Bounded, Subgaussian and Subexponential r.v.s High Dim Probability \& Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

Reading I

Chapter 2 of book (Vershynin's book)

Markov inequality and applications I

For a non-negative r.v. Z,

$$
\operatorname{Pr}(Z>s) \leq \frac{\mathbb{E}[Z]}{s}
$$

Proof: easy application of integral identity

$$
\mathbb{E}[Z] \geq \int_{0}^{s} \operatorname{Pr}(Z>\tau) d \tau \geq \operatorname{Pr}(Z>s)\left(\int_{0}^{s} d \tau\right)=\operatorname{Pr}(Z>s) s
$$

Applications: basic ideas
(1) Apply this to $Z=|X-\mu|$ with $\mu=\mathbb{E}[X]$, to get Chebyshev's inequality.
(2) Apply this to $Z=e^{t X}$ for any $t \geq 0$. notice $e^{t X}$ is always non-negative.

$$
\operatorname{Pr}(X>s)=\operatorname{Pr}\left(e^{t X}>e^{t s}\right) \leq e^{-t s} \mathbb{E}\left[e^{t X}\right]=e^{-t s} M_{X}(t)
$$

Since this bound holds for all $t \geq 0$, we can take a $\min _{t \geq 0}$ of the RHS or we can substitute in any convenient value of t.
(3) To get a bound for $\operatorname{Pr}(X<-s)$, use $Z=e^{-t X}$ for $t \geq 0$.

Markov inequality and applications II

(4) Useful for sums of independent r.v.s: if $S=\sum_{i=1}^{m} X_{i}$ with X_{i} 's independent, then $M_{X}(\lambda)=\prod_{i} M_{X_{i}}(\lambda)$. So then we get

$$
\operatorname{Pr}\left(\sum_{i} X_{i}>s\right) \leq \min _{\lambda \geq 0} e^{-\lambda s} M_{\sum_{i} X_{i}}(\lambda)=\min _{\lambda \geq 0} e^{-\lambda s} \prod_{i} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

(5) Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding's lemma bounds the MGF of any bounded r.v.)
(6) Followed by often using $1+x \leq e^{x}$ or using $\cosh (x) \leq e^{x^{2} / 2}$ (or other bounds) to simplify things. Basic point is to try to get a summation over i in the exponent.
(7) Final step: either minimizer over $\lambda \geq 0$ by differentiating the expression or a pick a convenient value of $\lambda \geq 0$ to substitute.
(8) Similar approach to bound $\operatorname{Pr}\left(\sum_{i} X_{i}<-s\right)$. Combine both to bound $\operatorname{Pr}\left(\left|\sum_{i} X_{i}\right|>s\right)$.
(9) disregard this in first read: Final final step that is used sometimes: suppose get a bound $g(s)$ but want to show $g(s) \leq f(s)$ for some simpler expression $f(s)$: try to show that $g(s)-f(s)$ is a decreasing function for the desired range of s values with $g(0)-f(0)=0$ or something similar: this is used in Chernoff inequality for $\operatorname{Bern}\left(p_{i}\right)$ r.v.s. for small s setting.

Chebyshev's inequality I

Given n independent r.v.s X_{i} with variance $\sigma^{2}<\infty$. Then,

$$
\operatorname{Pr}\left(\left|\sum_{i}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right|>t\right) \leq n \sigma^{2} / t^{2}
$$

Proof:

- apply Markov's inequality to $\left|\sum_{i}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right|^{2}$, and then use independence to argue that $\mathbb{E}\left[\left|\sum_{i}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right|^{2}\right]=\sum_{i} \mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{2}\right]=n \sigma^{2}$.

Notice that this does not make any assumption on the distribution of the r.v.s, does not require bounded-ness or sub-Gaussianity or sub-expo. Tradeoff: the probability bound is much looser

Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s I

Hoeffding's inequality

(1) Symmetric Bernoulli: Hoeffding inequality Let $X_{i}, i=1,2, \ldots, n$ are independent symmetric Bernoulli r.v.s. Then

$$
\operatorname{Pr}\left(\left|\sum_{i} a_{i} X_{i}\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2\|a\|^{2}}\right)
$$

