are independent bounded r.v.s with $Pr(m_i \le X_i \le M_i) = 1$. Then

$$\Pr(|\sum_{i} (X_i - E[X_i])| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_{i} (M_i - m_i)^2}\right)$$

Proof: use Hoeffding's lemma: this bounds the MGF of a zero mean and bounded r.v..:

イロト イボト イヨト イヨト

▶ Hoeffding's Lemma: Suppose $\mathbb{E}[X] = 0$ and $\Pr(X \in [a, b]) = 1$, then

$$M_X(s):=\mathbb{E}[e^{sX}]\leq e^{rac{s^2(b-a)^2}{8}}$$
 if $s>0$

Proof: use Jensen's inequality followed by mean value theorem, see http: //www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Chernoff's inequality

9 Bern(p_i) r.v.s: Chernoff inequality
Let X_i, i = 1, 2, ..., n are independent Bernoulli r.v.s. with X_i ~ Bern(p_i) and let $\mu = \sum_i p_i.$ For a t > µ, $Pr(\sum_i X_i \ge t) \le exp(-\mu)(\frac{e\mu}{t})^t$

< 1,
$$\Pr(|\sum_i X_i - \mu| \ge \delta \mu) \le 2 \exp(-c \delta^2 \mu)$$

Proof idea:

For a 0 < δ</p>

Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s III

- ▶ For $t > \mu$: exact MGF expression, $1 + x \le e^x$, use $\lambda = \log(t/\mu)$ where $\mu := \sum_i p_i$. For $t < \mu$: exact MGF expression, $1 + x \le e^x$, set $\lambda = \log(1 + \delta)$ (obtained as the minimizer), then use this: for 0 < x < 1, $\log(1 + x) \ge x/(1 + x/2)$. Finally use $1/(2 + \delta) < 1/3$ for $\delta < 1$ to get a bound of $\exp(-\mu\delta^2/3)$.
 - * for showing the last inequality, use this: show $g(\delta) \le f(\delta)$ by showing $g(\delta) f(\delta)$ is decreasing in δ for $\delta \in [0, 1]$ and g(0) f(0) = 0.

Bernstein for general bounded r.v.s

General bounded r.v.s: Bernstein inequality Let X_i , i = 1, 2, ..., n are independent bounded r.v.s with $Pr(-M_i \le X_i \le M_i) = 1$. Then

$$\Pr(|\sum_{i=1}^{n} (X_i - E[X_i])| \ge t) \le 2 \exp\left(-\frac{0.5t^2}{\sum_i \sigma_i^2 + 0.33(\max_i M_i)t}\right)$$

where $\sigma_i^2 := \mathbb{E}[(X_i - E[X_i])^2]$. Assume $\sigma_i^2 \le \sigma_{mx}^2$ and $M_i \le M_{mx}$. Also simplify above further to get

$$\Pr(|\sum_{i=1}^{n} (X_i - E[X_i])| \ge t) \le 2 \exp\left(-c \min\left(\frac{t^2}{n\sigma_{m_X}^2} \frac{t}{M_{m_X}}\right)\right)$$

Namrata Vaswani (Iowa State U.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

▶ Proof: use MGF bound of Ex 2.8.5

When $t > n\sigma^2/M_{mx}$ the prob bnd grows as $\exp(-t/M_{mx})$. When t is smaller, it grows as $\exp(-t^2/n\sigma^2)$. In this small t regime, we have $\exp(-t^2/n\sigma^2)$ decay. In this small t regime, if $\sigma^2 \ll M_{mx}^2$, then the Bernstein bound is better than the Hoeffding bound (which always grows as $\exp(-t^2/nM_{mx}^2)$)

Hoeffding inequality only uses the bounds, but not the variance of X_i s. It is not very tight if the variance is much smaller than the square of the range. This issue is addressed by use of Chernoff inequality for $Bern(p_i)$ r.v.s., and use of Bernstein inequality for general bounded r.v.s.

"variance much smaller than the square of the range" : $\sigma_{mx}^2/M_{mx}^2 \ll 1$ or more generally $\sum_i \sigma_i^2 \ll \sum_i M_i^2$

• $a \ll b$ means a/b is less than O(1)

equivalent for Bernoulli: $\sum_i p_i \ll n$, e.g., $\sum_i p_i \in O(\log n)$: this happens for sparse random graphs

Application: Boosting randomized algorithms

- Ex 2.2.8 of book (Boosting) : Suppose algo works correctly w.p. $0.5 + \delta$ (a little better than random guess). Run the algo *n* independent times and take majority vote. Show that answer correct w.p. 1ϵ if $n \ge \frac{1}{2k^2} \log(1/\epsilon)$
- Ex 2.2.9 (Robust estimation / Median of Means):

Application: bounding degrees of dense or sparse random graphs, use Chernoff for sparse graphs

- Proposition 2.4.1 : Dense graphs are almost regular proof: use Chernoff for small deviations (Ex 2.3.5) for degree of one node *i*; then union bound to "unfix" *i*
- Problem 2.4.2, 2.4.3, 2.4.4
- Chernoff for $Bern(p_i)$ r.v.s gives a better bound than Hoeffding for bounded r.v.s when $p_i \ll 1/2$.

