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Markov inequality and applications I

For a non-negative r.v. Z ,

Pr(Z > s) ≤
E[Z ]

s

Proof: easy application of integral identity

E[Z ] ≥
∫ s

0
Pr(Z > τ)dτ ≥ Pr(Z > s)(

∫ s

0
dτ) = Pr(Z > s)s

Applications: basic ideas

1 Apply this to Z = |X − µ| with µ = E[X ], to get Chebyshev’s inequality.

2 Apply this to Z = etX for any t ≥ 0. notice etX is always non-negative.

Pr(X > s) = Pr(etX > ets) ≤ e−tsE[etX ] = e−tsMX (t)

Since this bound holds for all t ≥ 0, we can take a mint≥0 of the RHS or we can
substitute in any convenient value of t.

3 To get a bound for Pr(X < −s), use Z = e−tX for t ≥ 0.
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Markov inequality and applications II

4 Useful for sums of independent r.v.s: if S =
∑m

i=1 Xi with Xi ’s independent, then
MX (λ) =

∏
i MXi

(λ). So then we get

Pr(
∑
i

Xi > s) ≤ min
λ≥0

e−λsM∑
i Xi

(λ) = min
λ≥0

e−λs
∏
i

E[eλXi ]

5 Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding’s lemma bounds the
MGF of any bounded r.v.)

6 Followed by often using 1 + x ≤ ex or using cosh(x) ≤ ex
2/2 (or other bounds) to simplify

things. Basic point is to try to get a summation over i in the exponent.

7 Final step: either minimizer over λ ≥ 0 by differentiating the expression or a pick a
convenient value of λ ≥ 0 to substitute.

8 Similar approach to bound Pr(
∑

i Xi < −s). Combine both to bound Pr(|
∑

i Xi | > s).

9 disregard this in first read: Final final step that is used sometimes: suppose get a bound
g(s) but want to show g(s) ≤ f (s) for some simpler expression f (s): try to show that
g(s)− f (s) is a decreasing function for the desired range of s values with g(0)− f (0) = 0
or something similar: this is used in Chernoff inequality for Bern(pi ) r.v.s. for small s
setting.
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Chebyshev’s inequality I

Given n independent r.v.s Xi with variance σ2 < ∞. Then,

Pr(|
∑
i

(Xi − E[Xi ])| > t) ≤ nσ2/t2

Proof:

apply Markov’s inequality to |
∑

i (Xi − E[Xi ])|2, and then use independence to argue that
E[|
∑

i (Xi − E[Xi ])|2] =
∑

i E[(Xi − E[Xi ])
2] = nσ2.

Notice that this does not make any assumption on the distribution of the r.v.s, does not require
bounded-ness or sub-Gaussianity or sub-expo. Tradeoff: the probability bound is much looser
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s I

Hoeffding’s inequality
1 Symmetric Bernoulli: Hoeffding inequality

Let Xi , i = 1, 2, . . . , n are independent symmetric Bernoulli r.v.s. Then

Pr(|
∑
i

aiXi | ≥ t) ≤ 2 exp

(
−

t2

2∥a∥2

)

Proof idea

▶ E[exp(λaiXi )] = (eλai + e−λai )/2 = cosh(λai )

▶ Show cosh(x) ≤ ex
2
/2 (Ex 2.2.3)

▶ conclude Pr(|
∑

i aiXi | ≥ t) ≤ exp(−λt + λ2
∑

i a
2
i /2); minimize over λ.

2 General bounded r.v.s (including Bern(pi )): Hoeffding inequality
Let Xi , i = 1, 2, . . . , n are independent bounded r.v.s with Pr(mi ≤ Xi ≤ Mi ) = 1. Then

Pr(|
∑
i

(Xi − E [Xi ])| ≥ t) ≤ 2 exp

(
−

2t2∑
i (Mi −mi )2

)

Proof: use Hoeffding’s lemma: this bounds the MGF of a zero mean and bounded r.v..:
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s II

▶ Hoeffding’s Lemma: Suppose E[X ] = 0 and Pr(X ∈ [a, b]) = 1, then

MX (s) := E[esX ] ≤ e
s2(b−a)2

8 if s > 0

⋆ Proof: use Jensen’s inequality followed by mean value theorem, see http:

//www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Chernoff’s inequality
1 Bern(pi ) r.v.s: Chernoff inequality

Let Xi , i = 1, 2, . . . , n are independent Bernoulli r.v.s. with Xi ∼ Bern(pi ) and let

µ =
∑

i pi .