Proof idea

- $\mathbb{E}\left[\exp \left(\lambda a_{i} X_{i}\right)\right]=\left(e^{\lambda a_{i}}+e^{-\lambda a_{i}}\right) / 2=\cosh \left(\lambda a_{i}\right)$
- Show $\cosh (x) \leq e^{x^{2}} / 2(E x 2.2 .3)$
- conclude $\operatorname{Pr}\left(\left|\sum_{i} a_{i} X_{i}\right| \geq t\right) \leq \exp \left(-\lambda t+\lambda^{2} \sum_{i} a_{i}^{2} / 2\right)$; minimize over λ.
(2) General bounded r.v.s (including $\operatorname{Bern}\left(p_{i}\right)$): Hoeffding inequality

Let $X_{i}, i=1,2, \ldots, n$ are independent bounded r.v.s with $\operatorname{Pr}\left(m_{i} \leq X_{i} \leq M_{i}\right)=1$. Then

$$
\operatorname{Pr}\left(\left|\sum_{i}\left(X_{i}-E\left[X_{i}\right]\right)\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i}\left(M_{i}-m_{i}\right)^{2}}\right)
$$

Proof: use Hoeffding's lemma: this bounds the MGF of a zero mean and bounded r.v..:

Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s II

- Hoeffding's Lemma: Suppose $\mathbb{E}[X]=0$ and $\operatorname{Pr}(X \in[a, b])=1$, then

$$
M_{X}(s):=\mathbb{E}\left[e^{s X}\right] \leq e^{\frac{s^{2}(b-a)^{2}}{8}} \text { if } s>0
$$

« Proof: use Jensen's inequality followed by mean value theorem, see http: //www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Chernoff's inequality
(1) $\operatorname{Bern}\left(p_{i}\right)$ r.v.s: Chernoff inequality

Let $X_{i}, i=1,2, \ldots, n$ are independent Bernoulli r.v.s. with $X_{i} \sim \operatorname{Bern}\left(p_{i}\right)$ and let $\mu=\sum_{i} p_{i}$.

- For a $t>\mu$,

$$
\operatorname{Pr}\left(\sum_{i} X_{i} \geq t\right) \leq \exp (-\mu)\left(\frac{e \mu}{t}\right)^{t}
$$

- For a $0 \leq \delta<1$,

$$
\operatorname{Pr}\left(\left|\sum_{i} X_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-c \delta^{2} \mu\right)
$$

Proof idea:

Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s III

- For $t>\mu$: exact MGF expression, $1+x \leq e^{x}$, use $\lambda=\log (t / \mu)$ where $\mu:=\sum_{i} p_{i}$. For $t<\mu$: exact MGF expression, $1+x \leq e^{x}$, set $\lambda=\log (1+\delta)$ (obtained as the minimizer), then use this: for $0<x<1, \log (1+x) \geq x /(1+x / 2)$. Finally use $1 /(2+\delta)<1 / 3$ for $\delta<1$ to get a bound of $\exp \left(-\mu \delta^{2} / 3\right)$.
\star for showing the last inequality, use this: show $g(\delta) \leq f(\delta)$ by showing $g(\delta)-f(\delta)$ is decreasing in δ for $\delta \in[0,1]$ and $g(0)-f(0)=0$.

Bernstein for general bounded r.v.s

(1) General bounded r.v.s: Bernstein inequality

Let $X_{i}, i=1,2, \ldots, n$ are independent bounded r.v.s with $\operatorname{Pr}\left(-M_{i} \leq X_{i} \leq M_{i}\right)=1$. Then

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n}\left(X_{i}-E\left[X_{i}\right]\right)\right| \geq t\right) \leq 2 \exp \left(-\frac{0.5 t^{2}}{\sum_{i} \sigma_{i}^{2}+0.33\left(\max _{i} M_{i}\right) t}\right)
$$

where $\sigma_{i}^{2}:=\mathbb{E}\left[\left(X_{i}-E\left[X_{i}\right]\right)^{2}\right]$. Assume $\sigma_{i}^{2} \leq \sigma_{m x}^{2}$ and $M_{i} \leq M_{m x}$. Also simplify above further to get

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n}\left(X_{i}-E\left[X_{i}\right]\right)\right| \geq t\right) \leq 2 \exp \left(-c \min \left(\frac{t^{2}}{n \sigma_{m x}^{2}} \frac{t}{M_{m x}}\right)\right.
$$

Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s IV

- Proof: use MGF bound of Ex 2.8.5

When $t>n \sigma^{2} / M_{m x}$ the prob bnd grows as $\exp \left(-t / M_{m x}\right)$. When t is smaller, it grows as $\exp \left(-t^{2} / n \sigma^{2}\right)$. In this small t regime, we have $\exp \left(-t^{2} / n \sigma^{2}\right)$ decay.
In this small t regime, if $\sigma^{2} \ll M_{m x}^{2}$, then the Bernstein bound is better than the Hoeffding bound (which always grows as $\exp \left(-t^{2} / n M_{m x}^{2}\right)$
Hoeffding inequality only uses the bounds, but not the variance of X_{i} s. It is not very tight if the variance is much smaller than the square of the range. This issue is addressed by use of Chernoff inequality for $\operatorname{Bern}\left(p_{i}\right)$ r.v.s., and use of Bernstein inequality for general bounded r.v.s.
"variance much smaller than the square of the range" : $\sigma_{m x}^{2} / M_{m x}^{2} \ll 1$ or more generally $\sum_{i} \sigma_{i}^{2} \ll \sum_{i} M_{i}^{2}$

- $a \ll b$ means a / b is less than $O(1)$
equivalent for Bernoulli: $\sum_{i} p_{i} \ll n$, e.g., $\sum_{i} p_{i} \in O(\log n)$: this happens for sparse random graphs

Applications: Boosting randomized algorithms, Random graphs I

Application: Boosting randomized algorithms

- Ex 2.2.8 of book (Boosting) : Suppose algo works correctly w.p. $0.5+\delta$ (a little better than random guess). Run the algo n independent times and take majority vote. Show that answer correct w.p. $1-\epsilon$ if $n \geq \frac{1}{2 \delta^{2}} \log (1 / \epsilon)$
- Ex 2.2.9 (Robust estimation / Median of Means):

Application: bounding degrees of dense or sparse random graphs, use Chernoff for sparse graphs

- Proposition 2.4.1 : Dense graphs are almost regular proof: use Chernoff for small deviations (Ex 2.3.5) for degree of one node i; then union bound to "unfix" i
- Problem 2.4.2, 2.4.3, 2.4.4
- Chernoff for $\operatorname{Bern}\left(p_{i}\right)$ r.v.s gives a better bound than Hoeffding for bounded r.v.s when $p_{i} \ll 1 / 2$.
The reason is Hoeffding does not use knowledge of p_{i}, only the fact that a Bernoulli r.v. is lower and upper bounded by $m_{i}=0, M_{i}=1$.

Sub-Gaussian and Sub-Exponential r.v.'s I

(1) Definition and Properties of a sub-Gaussian r.v. X : for constants $K_{i}=C K$, the following are equivalent:
(1) $\operatorname{Pr}(|X|>t) \leq 2 \exp \left(-t^{2} / K_{1}^{2}\right)$
(2) $\|X\|_{L_{p}}:=\mathbb{E}\left[|X|^{p}\right]^{1 / p} \leq K_{2} \sqrt{p}$
(3) $\mathbb{E}\left[\exp \left(\lambda^{2} X^{2}\right)\right] \leq \exp \left(K_{3}^{2} \lambda^{2}\right)$ for $|\lambda| \leq 1 / K_{3}$
(4) $\mathbb{E}\left[\exp \left(X^{2} / K_{4}^{2}\right)\right] \leq 2$

5 If $\mathbb{E}[X]=0$, then $\mathbb{E}[\exp (\lambda X)] \leq \exp \left(K_{5}^{2} \lambda^{2}\right)$ for all λ.
(2) Sub-Gaussian norm: can be defined as the smallest value of K for which any of the above properties hold.
We use the second one here since that is easiest to interpret

$$
\|X\|_{\psi_{2}}:=\sup _{p \geq 1} \frac{1}{\sqrt{p}} \mathbb{E}\left[|X|^{p}\right]^{1 / p}
$$

(used in Vershynin's tutorial article)
We can also define subG norm as the smallest value of K for which $\exp \left(X^{2} / K^{2}\right) \leq 2$:

$$
\|X\|_{\psi_{2}}:=\inf _{K>0: \exp \left(X^{2} / K^{2}\right) \leq 2} K
$$

(this is used in the book)

Sub-Gaussian and Sub-Exponential r.v.'s II

(3) Examples: Gaussian, Bernoulli, bounded
(4) Sub-Gaussian Hoeffding inequality: Let $X_{1}, X_{2}, \ldots X_{n}$ be independent zero-mean subG with subG norm K_{i}.
Then $\sum_{i} X_{i}$ is also subG with subG norm $K=\sqrt{C \sum_{i} K_{i}^{2}}$.