The reason is Hoeffding does not use knowledge of p_i , only the fact that a Bernoulli r.v. is lower and upper bounded by $m_i = 0, M_i = 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Definition and Properties of a sub-Gaussian r.v. X: for constants K_i = CK, the following are equivalent:

- $\Pr(|X| > t) \le 2 \exp(-t^2/K_1^2)$
- **2** $||X||_{L_p} := \mathbb{E}[|X|^p]^{1/p} \le K_2 \sqrt{p}$
- 3 $\mathbb{E}[\exp(\lambda^2 X^2)] \leq \exp(K_3^2 \lambda^2)$ for $|\lambda| \leq 1/K_3$
- $\mathbb{E}[\exp(X^2/K_4^2)] \leq 2$
- **6** If $\mathbb{E}[X] = 0$, then $\mathbb{E}[exp(\lambda X)] \le exp(K_5^2\lambda^2)$ for all λ .
- 2 Sub-Gaussian norm: can be defined as the smallest value of K for which any of the above properties hold.

We use the second one here since that is easiest to interpret

$$\|X\|_{\psi_2} := \sup_{p \ge 1} \frac{1}{\sqrt{p}} \mathbb{E}[|X|^p]^{1/p}$$

(used in Vershynin's tutorial article)

We can also define subG norm as the smallest value of K for which $\exp(X^2/K^2) \le 2$:

$$\|X\|_{\psi_2} := \inf_{K > 0: \exp(X^2/K^2) \le 2} K$$

(this is used in the book)

Namrata Vaswani (Iowa State U.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Sub-Gaussian and Sub-Exponential r.v.'s II

8 Examples: Gaussian, Bernoulli, bounded

(a) Sub-Gaussian Hoeffding inequality: Let $X_1, X_2, \ldots X_n$ be independent zero-mean subG with subG norm K_i .

Then $\sum_{i} X_{i}$ is also subG with subG norm $K = \sqrt{C \sum_{i} K_{i}^{2}}$.

Proof: Chernoff bounding followed by use of sub-G property.

Theorem (Sub-Gaussian Hoeffding inequality)

Let X_1, X_2, \ldots, X_n be independent zero-mean subG r.v.s with subG norm K_i . Then, for every $t \geq 0$,

$$\Pr(|\sum_{i} X_{i}| \geq t) \leq 2 \exp\left(-c \frac{t^{2}}{\sum_{i} K_{i}^{2}}\right)$$

Proof follows from above

(b) Definition/Properties of a sub-exponential r.v. X: for constants $K_i = CK$, the following are equivalent

•
$$\Pr(|X| > t) \le 2 \exp(-t/K_1)$$

2
$$||X||_{L_p} := \mathbb{E}[|X|^p]^{1/p} \le K_2 p$$

3 $\mathbb{E}[\exp(\lambda|X|)] \leq \exp(K_3\lambda)$ for $|\lambda| \leq 1/K_3$

イロト (四) (三) (三) (二) (つ)

$$\textbf{ If } \mathbb{E}[X]=\textbf{ 0, then } \mathbb{E}[exp(\lambda X)] \leq \exp(K_5^2\lambda^2) \text{ for } |\lambda| \leq 1/K_5$$

Proof main ideas

- ▶ a ==> b: Integral identity, Gamma function property, $p^{1/p} \leq C$.
- ▶ b ==> c: Taylor expansion, Sterling $p! > (p/e)^p$, $1/(1-x) < e^{2x}$
- c ==> d: use $\lambda = c/K_3$, pick c so that $e^c = 2$.
- ▶ d==> a : use Chernoff bounding for |X|
- ▶ b ==> e: Taylor expansion, Sterling $p! > (p/e)^p$, $1 + x < e^x$
- e ==> b: option 1: see book. option 2: Chernoff bounding should work to go from e to a

Sub-expo norm,

$$\|X\|_{\psi_1} := \sup_{p \ge 1} \frac{1}{p} \mathbb{E}[|X|^p]^{1/p}$$

Square of a sub-Gaussian is sub-expo with ||X²||_{\u03c01} = ||X||²_{\u03c02} proof:

immediate consequence of property d

イロト (四) (三) (三) (二) (つ)

(2) If X, Y are sub-Gaussian with subG norms K_X, K_Y , then XY is sub-exponential with sub-expo norm $K_X K_Y$. In other words,

 $\|\mathbf{X}\mathbf{Y}\|_{\psi_1} < \|\mathbf{X}\|_{\psi_2} \|\mathbf{Y}\|_{\psi_2}$

Proof.

