Namrata Vaswani

lowa State University

o>



Chapter 2 of book (Vershynin's book)

«O>» «(Fr «Zr «E» = Q>



Markov inequality and applications |

For a non-negative r.v. Z,
E[Z]
s

Pr(Z >s) <

Proof: easy application of integral identity
s S
E[Z] > / PHZ > r)dr > Pr(Z > s)(/ dr) = Pr(Z > 5)s
0 0

Applications: basic ideas
@ Apply this to Z = | X — p| with u = E[X], to get Chebyshev's inequality.
@ Apply this to Z = etX for any t > 0. notice X is always non-negative.

Pr(X > s) = Pr(e™X > e¥) < e *E[e¥] = e * Mx(t)
Since this bound holds for all t > 0, we can take a min;>o of the RHS or we can

substitute in any convenient value of t.
© To get a bound for Pr(X < —s), use Z = e~ for t > 0.
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Markov inequality and applications Il

@ Useful for sums of independent r.v.s: if S =37, X; with X;'s independent, then
Mx(X) = TT; Mx;()\). So then we get

< mi

A>

PrQ_Xi > s) < mine™ "My ,(3) = mine™** [T E[e*]

Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding’s lemma bounds the
MGF of any bounded r.v.)

. . 2 T
Followed by often using 1+ x < e or using cosh(x) < eX/2 (or other bounds) to simplify
things. Basic point is to try to get a summation over i in the exponent.

Final step: either minimizer over A > 0 by differentiating the expression or a pick a
convenient value of A > 0 to substitute.

Similar approach to bound Pr(3"; X; < —s). Combine both to bound Pr(| >, Xi| > s).

disregard this in first read: Final final step that is used sometimes: suppose get a bound
g(s) but want to show g(s) < f(s) for some simpler expression f(s): try to show that
g(s) — f(s) is a decreasing function for the desired range of s values with g(0) — f(0) =0
or something similar: this is used in Chernoff inequality for Bern(p;) r.v.s. for small s
setting.

©0 © 0 ©o
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Proof:

Given n independent r.v.s X; with variance 02 < co. Then,

Pr(| > _(Xi —E[X])| > t) < no?/t?

E[| 325(Xi — E[XiD?] = 3 BI(X; — E[Xi])*] = no.

@ apply Markov's inequality to | >=;(X; — E[X;])|2, and then use independence to argue that

Notice that this does not make any assumption on the distribution of the r.v.s, does not require

bounded-ness or sub-Gaussianity or sub-expo. Tradeoff: the probability bound is much looser
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s |

Hoeffding's inequality
@ Symmetric Bernoulli: Hoeffding inequality
Let X;, i =1,2,...,n are independent symmetric Bernoulli r.v.s. Then

1.‘2
Pr(| > aiXj| > t) < 2exp <_2|W)

Proof idea
> Elexp(Aa; X;)] = (e + e~*%)/2 = cosh(\a;)
> Show cosh(x) < e /2 (Ex 2.2.3)
> conclude Pr(] Y=, a;Xj| > t) < exp(—At + A2 3", a?/2); minimize over A.

@ General bounded r.v.s (including Bern(p;)): Hoeffding inequality
Let X;, i =1,2,...,n are independent bounded r.v.s with Pr(m; < X; < M;) = 1. Then

2
Pr(| Z(Xi —E[X])| > t) < 2exp (‘ﬁ)

Proof: use Hoeffding's lemma: this bounds the MGF of a zero mean and bounded r.v..:
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s Il

» Hoeffding’s Lemma: Suppose E[X] = 0 and Pr(X € [a, b]) = 1, then

73)2

sX =2
Mx(s) :=E[e”]<e 8 ifs>0

* Proof: use Jensen's inequality followed by mean value theorem, see http:

//wwu.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Chernoff’s inequality
@ Bern(p;) r.v.s: Chernoff inequality
Let X;, i =1,2,...,n are independent Bernoulli r.v.s. with X; ~ Bern(p;) and let
B=22Pi
> Forat>upu,
Pr(Y_ X 2 ) < exp(—i)( L)
i

> Fora0<d<1,
Pr(| > X — | > 6p) < 2exp(—cd?p)
i

Proof idea:
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s Il

» For t > p: exact MGF expression, 1+ x < €*, use A = log(t/u) where p:= 3" p;.
For t < p: exact MGF expression, 1+ x < €*, set A = log(1 + ¢) (obtained as the
minimizer), then use this: for 0 < x < 1, log(1 + x) > x/(1 + x/2). Finally use
1/(2+8) < 1/3 for § < 1 to get a bound of exp(—ud?/3).

* for showing the last inequality, use this: show g(§) < f(d) by showing
g(8) — f(9) is decreasing in § for § € [0,1] and g(0) — f(0) = 0.

