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High-dimensional random vectors I

1 2-norm of a subGaussian vector is close to
√
n w.h.p. :

Theorem (Concen of norm of a subG vector)

Let X ∈ ℜn be a r. vector with independent entries Xi with E[X 2
i ] = 1. Let K = maxi∥Xi∥ψ2

.
Then ∥X∥ −

√
n is a sub-G r.v. with sub-G norm at most K2. Equivalently,

Pr(|∥X∥ −
√
n| ≥ t) ≤ 2 exp(−ct2/K4)

Proof:

1 For a subG r.v. with E [Z2] = 1, KZ ≥ 1

⋆ Reason: using 1 + x ≤ ex , with x = Z2/K2
Z E[1 + Z2/K2] ≤ E[eZ

2/K2
] which implies

1 + 1/K2 ≤ E[eZ
2/K2

]. By subG property, E[eZ
2/K2

] ≤ 2 and this gives K ≥ 1.

2 Consider 1
n
∥X∥2 − 1 = 1

n

∑
i (X

2
i − 1). By the properties from earlier, X 2

i − 1 are

independent, zero mean, sub-expo r.v.s with Kexpo ≤ CK2. So we can apply the
sub-expo Bernstein inequality to conclude that

Pr(|
1

n
∥X∥2 − 1| ≥ u) ≤ 2 exp

(
−c

n

K4
min(u2, u)

)
(the above also used K ≥ 1).
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High-dimensional random vectors II

3 Use |z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2) and the fact that A ⇒ B implies
Pr(A) ≤ Pr(B) to conclude that

Pr(|
1
√
n
∥X∥ − 1| ≥ δ) ≤ Pr(|

1

n
∥X∥2 − 1| ≥ max(δ, δ2)) ≤ 2 exp

(
−c

n

K4
δ2
)

(used: for u = max(δ, δ2), min(u2, u) = δ2).
4 Set δ = t/

√
n to conclude that

Pr(|∥X∥ −
√
n| ≥ t) ≤ 2 exp

(
−c

1

K4
t2
)

2 When working with random vectors, we generally subtract mean first to get zero-mean
random vectors.

3 Isotropic random vectors: X ∈ ℜn is isotropic if

E[XX⊤] = In

Properties of isotropic X
▶ E[(a⊤X )2] = ∥a∥2 for all a ∈ ℜn (this is equivalent to the definition)
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High-dimensional random vectors III

▶ E[∥X∥2] = n

▶ X ,Y independent and isotropic, then E[(X ′Y )2] = n

⋆ Implication of this and concentration of norm result (Remark 3.2.5): can
argue that if X ,Y are indep., then X

∥X∥ ,
Y

∥Y∥ are almost orthogonal, i.e. their

inner product is of order 1/
√
n.

TBD: quantify above claim, it is not quantified in the book.

▶ Examples of isotropic r. vectors:

⋆ i.i.d symmetric Bernoulli;
⋆ standard Gaussian vector;
⋆ any “product” distribution (coordinates of X are independent) with zero

mean and unit variance;
⋆ coordinate distribution (X equally likely to be

√
nei , i = 1, 2, . . . , n; recall ei

is the i-th column of I
⋆ X ∼ Unif (

√
nSn−1): this is isotropic but coordinates are not independent

(proof is not obvious, TBD);
⋆ unif distrib on frames

4 Sub-Gaussian random vector
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High-dimensional random vectors IV

▶ Definition:
X is a sub-G vector iff a′X is sub-G for all a ∈ ℜn. Sub-G norm of X is

∥X∥ψ2
:= sup

a∈Sn−1
∥a′X∥ψ2

▶ Sub-G with independent coordinates X = (X1,X2, ...Xn)′ with Xi ’s independent
sub-G: then

∥X∥ψ2
≤ C max

i=1,2,...,n
∥Xi∥ψ2

5 Spherical distribution is sub-Gaussian: Z ∼ Unif (
√
nSn−1) is sub-G with subG norm at

most C . Proof:

1 Use the following property: For a standard Gaussian random vector, X, i.e.,
X ∼ N (0, I)

θ :=
X

∥X∥
∼ Unif(Sn−1),

Also, ∥X∥, θ are independent.
2 Use this property to conclude that we can express Z as

Z =
√
nG/∥G∥

where G ∼ N (0, I).
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High-dimensional random vectors V

3 To prove that Z is sub-G, we need to prove that a′Z is sub-G for all a ∈ ℜn.

1 Rotation invariance property of G implies that a′G = e′1U
′
aG = G̃1 where

G̃ = U′
aG ∼ N (0, I) too and ∥G̃∥ = ∥G∥. Here Ua is an orthonormal matrix

with first column a/∥a∥.
2 Thus, w.l.og., a′Z =

√
nG̃1/∥G̃1∥ and we need to bound

Pr(
√
nG̃1/∥G̃1∥ ≥ u).

