Random Vectors and Matrices High Dim Probability & Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

<ロト <(四)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)> <(0)>

High-dimensional random vectors I

1 2-norm of a subGaussian vector is close to \sqrt{n} w.h.p. :

Theorem (Concen of norm of a subG vector)

Let $X \in \Re^n$ be a r. vector with independent entries X_i with $\mathbb{E}[X_i^2] = 1$. Let $K = \max_i ||X_i||_{\psi_2}$. Then $||X|| - \sqrt{n}$ is a sub-G r.v. with sub-G norm at most K^2 . Equivalently,

$$\Pr(|||X|| - \sqrt{n}| \ge t) \le 2\exp(-ct^2/K^4)$$

Proof:

- $\bullet \quad \text{For a subG r.v. with } E[Z^2] = 1, \ K_Z \geq 1$
 - ★ Reason: using $1 + x \le e^x$, with $x = Z^2/K_Z^2 \mathbb{E}[1 + Z^2/K^2] \le \mathbb{E}[e^{Z^2/K^2}]$ which implies $1 + 1/K^2 \le \mathbb{E}[e^{Z^2/K^2}]$. By subG property, $\mathbb{E}[e^{Z^2/K^2}] \le 2$ and this gives $K \ge 1$.
- **2** Consider $\frac{1}{n} ||X||^2 1 = \frac{1}{n} \sum_i (X_i^2 1)$. By the properties from earlier, $X_i^2 1$ are independent, zero mean, sub-expo r.v.s with $K_{expo} \leq CK^2$. So we can apply the sub-expo Bernstein inequality to conclude that

$$\Pr\left(\left|\frac{1}{n}\|X\|^2 - 1\right| \ge u\right) \le 2\exp\left(-c\frac{n}{K^4}\min(u^2, u)\right)$$

(the above also used $K \geq 1$).

High-dimensional random vectors II

② Use $|z - 1| \ge \delta$ implies $|z^2 - 1| \ge \max(\delta, \delta^2)$ and the fact that $A \Rightarrow B$ implies $\Pr(A) \le \Pr(B)$ to conclude that

$$\Pr(|\frac{1}{\sqrt{n}}||X||-1| \ge \delta) \le \Pr(|\frac{1}{n}||X||^2 - 1| \ge \max(\delta, \delta^2)) \le 2\exp\left(-c\frac{n}{K^4}\delta^2\right)$$

(used: for $u = \max(\delta, \delta^2)$, $\min(u^2, u) = \delta^2$). Set $\delta = t/\sqrt{n}$ to conclude that

$$\Pr(|||X|| - \sqrt{n}| \ge t) \le 2 \exp\left(-c\frac{1}{K^4}t^2\right)$$

- When working with random vectors, we generally subtract mean first to get zero-mean random vectors.
- **3** Isotropic random vectors: $X \in \Re^n$ is isotropic if

$$\mathbb{E}[XX^{\top}] = I_n$$

Properties of isotropic X

• $\mathbb{E}[(a^{\top}X)^2] = ||a||^2$ for all $a \in \Re^n$ (this is equivalent to the definition)

- $\mathbb{E}[||X||^2] = n$
- X, Y independent and isotropic, then $\mathbb{E}[(X'Y)^2] = n$
 - * Implication of this and concentration of norm result (Remark 3.2.5): can argue that if X, Y are indep., then $\frac{X}{\|X\|}, \frac{Y}{\|Y\|}$ are almost orthogonal, i.e. their inner product is of order $1/\sqrt{n}$.

TBD: quantify above claim, it is not quantified in the book.

- Examples of isotropic r. vectors:
 - ★ i.i.d symmetric Bernoulli;
 - ★ standard Gaussian vector;
 - any "product" distribution (coordinates of X are independent) with zero mean and unit variance;
 - * coordinate distribution (X equally likely to be $\sqrt{n}\mathbf{e}_i$, i = 1, 2, ..., n; recall \mathbf{e}_i is the *i*-th column of **I**
 - ★ X ~ Unif(√nSⁿ⁻¹): this is isotropic but coordinates are not independent (proof is not obvious, TBD);
 - ★ unif distrib on frames

Sub-Gaussian random vector

High-dimensional random vectors IV

Definition:

X is a sub-G vector iff a'X is sub-G for all $a \in \Re^n$. Sub-G norm of X is

$$\|X\|_{\psi_2} := \sup_{a \in S^{n-1}} \|a'X\|_{\psi_2}$$

Sub-G with independent coordinates X = (X₁, X₂, ...X_n)' with X_i's independent sub-G: then

$$\|X\|_{\psi_2} \leq C \max_{i=1,2,\ldots,n} \|X_i\|_{\psi_2}$$

Spherical distribution is sub-Gaussian: Z ~ Unif (\sqrt{nS^{n-1}}) is sub-G with subG norm at most C. Proof:

 \blacksquare Use the following property: For a standard Gaussian random vector, X, i.e., $X \sim \mathcal{N}(0, I)$

$$heta := rac{\mathbf{X}}{\|\mathbf{X}\|} \sim \mathsf{Unif}(\mathcal{S}^{\mathsf{n}-1}),$$

Also, $\|\mathbf{X}\|$, θ are independent.