▶ For a t > µ,

Pr(
∑
i

Xi ≥ t) ≤ exp(−µ)(
eµ

t
)t

▶ For a 0 ≤ δ < 1,

Pr(|
∑
i

Xi − µ| ≥ δµ) ≤ 2 exp(−cδ2µ)

Proof idea:
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s III

▶ For t > µ: exact MGF expression, 1 + x ≤ ex , use λ = log(t/µ) where µ :=
∑

i pi .

For t < µ: exact MGF expression, 1 + x ≤ ex , set λ = log(1 + δ) (obtained as the

minimizer), then use this: for 0 < x < 1, log(1 + x) ≥ x/(1 + x/2). Finally use

1/(2 + δ) < 1/3 for δ < 1 to get a bound of exp(−µδ2/3).
⋆ for showing the last inequality, use this: show g(δ) ≤ f (δ) by showing

g(δ)− f (δ) is decreasing in δ for δ ∈ [0, 1] and g(0)− f (0) = 0.

Bernstein for general bounded r.v.s
1 General bounded r.v.s: Bernstein inequality

Let Xi , i = 1, 2, . . . , n are independent bounded r.v.s with Pr(−Mi ≤ Xi ≤ Mi ) = 1. Then

Pr(|
n∑

i=1

(Xi − E [Xi ])| ≥ t) ≤ 2 exp

(
−

0.5t2∑
i σ

2
i + 0.33(maxiMi )t

)

where σ2
i := E[(Xi − E [Xi ])

2]. Assume σ2
i ≤ σ2

mx and Mi ≤ Mmx . Also simplify above
further to get

Pr(|
n∑

i=1

(Xi − E [Xi ])| ≥ t) ≤ 2 exp

(
−c min(

t2

nσ2
mx

t

Mmx

)
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s IV

▶ Proof: use MGF bound of Ex 2.8.5

When t > nσ2/Mmx the prob bnd grows as exp(−t/Mmx ). When t is smaller, it grows as
exp(−t2/nσ2). In this small t regime, we have exp(−t2/nσ2) decay.
In this small t regime, if σ2 ≪ M2

mx , then the Bernstein bound is better than the
Hoeffding bound (which always grows as exp(−t2/nM2

mx )

Hoeffding inequality only uses the bounds, but not the variance of Xi s. It
is not very tight if the variance is much smaller than the square of the
range. This issue is addressed by use of Chernoff inequality for Bern(pi )
r.v.s., and use of Bernstein inequality for general bounded r.v.s.

“variance much smaller than the square of the range” : σ2
mx/M

2
mx ≪ 1 or

more generally
∑

i σ
2
i ≪

∑
i M

2
i

a ≪ b means a/b is less than O(1)

equivalent for Bernoulli:
∑

i pi ≪ n , e.g.,
∑

i pi ∈ O(log n) : this happens
for sparse random graphs
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Applications: Boosting randomized algorithms, Random graphs I

Application: Boosting randomized algorithms

Ex 2.2.8 of book (Boosting) : Suppose algo works correctly w.p. 0.5 + δ (a little better
than random guess). Run the algo n independent times and take majority vote. Show
that answer correct w.p. 1− ϵ if n ≥ 1

2δ2
log(1/ϵ)

Ex 2.2.9 (Robust estimation / Median of Means):

Application: bounding degrees of dense or sparse random graphs, use Chernoff for sparse graphs

Proposition 2.4.1 : Dense graphs are almost regular
proof: use Chernoff for small deviations (Ex 2.3.5) for degree of one node i ; then union
bound to ”unfix” i
Problem 2.4.2, 2.4.3, 2.4.4
Chernoff for Bern(pi ) r.v.s gives a better bound than Hoeffding for bounded r.v.s when
pi ≪ 1/2.
The reason is Hoeffding does not use knowledge of pi , only the fact that a Bernoulli r.v.
is lower and upper bounded by mi = 0,Mi = 1.
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Sub-Gaussian and Sub-Exponential r.v.’s I