- Proof: Chernoff bounding followed by use of sub-G property.

Theorem (Sub-Gaussian Hoeffding inequality)

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent zero-mean subG r.v.s with subG norm K_{i}. Then, for every $t \geq 0$,

$$
\operatorname{Pr}\left(\left|\sum_{i} X_{i}\right| \geq t\right) \leq 2 \exp \left(-c \frac{t^{2}}{\sum_{i} K_{i}^{2}}\right)
$$

- Proof: follows from above.
(5) Definition/Properties of a sub-exponential r.v. X : for constants $K_{i}=C K$, the following are equivalent
(1) $\operatorname{Pr}(|X|>t) \leq 2 \exp \left(-t / K_{1}\right)$
(2) $\|X\|_{L_{p}}:=\mathbb{E}\left[|X|^{p}\right]^{1 / p} \leq K_{2} p$
(3) $\mathbb{E}[\exp (\lambda|X|)] \leq \exp \left(K_{3} \lambda\right)$ for $|\lambda| \leq 1 / K_{3}$
(4) $\mathbb{E}\left[\exp \left(|X| / K_{4}\right)\right] \leq 2$

Sub-Gaussian and Sub-Exponential r.v.'s III

(5) If $\mathbb{E}[X]=0$, then $\mathbb{E}[\exp (\lambda X)] \leq \exp \left(K_{5}^{2} \lambda^{2}\right)$ for $|\lambda| \leq 1 / K_{5}$
(6) Proof main ideas

- $\mathrm{a}==>\mathrm{b}$: Integral identity, Gamma function property, $p^{1 / p} \leq C$.
- $\mathrm{b}==>\mathrm{c}$: Taylor expansion, Sterling $p!>(p / e)^{p}, 1 /(1-x)<e^{2 x}$
- $\mathrm{c}==>\mathrm{d}$: use $\lambda=c / K_{3}$, pick c so that $e^{c}=2$.
- $\mathrm{d}==>\mathrm{a}$: use Chernoff bounding for $|X|$
- $\mathrm{b}==>$ e: Taylor expansion, Sterling $p!>(p / e)^{p}, 1+x<e^{x}$
- e==>b: option 1: see book. option 2: Chernoff bounding should work to go from e to a
(7) Sub-expo norm,

$$
\|X\|_{\psi_{1}}:=\sup _{p \geq 1} \frac{1}{p} \mathbb{E}\left[|X|^{p}\right]^{1 / p}
$$

(8) Square of a sub-Gaussian is sub-expo with $\left\|X^{2}\right\|_{\psi_{1}}=\|X\|_{\psi_{2}}^{2}$ proof:

- immediate consequence of property d

Sub-Gaussian and Sub-Exponential r.v.'s IV

(9) If X, Y are sub-Gaussian with subG norms K_{X}, K_{Y}, then $X Y$ is sub-exponential with sub-expo norm $K_{X} K_{Y}$. In other words,

$$
\|\mathbf{X} Y\|_{\psi_{1}} \leq\|X\|_{\psi_{2}}\|Y\|_{\psi_{2}}
$$

Proof:

- consider normalized rvs $X / K_{X}, Y / K_{Y}$ (here K_{X}, K_{Y} are their subG norms)
- try to bound $\mathbb{E}[\exp (|X Y|)]$ (property d) using $\mathbb{E}\left[X^{2}\right] \leq 2$ property for subG rvs
- use Young's inequality twice: $a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}$
(10) Examples: square of a sub-Gaussian,
(II) Sub-exponential Bernstein inequality

Theorem (Sub-exponential Bernstein inequality)

Let $X_{1}, X_{2}, \ldots X_{n}$ be independent zero-mean sub-expo r.v.s with sub-expo norm K_{i}. Then, for every $t \geq 0$,

$$
\operatorname{Pr}\left(\left|\sum_{i} X_{i}\right| \geq t\right) \leq 2 \exp \left(-c \min \left(\frac{t^{2}}{\sum_{i} K_{i}^{2}}, \frac{t}{\max _{i} K_{i}}\right)\right)
$$