Bernstein for general bounded r.v.s

@ General bounded r.v.s: Bernstein inequality
Let X;, i =1,2,...,n are independent bounded r.v.s with Pr(—M; < X; < M;) = 1. Then

d 0.5¢2
P Xi—E[X]])|>t)<2 —
13000~ B > ) < 200 ( = 0.33(max,.M,.)t)

where o2 := E[(X; — E[Xj])?]. Assume 0? < 02, and M; < Mpx. Also simplify above
further to get

2
Pr(|Z -—E[X]|>t)<2exp< cmln( t M;x)
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Hoeffding, Chernoff, Bernstein for Bernoulli, general bounded r.v.s IV

» Proof: use MGF bound of Ex 2.8.5

When t > na2/MmX the prob bnd grows as exp(—t/Mmx). When t is smaller, it grows as
exp(—t2/no?). In this small t regime, we have exp(—t?/nc?) decay.
In this small t regime, if 02 <« M2 _, then the Bernstein bound is better than the

mx

Hoeffding bound (which always grows as exp(—t%/nM2,)
Hoeffding inequality only uses the bounds, but not the variance of X;s. It
is not very tight if the variance is much smaller than the square of the
range. This issue is addressed by use of Chernoff inequality for Bern(p;)
r.v.s., and use of Bernstein inequality for general bounded r.v.s.

“variance much smaller than the square of the range” : 02, /M2 < 1 or
more generally 3", 0% < 3. M?
@ a2 < b means a/bis less than O(1)

equivalent for Bernoulli: Y. p; < n, eg., > ; pi € O(logn) : this happens
for sparse random graphs
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Applications: Boosting randomized algorithms, Random graphs |

Application: Boosting randomized algorithms
@ Ex 2.2.8 of book (Boosting) : Suppose algo works correctly w.p. 0.5+ § (a little better
than random guess). Run the algo n independent times and take majority vote. Show
that answer correct w.p. 1 — ¢ if n > ﬁ log(1/¢)
@ Ex 2.2.9 (Robust estimation / Median of Means):

Application: bounding degrees of dense or sparse random graphs, use Chernoff for sparse graphs

@ Proposition 2.4.1 : Dense graphs are almost regular
proof: use Chernoff for small deviations (Ex 2.3.5) for degree of one node i; then union
bound to "unfix" i

@ Problem 2.4.2,2.43,24.4

@ Chernoff for Bern(p;) r.v.s gives a better bound than Hoeffding for bounded r.v.s when
pi K 1/2.
The reason is Hoeffding does not use knowledge of p;, only the fact that a Bernoulli r.v.
is lower and upper bounded by m; =0, M; = 1.
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Sub-Gaussian and Sub-Exponential r.v.’s |

@ Definition and Properties of a sub-Gaussian r.v. X: for constants K; = CK, the following
are equivalent:
@ Pr(|X|>t) <2exp(—t*/K7)
@ [IX|t, := E[IX|P]'/? < K2/P
© Elexp(A\2X2)] < exp(K2A2) for |A| < 1/K;3
Q@ Elexp(X?/K}) <2
@ If E[X] =0, then E[exp(AX)] < exp(K2\2) for all A.
@ Sub-Gaussian norm: can be defined as the smallest value of K for which any of the above
properties hold.
We use the second one here since that is easiest to interpret

1
[|X := sup —E[|X|P]V/P
[l s [1X17)
(used in Vershynin’s tutorial article)

We can also define subG norm as the smallest value of K for which exp(X?/K?) < 2:

X = inf
” sz K>0:exp(X2/K2)<2

(this is used in the book)
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Sub-Gaussian and Sub-Exponential r.v.'s |l

Examples: Gaussian, Bernoulli, bounded
o p
@ Sub-Gaussian Hoeffding inequality: Let X1, X, ... X, be independent zero-mean subG

with subG norm K;.

Then Y, X; is also subG with subG norm K = /C >, K2.

» Proof: Chernoff bounding followed by use of sub-G property.

Theorem (Sub-Gaussian Hoeffding inequality)

Let X1, Xz, ... X, be independent zero-mean subG r.v.s with subG norm K;. Then, for every
t>0,

t2
P11 > 0 < 200 (e
i Zi Ki

> Proof: follows from above.
@ Definition/Properties of a sub-exponential r.v. X: for constants K; = CK, the following

are equivalent
@ Pr(|X]|>t) <2exp(—t/Ki)
@ | X|lt, :=E[IX|P]'? < Kop
© E[exp(AX|)] < exp(KsA) for [A < 1/K;
O Elexp(|X|/Kq)] <2
12/17
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Sub-Gaussian and Sub-Exponential r.v.'s lll

@ If E[X] =0, then E[exp(AX)] < exp(K2A2) for |A| < 1/Ks

@ Proof main ideas
> a ==> b: Integral identity, Gamma function property, pl/P < C.
b ==> c: Taylor expansion, Sterling p! > (p/e)?, 1/(1 — x) <
c ==>d: use A = ¢/K3 , pick c so that e = 2.
d==> a : use Chernoff bounding for | X]|
b ==> e: Taylor expansion, Sterling p! > (p/e)P, 1+ x < &*
e ==> b: option 1: see book. option 2: Chernoff bounding should work to go from
etoa

vyvVyVYyYyYy

@ Sub-expo norm,
1
X1y, == sup =E[|X|P]*/?
p>1P

@ Square of a sub-Gaussian is sub-expo with [|X2||y, = ”X”iz
proof:
» immediate consequence of property d
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Sub-Gaussian and Sub-Exponential r.v.'s [V