- consider normalized rvs X/K_X , Y/K_Y (here K_X, K_Y are their subG norms)
- ▶ try to bound $\mathbb{E}[\exp(|XY|)]$ (property d) using $\mathbb{E}[X^2] \leq 2$ property for subG rvs
- use Young's inequality twice: $ab \leq \frac{a^2}{2} + \frac{b^2}{2}$

Examples: square of a sub-Gaussian,

Sub-exponential Bernstein inequality

Theorem (Sub-exponential Bernstein inequality)

Let X_1, X_2, \ldots, X_n be independent zero-mean sub-expo r.v.s with sub-expo norm K_i . Then, for every t > 0.

$$\Pr(|\sum_{i} X_{i}| \ge t) \le 2 \exp\left(-c \min\left(\frac{t^{2}}{\sum_{i} K_{i}^{2}}, \frac{t}{\max_{i} K_{i}}\right)\right)$$

イロト 不得下 イヨト イヨト

- Proof: Chernoff bounding; followed by use of sub-expo property v to bound the MGF of each term; pick λ as the minimum of the constraint on it and the value obtained by unconstrained minimiz over it.
- **(2)** Centering: if X is sub-G with sub-G norm K, then $X \mathbb{E}[X]$ is subG with sub-G norm at most CK. Same for sub-expo r.v.s as well.
- Comparing the different inequalities: Chebyshev, Bernstein, and Hoeffding
 - Hoeffding applies to the lightest tailed r.v.s (subGaussians). The probability exponent depends only $\sum_i K_{G,i}^2$ where $K_{G,i}$ is subG norm of X_i .
 - ▶ Bernstein applies to sub-expo r.v.s which are heavier tailed than subG but still somewhat "well-behaved". it depends on both ∑_i K²_{e,i} and max_i K_{e,i}. The latter can be problematic sometimes for sums of sub-expo r.v.s that are such that max_i K_{e,i} is not small enough.
 - Chebyshev needs the least assumptions, applies to any r.v. with finite mean and variance. Used for r.v.s that are heavier tailed than sub-expo. It gives the loosest bounds

イロト イボト イヨト イヨト 二日

Truncation idea used in data science / ML / statistics I

Truncation idea used in data science / ML: explained with 3 examples

- Truncation used in analyzing the algorithm: see https://arxiv.org/abs/1306.0160, Appendix A (Proof of the Initialization Step)
 - ▶ Bound ∑_i X_i where X_i are r. matrices with some entries that are fourth powers of a Gaussian r.v.s. These entries are worse than sub-exponential. Can truncate these entries so each scalar G is truncated. Do this carefully so that it is possible to bound the residual term w.h.p. too.
- Truncation used to modify the algorithm, applied to the observed r.v. (convert it from worse-than-sub-expo to sub-expo) :

https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf (see Sec 2.2), Truncated Wirtinger Flow algorithm paper of Chen and Candes, but as cited there, the idea goes back to older work.

▶ Idea: suppose we need to bound a term of the form $\sum_i z_i(y_i, \mathbf{a}_i)^2$ with z_i being indep, zero mean, $sub - expo(K_i)$ r.v.s. Since z_i are sub-expo, z_i^2 are even worse and (to my best knowledge), Chebyshev ineq is the only result to bound such a summation w.h.p. As we already discussed Cheby results in loose bounds. Here y_i and \mathbf{a}_i are the available data/measurements and the known design/measurement vectors used in the algorithm design. And z_i is some function of both of these that is used in the defining error terms that need to be bounded.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

- In the TWF context, z_i = w'Y_{mat}w with w, w being arbitrary fixed unit vectors and Y_{mat} = ∑_i y_ia_ia_i' with y_i := (a'_ix^{*})². See Sec 2.2. of https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf
- A possible solution: truncate y_i using a carefully chosen large enough threshold to make the y_i's bounded. Here "truncate" is used in the sense of truncated Gaussian: u The threshold itself can depend on the mean of y_is.
- Then, can show that $\sum_{i} z_i (y_{trunc,i}, \mathbf{a}_i)^2$ is a sum of sub-expo r.v.s that can be bounded.
- Truncation used to modify the algorithm, applied to the observed r.v. (convert from sub-expo to sub-G): used in my work with Sara Nayer:
 - In other settings z_i are indep, zero mean, subE(K_i) r.v.s., which means one can use the sub-expo Bern. But this requires a good enough bound on max_i K_i. In some settings, this is not possible to get
 - Solution: truncate y_is to make them bounded and hence sub-G. Then can argue that z_is are also subG. In this particular setting the sum of subG norms was easy to get a good enough bound on.
 - details: see Sec II-A of https://arxiv.org/pdf/2102.10217.pdf