1 Definition and Properties of a sub-Gaussian r.v. X : for constants Ki = CK , the following

are equivalent:

1 Pr(|X | > t) ≤ 2 exp(−t2/K2
1 )

2 ∥X∥Lp := E[|X |p ]1/p ≤ K2
√
p

3 E[exp(λ2X 2)] ≤ exp(K2
3λ

2) for |λ| ≤ 1/K3

4 E[exp(X 2/K2
4 )] ≤ 2

5 If E[X ] = 0, then E[exp(λX )] ≤ exp(K2
5λ

2) for all λ.

2 Sub-Gaussian norm: can be defined as the smallest value of K for which any of the above
properties hold.
We use the second one here since that is easiest to interpret

∥X∥ψ2
:= sup

p≥1

1
√
p
E[|X |p ]1/p

(used in Vershynin’s tutorial article)
We can also define subG norm as the smallest value of K for which exp(X 2/K2) ≤ 2:

∥X∥ψ2
:= inf

K>0:exp(X 2/K2)≤2
K

(this is used in the book)
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Sub-Gaussian and Sub-Exponential r.v.’s II

3 Examples: Gaussian, Bernoulli, bounded
4 Sub-Gaussian Hoeffding inequality: Let X1,X2, . . .Xn be independent zero-mean subG

with subG norm Ki .

Then
∑

i Xi is also subG with subG norm K =
√

C
∑

i K
2
i .

▶ Proof: Chernoff bounding followed by use of sub-G property.

Theorem (Sub-Gaussian Hoeffding inequality)
Let X1,X2, . . .Xn be independent zero-mean subG r.v.s with subG norm Ki . Then, for every
t ≥ 0,

Pr(|
∑
i

Xi | ≥ t) ≤ 2 exp

(
−c

t2∑
i K

2
i

)

▶ Proof: follows from above.

5 Definition/Properties of a sub-exponential r.v. X : for constants Ki = CK , the following

are equivalent

1 Pr(|X | > t) ≤ 2 exp(−t/K1)
2 ∥X∥Lp := E[|X |p ]1/p ≤ K2p
3 E[exp(λ|X |)] ≤ exp(K3λ) for |λ| ≤ 1/K3

4 E[exp(|X |/K4)] ≤ 2
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Sub-Gaussian and Sub-Exponential r.v.’s III

5 If E[X ] = 0, then E[exp(λX )] ≤ exp(K2
5λ

2) for |λ| ≤ 1/K5

6 Proof main ideas

▶ a ==> b: Integral identity, Gamma function property, p1/p ≤ C .
▶ b ==> c: Taylor expansion, Sterling p! > (p/e)p , 1/(1− x) < e2x

▶ c ==> d: use λ = c/K3 , pick c so that ec = 2.
▶ d==> a : use Chernoff bounding for |X |
▶ b ==> e: Taylor expansion, Sterling p! > (p/e)p , 1 + x < ex

▶ e ==> b: option 1: see book. option 2: Chernoff bounding should work to go from
e to a

7 Sub-expo norm,

∥X∥ψ1
:= sup

p≥1

1

p
E[|X |p ]1/p

8 Square of a sub-Gaussian is sub-expo with ∥X 2∥ψ1
= ∥X∥2ψ2

proof:

▶ immediate consequence of property d
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Sub-Gaussian and Sub-Exponential r.v.’s IV

9 If X ,Y are sub-Gaussian with subG norms KX ,KY , then XY is sub-exponential with
sub-expo norm KXKY . In other words,

∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2

Proof:

▶ consider normalized rvs X/KX , Y /KY (here KX ,KY are their subG norms)
▶ try to bound E[exp(|XY |)] (property d) using E[X 2] ≤ 2 property for subG rvs