3 Apply concentration of norm result on ∥G̃∥ with t =
√
n/2 to conclude that

Pr(∥G̃∥ ≥
√
n/2︸ ︷︷ ︸

Ev

) ≥ 1− 2 exp(−cn)

(follows since K for a standard Gaussian vector is a constant).
4 Using total probability with Ev ,Ev c ,

Pr(
√
nG̃1/∥G̃1∥ ≥ u) ≤ Pr(

√
nG̃1/∥G̃1∥ ≥ u and Ev) + Pr(Ev c )

≤ Pr(G̃1 ≥ u/2 and Ev) + 2 exp(−cn)

≤ Pr(G̃1 ≥ u/2) + 2 exp(−cn)

≤ 2 exp(−u2/8) + 2 exp(−cn) ≤ 4 exp(−u2/8)

Reason for last bound:
If u <

√
n, then first term dominates and we can conclude that Z is sub-G.

If u ≥
√
n, then Pr(

√
nG̃1/∥G̃1∥ ≥ u) = 0 since G̃1 ≤ ∥G̃1∥
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Epsilon-net I

Epsilon net is a finite set of points that is used to “cover” a compact set in a metric space by
using balls of radius ϵ. More precisely, it is a set of finite points so that any point on the
compact set is within ϵ distance of some point in the epsilon-net.

1 Definition for Nϵ that covers Sn−1 in Euclidean distance: Nϵ ⊂ Sn−1 is an ϵ− net of
Sn−1 if for any x ∈ Sn−1, there exists a x̄ ∈ Nϵ s.t. ∥x − x̄∥ ≤ ϵ.

2 Bound size of epsilon-net: can use volume arguments to show that we can find an ϵ-net
that covers Sn−1 with cardinality

|Nϵ| ≤ (1 + 2/ϵ)n

3 Use to bound ∥A∥ by using ∥A∥ = maxx∈Sn−1 ∥Ax∥:
Suppose x is the point on the sphere that achieves the above max. By definition, there
exists an x̄(x) in the net s.t. ∥x̄ − x∥ ≤ ϵ. Thus

∥A∥ = ∥Ax∥ = ∥A(x̄ + x − x̄)∥ ≤ ∥Ax̄∥+ ∥A∥∥x − x̄∥ ≤ ∥Ax̄∥+ ∥A∥ϵ

So
(1− ϵ)∥A∥ ≤ ∥Ax̄∥ ≤ max

x̄∈Nϵ

∥Ax̄∥

and hence

∥A∥ ≤
1

1− ϵ
max
x̄∈Nϵ

∥Ax̄∥
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Epsilon-net II

4 Use to bound σmin(A) by using σmin(A) = minx∈Sn−1 ∥Ax∥:
proceed as above; this bound uses the bound on ∥A∥ from above.

5 Use to bound ∥A∥ by using ∥A∥ = maxx∈Sn−1,y∈Sm−1 y ′Ax . In some proofs, the above
norm definition is needed. One can show that

∥A∥ ≤
1

1− 2ϵ
max

x̄∈Nϵ(Sn−1),ȳ∈Nϵ(Sm−1)
ȳ ′Ax̄
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High-dimensional random matrices and their sums I

1 Bound on min and max singular values of an m × n matrix with independent isotropic
sub-Gaussian rows.

Theorem (Sub-Gaussian rows matrix)

Let A be an m × n matrix whose rows, Ai , are independent, zero-mean, sub-G, isotropic
r.vectors. Let K = maxi ∥Ai∥ψ2

. Then, for a large enough numerical constant C ,

√
m − CK2(

√
n + t) ≤ si (A) ≤

√
m + CK2(

√
n + t)

w.p. at least 1− 2 exp(−t2). Here si (A) is the i-th singular value of A.

Claim: The bounds of the theorem will hold if we can instead prove that

∥
1

m
A′A− I∥ ≤ K2 max(δ, δ2), δ =

√
n + t
√
m

(1)

(this claim follows using the simple algebra fact that max(|z − 1|, |z − 1|2) ≤ |z2 − 1|)
Bounding ∥ 1

m
A′A− I∥:
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High-dimensional random matrices and their sums II

1 Approximation: use the following results for epsilon-nets: for a symmetric M,

∥M∥ := max
x∈Sn−1

|x ′Ax | ≤
1

1− 2ϵ
max
x∈Nϵ

|x ′Ax |

where Nϵ ⊂ Sn−1 is an epsilon-net on Sn−1. By the covering number bound, we
can find a 1/4-net for which

|Nϵ| ≤ (1 + 2/ϵ)n

Using these with ϵ = 1/4 and simplifying,

∥
1

m
A′A− I∥ ≤ 2 max

x∈N1/4

|
1

m
∥Ax∥2 − 1|

and

|N1/4| ≤ 9n
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High-dimensional random matrices and their sums III