Sub-Gaussian and Sub-Exponential r.v.'s V

- Proof: Chernoff bounding; followed by use of sub-expo property v to bound the MGF of each term; pick λ as the minimum of the constraint on it and the value obtained by unconstrained minimiz over it.
(12) Centering: if X is sub-G with sub-G norm K, then $X-\mathbb{E}[X]$ is subG with sub-G norm at most $C K$. Same for sub-expo r.v.s as well.
(13) Comparing the different inequalities: Chebyshev, Bernstein, and Hoeffding
- Hoeffding applies to the lightest tailed r.v.s (subGaussians). The probability exponent depends only $\sum_{i} K_{G, i}^{2}$ where $K_{G, i}$ is subG norm of X_{i}.
- Bernstein applies to sub-expo r.v.s which are heavier tailed than subG but still somewhat "well-behaved". it depends on both $\sum_{i} K_{e, i}^{2}$ and $\max _{i} K_{e, i}$. The latter can be problematic sometimes for sums of sub-expo r.v.s that are such that $\max _{i} K_{e, i}$ is not small enough.
- Chebyshev needs the least assumptions, applies to any r.v. with finite mean and variance. Used for r.v.s that are heavier tailed than sub-expo. It gives the loosest bounds

Truncation idea used in data science / ML / statistics I

Truncation idea used in data science / ML: explained with 3 examples

- Truncation used in analyzing the algorithm: see https://arxiv.org/abs/1306.0160, Appendix A (Proof of the Initialization Step)
- Bound $\sum_{i} X_{i}$ where X_{i} are r. matrices with some entries that are fourth powers of a Gaussian r.v.s. These entries are worse than sub-exponential. Can truncate these entries so each scalar G is truncated. Do this carefully so that it is possible to bound the residual term w.h.p. too.
- Truncation used to modify the algorithm, applied to the observed r.v. (convert it from worse-than-sub-expo to sub-expo) :
https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf (see Sec 2.2), Truncated Wirtinger Flow algorithm paper of Chen and Candes, but as cited there, the idea goes back to older work.
- Idea: suppose we need to bound a term of the form $\sum_{i} z_{i}\left(y_{i}, \mathbf{a}_{i}\right)^{2}$ with z_{i} being indep, zero mean, sub - expo $\left(K_{i}\right)$ r.v.s. Since z_{i} are sub-expo, z_{i}^{2} are even worse and (to my best knowledge), Chebyshev ineq is the only result to bound such a summation w.h.p. As we already discussed Cheby results in loose bounds. Here y_{i} and \mathbf{a}_{i} are the available data/measurements and the known design/measurement vectors used in the algorithm design. And z_{i} is some function of both of these that is used in the defining error terms that need to be bounded.

Truncation idea used in data science / ML / statistics II

- In the TWF context, $z_{i}=\mathbf{w}^{\prime} \mathbf{Y}_{\text {mat }} \tilde{\mathbf{w}}$ with $\mathbf{w}, \tilde{\mathbf{w}}$ being arbitrary fixed unit vectors and $\mathbf{Y}_{\text {mat }}=\sum_{i} y_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\prime}$ with $y_{i}:=\left(\mathbf{a}_{i}^{\prime} \mathbf{x}^{*}\right)^{2}$. See Sec 2.2. of https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf
- A possible solution: truncate y_{i} using a carefully chosen large enough threshold to make the y_{i} 's bounded. Here "truncate" is used in the sense of truncated Gaussian:
u The threshold itself can depend on the mean of y_{i} s.
- Then, can show that $\sum_{i} z_{i}\left(y_{\text {trunc, }, i}, \mathbf{a}_{i}\right)^{2}$ is a sum of sub-expo r.v.s that can be bounded.
- Truncation used to modify the algorithm, applied to the observed r.v. (convert from sub-expo to sub-G): used in my work with Sara Nayer:
- In other settings z_{i} are indep, zero mean, $\operatorname{subE}\left(K_{i}\right)$ r.v.s., which means one can use the sub-expo Bern. But this requires a good enough bound on $\max _{i} K_{i}$. In some settings, this is not possible to get
- Solution: truncate $y_{i} s$ to make them bounded and hence sub-G. Then can argue that $z_{i} s$ are also subG. In this particular setting the sum of subG norms was easy to get a good enough bound on.
- details: see Sec II-A of https://arxiv.org/pdf/2102.10217.pdf