▶ use Young’s inequality twice: ab ≤ a2

2
+ b2

2

10 Examples: square of a sub-Gaussian,
11 Sub-exponential Bernstein inequality

Theorem ( Sub-exponential Bernstein inequality)
Let X1,X2, . . .Xn be independent zero-mean sub-expo r.v.s with sub-expo norm Ki . Then, for
every t ≥ 0,

Pr(|
∑
i

Xi | ≥ t) ≤ 2 exp

(
−c min

(
t2∑
i K

2
i

,
t

maxi Ki

))
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Sub-Gaussian and Sub-Exponential r.v.’s V

▶ Proof: Chernoff bounding; followed by use of sub-expo property v to bound the
MGF of each term; pick λ as the minimum of the constraint on it and the value
obtained by unconstrained minimiz over it.

12 Centering: if X is sub-G with sub-G norm K , then X − E[X ] is subG with sub-G norm at
most CK . Same for sub-expo r.v.s as well.

13 Comparing the different inequalities: Chebyshev, Bernstein, and Hoeffding

▶ Hoeffding applies to the lightest tailed r.v.s (subGaussians). The probability
exponent depends only

∑
i K

2
G ,i where KG ,i is subG norm of Xi .

▶ Bernstein applies to sub-expo r.v.s which are heavier tailed than subG but still
somewhat “well-behaved”. it depends on both

∑
i K

2
e,i and maxi Ke,i . The latter

can be problematic sometimes for sums of sub-expo r.v.s that are such that
maxi Ke,i is not small enough.

▶ Chebyshev needs the least assumptions, applies to any r.v. with finite mean and
variance. Used for r.v.s that are heavier tailed than sub-expo. It gives the loosest
bounds
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Truncation idea used in data science / ML / statistics I

Truncation idea used in data science / ML: explained with 3 examples

Truncation used in analyzing the algorithm: see https://arxiv.org/abs/1306.0160,

Appendix A (Proof of the Initialization Step)
▶ Bound

∑
i Xi where Xi are r. matrices with some entries that are fourth powers of a

Gaussian r.v.s. These entries are worse than sub-exponential. Can truncate these
entries so each scalar G is truncated. Do this carefully so that it is possible to
bound the residual term w.h.p. too.

Truncation used to modify the algorithm, applied to the observed r.v. (convert it from

worse-than-sub-expo to sub-expo) :

https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf (see Sec

2.2), Truncated Wirtinger Flow algorithm paper of Chen and Candes, but as cited there,

the idea goes back to older work.
▶ Idea: suppose we need to bound a term of the form

∑
i zi (yi , ai )

2 with zi being
indep, zero mean, sub − expo(Ki ) r.v.s. Since zi are sub-expo, z2i are even worse
and (to my best knowledge), Chebyshev ineq is the only result to bound such a
summation w.h.p. As we already discussed Cheby results in loose bounds. Here yi
and ai are the available data/measurements and the known design/measurement
vectors used in the algorithm design. And zi is some function of both of these that
is used in the defining error terms that need to be bounded.
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Truncation idea used in data science / ML / statistics II

▶ In the TWF context, zi = w′Ymat w̃ with w, w̃ being arbitrary fixed unit vectors and
Ymat =

∑
i yiaia

′
i with yi := (a′ix

∗)2. See Sec 2.2. of
https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf

▶ A possible solution: truncate yi using a carefully chosen large enough threshold to
make the yi ’s bounded. Here ”truncate” is used in the sense of truncated Gaussian:
u The threshold itself can depend on the mean of yi s.

▶ Then, can show that
∑

i zi (ytrunc,i , ai )
2 is a sum of sub-expo r.v.s that can be

bounded.

Truncation used to modify the algorithm, applied to the observed r.v. (convert from

sub-expo to sub-G): used in my work with Sara Nayer:

▶ In other settings zi are indep, zero mean, subE(Ki ) r.v.s., which means one can use
the sub-expo Bern. But this requires a good enough bound on maxi Ki . In some
settings, this is not possible to get

▶ Solution: truncate yi s to make them bounded and hence sub-G. Then can argue
that zi s are also subG. In this particular setting the sum of subG norms was easy to
get a good enough bound on.

▶ details: see Sec II-A of https://arxiv.org/pdf/2102.10217.pdf
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