© If X, Y are sub-Gaussian with subG norms Kx, Ky, then XY is sub-exponential with
sub-expo norm Kx Ky . In other words,

XYy < N X M 1Y Ml

Proof:

» consider normalized rvs X/Kx, Y /Ky (here Kx, Ky are their subG norms)
> try to bound E[exp(|XY])] (property d) using E[X?] < 2 property for subG rvs
> use Young's inequality twice: ab < % + %

@ Examples: square of a sub-Gaussian,

@ Sub-exponential Bernstein inequality

Theorem ( Sub-exponential Bernstein inequality)

Let X1, X2, ... X, be independent zero-mean sub-expo r.v.s with sub-expo norm K;. Then, for

every t > 0,
_ i t
Pr(| E Xi| > t) <2exp [ —cmin —_—

2 2
F zi K’- max; K,'
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Sub-Gaussian and Sub-Exponential r.v.'s V

> Proof: Chernoff bounding; followed by use of sub-expo property v to bound the
MGF of each term; pick A\ as the minimum of the constraint on it and the value
obtained by unconstrained minimiz over it.
@ Centering: if X is sub-G with sub-G norm K, then X — E[X] is subG with sub-G norm at
most CK. Same for sub-expo r.v.s as well.
@® Comparing the different inequalities: Chebyshev, Bernstein, and Hoeffding
> Hoeffding applies to the lightest tailed r.v.s (subGaussians). The probability
exponent depends only >, K(%,i where Kg ; is subG norm of X;.
> Bernstein applies to sub-expo r.v.s which are heavier tailed than subG but still
somewhat “well-behaved”. it depends on both 3, Ki,- and max; K. j. The latter
can be problematic sometimes for sums of sub-expo r.v.s that are such that
max; K ; is not small enough.
» Chebyshev needs the least assumptions, applies to any r.v. with finite mean and
variance. Used for r.v.s that are heavier tailed than sub-expo. It gives the loosest
bounds
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Truncation idea used in data science / ML / statistics |

Truncation idea used in data science / ML: explained with 3 examples

@ Truncation used in analyzing the algorithm: see https://arxiv.org/abs/1306.0160,
Appendix A (Proof of the Initialization Step)
> Bound }; X; where X; are r. matrices with some entries that are fourth powers of a
Gaussian r.v.s. These entries are worse than sub-exponential. Can truncate these
entries so each scalar G is truncated. Do this carefully so that it is possible to
bound the residual term w.h.p. too.

@ Truncation used to modify the algorithm, applied to the observed r.v. (convert it from
worse-than-sub-expo to sub-expo) :
https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf (see Sec
2.2), Truncated Wirtinger Flow algorithm paper of Chen and Candes, but as cited there,

the idea goes back to older work.

> Idea: suppose we need to bound a term of the form Z:,-z,-(y,-,a,-)2 with z; being
indep, zero mean, sub — expo(K;) r.v.s. Since z; are sub-expo, z~ are even worse
and (to my best knowledge), Chebyshev ineq is the only result to bound such a
summation w.h.p. As we already discussed Cheby results in loose bounds. Here y;
and a; are the available data/measurements and the known design/measurement
vectors used in the algorithm design. And z; is some function of both of these that
is used in the defining error terms that need to be bounded.
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Truncation idea used in data science / ML / statistics |l

> In the TWF context, z; = W'Y W with w, W being arbitrary fixed unit vectors and
Ymat = Y_; yiajal with y; := (afx*)2. See Sec 2.2. of
https://yuxinchen2020.github.io/publications/TruncatedWF_CPAM.pdf

> A possible solution: truncate y; using a carefully chosen large enough threshold to
make the y;'s bounded. Here "truncate” is used in the sense of truncated Gaussian:
u The threshold itself can depend on the mean of y;s.

» Then, can show that z:,-z,-(yt,L,r,Q,-,a,-)2 is a sum of sub-expo r.v.s that can be
bounded.

@ Truncation used to modify the algorithm, applied to the observed r.v. (convert from
sub-expo to sub-G): used in my work with Sara Nayer:

> In other settings z; are indep, zero mean, subE(K;) r.v.s., which means one can use
the sub-expo Bern. But this requires a good enough bound on max; K;. In some
settings, this is not possible to get

> Solution: truncate y;s to make them bounded and hence sub-G. Then can argue
that z;s are also subG. In this particular setting the sum of subG norms was easy to
get a good enough bound on.

> details: see Sec II-A of https://arxiv.org/pdf/2102.10217 .pdf
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