2 Concentration: for a fixed x ∈ N1/4 ⊂ Sn−1: Since the rows Ai are isotropic

(implies E[(x ′Ai )2] = 1), sub-G, independent, with sub-G norm at most K ,

1

m
∥Ax∥2 − 1 =

1

m

m∑
i=1

((x ′Ai )2 − 1),

is a sum of m independent, zero-mean, sub-expo r.v.s with sub-expo norm at most
CK2/m. We can apply sub-expo Bernstein ineq to conclude that

Pr(|
1

m
∥Ax∥2 − 1| ≥ ϵ/2) ≤ 2 exp(−cmmin(ϵ2/K4, ϵ/K2))

Use ϵ = K2 max(δ, δ2) with δ = C(
√
n + t)/

√
m to get

Pr(|
1

m
∥Ax∥2 − 1| ≥ K2 max(δ, δ2)) ≤ 2 exp(−cmδ2) ≤ 2 exp(−cC2(n + t2))
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High-dimensional random matrices and their sums IV

3 Union bound: over all x ∈ N1/4 ⊂ Sn−1 gives:

Pr( max
x∈N1/4

|
1

m
∥Ax∥2 − 1| ≥ K2 max(δ, δ2)) ≤ 9n2 exp(−cC2(n + t2)) ≤ exp(−t2)

by choosing C large enough.
By combining this with the Approximation step, (1) holds w.p. ≥ 1− exp(−t2).

Implication of the theorem: if m ≥ CK2n, then the min singular value of A/
√
m is at least

a constant c < 1 and the max singular value is at most a constant C > 1, thus the
condition number is a constant.

2 Bound on expected value: using the above result and the integral identity applied to
Z = ∥A⊤A−mI∥/(CK2),

E[∥
1

m
A′A− I∥] ≤ CK2(

√
n/m + (n/m))

Namrata Vaswani (Iowa State U.) High Dim Prob & Lin Alg for ML 12 / 21



High-dimensional random matrices and their sums V

▶ Proof: above result and max(a, b) < a+ b tells us that
Pr(Z < (

√
mn + n +

√
mt + t2)) ≥ 1− exp(−t2). Let u0 = (

√
mn + n). Thus,

using integral identity applied to Z = ∥A⊤A−mI∥/(CK2),

E[Z ] ≤ u0 +

∫ ∞

τ=u0

Pr(Z > τ)dτ

= u0 +

∫ ∞

t=0
Pr(Z > u0 +

√
mt + t2)(

√
m + 2t)dt

≤ u0 +
√
m

∫ ∞

t=0
exp(−t2)dt +

∫ ∞

t=0
exp(−t2)2tdt

≤ u0 +
√
m

√
2π

2
+ 2

Second row used τ = u0 +
√
mt + t2 so that dτ =

√
mdt + 2tdt ; third row used

Theorem conclusion; last row follows by using Gausian pdf integral for second term
and basic integration rules for last term.
Since u0 = (

√
mn + n), for n large enough, u0 + C

√
m + 2 < 1.1u0. Thus,

E[Z ] ≤ 1.1u0 and so E[Z/m] ≤ 1.1u0/m, i.e.,

E[∥
1

m
A′A− I∥] ≤ CK2(

√
n/m + (n/m))
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High-dimensional random matrices and their sums VI

▶ We can also use the Theorem and integral identity to show that

√
m − CK2√n ≤ E[sn(A)], and E[s1(A)] ≤

√
m + CK2√n

▶ Can obtain an easy extension for the non-isotropic case as well.

3 Matrix Bernstein:

Theorem (Matrix Bernstein)

Let X1,X2, . . .Xm be independent, zero-mean, d1 × d2 matrices with ∥Xi∥ ≤ L for all
i = 1, 2, ...m. Define the “variance parameter” of the sum

v := max

(
∥
∑
i

E[XiX
⊤
i ]∥, ∥

∑
i

E[X⊤
i Xi ]∥

)

Then

Pr(∥
m∑
i=1

Xi∥ ≥ t) ≤ (d1 + d2) exp

(
−c

t2

v + Lt/3

)
≤ 2 exp(logmax(d1, d2)− c min(

t2

v
,
t

L
))
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High-dimensional random matrices and their sums VII

1 For symmetric matrices Xi of size nxn, v = ∥
∑

i E[X2
i ]∥, d1 = d2 = n.

2 For nonzero mean matrices, the above bound, along with Weyl’s inequality, implies

that, w.p. ≥ 1− 2 exp(logmax(d1, d2)− c min( t
2

v
, t
L
)),

smin(
m∑
i=1

E[Xi ])− t ≤ smin(
m∑
i=1

Xi ) ≤ smax(
m∑
i=1

Xi ) ≤ smax(
m∑
i=1

E[Xi ]) + t

i.e. the min and max singular values of the sum are close to those of the expected
values w.h.p.

3 Proof: See Vershynin book Sec 5.4 or the original reference “User-friendly tail
bounds for sums of random matrices” by Joel Tropp. Main ideas:
- first prove the result for sums of symmetric matrices, then extend to any general
matrices using the dilation trick;
- for symmetric matrices: bound the MGF of λmax(

∑m
i=1 Xi ) conditioned on

X1,X2,Xm−1, using Leib’s inequality or Gold-Thompson inequality; followed by
averaging over Xm−1 and repeating the steps. Do this one at a time, eventually get
a bound on the MGF. Not straightforward.
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High-dimensional random matrices and their sums VIII

4 Matrix Bernstein vs subGaussian rows’ result:
Matrix Bernstein bounds the norm of the sum of bounded, independent, zero-mean
random matrices.
SubG rows’ result: A′A can also be interpreted as the sum of rank-one matrices
A′A =

∑
i (A

i )(Ai )′ with Ai being sub-Gaussian. Matrix Bernstein applies to this setting if
the Ai are bounded.
Matrix Bern is a better result for bounded r. matrices because the probability contains
exp(log n − (terms)) while use of the eps-net argument for the subG rows results in the
probability containing exp(n − (terms)).
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Upper bound on max singular value of matrix A with each
entry subG I

Theorem (Thm 4.4.5 of book)

A is m × n, each entry Aij is zero mean, independent, subG with subG norm at
most K . Then

||A|| ≤ CK (
√
m +

√
n + t) w.p. at least 1− 2 exp(−t2)

Proof: use ||A|| = maxx,y xTAy =
∑

ij Aijxiyj , eps-net, for a fixed x, y, Aijxiyj is
subG-(K |xi ||yj |) and so we can use subG Hoeffding.
Notice:

1 This result does not require the rows of A to be isotropic. But then it only gives upper
bound.

2 In particular this allows for upper bounding of the norm of a matrix in which some entries
of a row are even zero.

3 Application: symmetric matrix with above/on diagonal entries subG.
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Upper bound on max singular value of matrix A with each
entry subG II

Corollary (Cor 4.4.8 of book)

A is n × n, symmetric, each entry above and on diagonal is zero mean,
independent, subG with subG norm at most K .

||A|| ≤ CK (
√
n + t) w.p. at least 1− 4 exp(−t2)

Proof: A = Atop + Abottom, ||A|| ≤ 2||Atop||, Atop has zeros below the diagonal.
So rows have a few zero entries. Can still apply Thm 4.4.5 though.
Application of this result: adjacency matrix of a graph.
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Davis Kahan sin theta thereom I

Reference: book and Spectral Methods for Data Science (by Yuxin Chen and
others)

1 for subspace estimation:

Symmetric matrices S, Ŝ. U, Û are top r eigenvectors

SubsDist(U, Û) ≤
||S − Ŝ||

λr (S)− λr+1(Ŝ)
≤

||S − Ŝ||
λr (S)− λr+1(S)− ||S − Ŝ||

second inequality follows by Weyl.

subspace distance equals sine of largest principal angle between the subspaces

SubsDist(U, Û) := ||(I− ÛÛ⊤)U||

2 for individual eigenvectors:

sin θ(ui , ûi ) ≤
||S − Ŝ||

minj ̸=i |λj (S)− λi (S)

Here sin θ(ui , ûi ) =
√

1− (uTi ûi )
2
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Undirected Graphs I

1 network, node, connection – graph, vertex, edge

2 Graph with n vertices can have at most n(n − 1)/2 edges

3 Assuming everywhere node i not connected to itself.

4 Degree of a node: number of edges from that node.

5 Max degree of a graph: maximum degree of all nodes

6 Adjacency matrix of a graph: n × n matrix A s.t. Aij = 1 if i , j connected and zero
otherwise

7 Random graph: nodes i,j connected with a certain probability

8 Erdos Renyi graph, ER(p): any pair of nodes connected w.p. p independent of all others
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Community detection in networks I

1 Communities in a network: simple model: two communities, each of size n/2, all
connections independent, nodes within same community connecting w.p p, those from
different communities w.p. q < p.

2 Goal: develop an algorithm to find the communities. We do not know which nodes are
connected with what probability. We only know the connectivity

3 Solution:

1 Define the adjacency matrix A : n × n and symmetric with 1-0 entries
2 Compute second eigenvector A. Call it u2
3 The signs of u2 provide an estimate of the community labels: if (u2)i > 0 i is in

commun 1, else it is in commun 2.
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