2 Use this property to conclude that we can express Z as

$$Z=\sqrt{n}G/\|G\|$$

where $G \sim \mathcal{N}(0, \mathbf{I})$.

Namrata Vaswani (Iowa State U.)

High Dim Prob & Lin Alg for ML

High-dimensional random vectors V

3 To prove that Z is sub-G, we need to prove that a'Z is sub-G for all $a \in \Re^n$.

- **()** Rotation invariance property of G implies that $a'G = \mathbf{e}'_1 U'_a G = \tilde{G}_1$ where $\tilde{G} = U'_a G \sim \mathcal{N}(0, \mathbf{I})$ too and $\|\tilde{G}\| = \|G\|$. Here U_a is an orthonormal matrix with first column a/||a||.
- 2 Thus, w.l.og., $a'Z = \sqrt{n}\tilde{G}_1/\|\tilde{G}_1\|$ and we need to bound $\Pr(\sqrt{nG_1} / \|G_1\| > u).$
- **3** Apply concentration of norm result on $\|\tilde{G}\|$ with $t = \sqrt{n/2}$ to conclude that

$$\Pr(\underbrace{\|\tilde{G}\| \ge \sqrt{n}/2}_{E_V}) \ge 1 - 2\exp(-cn)$$

(follows since K for a standard Gaussian vector is a constant).

4 Using total probability with Ev, Ev^c ,

$$\begin{aligned} \Pr(\sqrt{n}\tilde{G}_1/\|\tilde{G}_1\| \ge u) &\leq \Pr(\sqrt{n}\tilde{G}_1/\|\tilde{G}_1\| \ge u \text{ and } Ev) + \Pr(Ev^c) \\ &\leq \Pr(\tilde{G}_1 \ge u/2 \text{ and } Ev) + 2\exp(-cn) \\ &\leq \Pr(\tilde{G}_1 \ge u/2) + 2\exp(-cn) \\ &\leq 2\exp(-u^2/8) + 2\exp(-cn) \le 4\exp(-u^2/8) \end{aligned}$$

Reason for last bound.

If $u < \sqrt{n}$, then first term dominates and we can conclude that Z is sub-G. If $u \ge \sqrt{n}$, then $\Pr(\sqrt{n}\tilde{G}_1 / \|\tilde{G}_1\| \ge u) = 0$ since $\tilde{G}_1 \le \|\tilde{G}_1\|$

High Dim Prob & Lin Alg for ML

Epsilon-net I

Epsilon net is a finite set of points that is used to "cover" a compact set in a metric space by using balls of radius ϵ . More precisely, it is a set of finite points so that any point on the compact set is within ϵ distance of some point in the epsilon-net.

- **O** Definition for \mathcal{N}_{ϵ} that covers \mathcal{S}^{n-1} in Euclidean distance: $\mathcal{N}_{\epsilon} \subset \mathcal{S}^{n-1}$ is an ϵ *net* of \mathcal{S}^{n-1} if for any $x \in \mathcal{S}^{n-1}$, there exists a $\bar{x} \in \mathcal{N}_{\epsilon}$ s.t. $||x \bar{x}|| \le \epsilon$.
- Bound size of epsilon-net: can use volume arguments to show that we can find an e-net that covers Sⁿ⁻¹ with cardinality

$$|\mathcal{N}_{\epsilon}| \leq (1+2/\epsilon)^n$$

3 Use to bound ||A|| by using $||A|| = \max_{x \in S^{n-1}} ||Ax||$: Suppose x is the point on the sphere that achieves the above max. By definition, there exists an $\bar{x}(x)$ in the net s.t. $||\bar{x} - x|| \le \epsilon$. Thus

$$|A\| = \|Ax\| = \|A(\bar{x} + x - \bar{x})\| \le \|A\bar{x}\| + \|A\|\|x - \bar{x}\| \le \|A\bar{x}\| + \|A\|\epsilon$$

So

$$(1-\epsilon)\|A\| \le \|Aar{x}\| \le \max_{ar{x} \in \mathcal{N}_{\epsilon}} \|Aar{x}\|$$

and hence

$$\|A\| \leq \frac{1}{1-\epsilon} \max_{\bar{x} \in \mathcal{N}_{\epsilon}} \|A\bar{x}\|$$

Namrata Vaswani (Iowa State U.)

High Dim Prob & Lin Alg for ML

- **(**) Use to bound $\sigma_{\min}(A)$ by using $\sigma_{\min}(A) = \min_{x \in S^{n-1}} ||Ax||$: proceed as above; this bound uses the bound on ||A|| from above.
- **(3)** Use to bound ||A|| by using $||A|| = \max_{x \in S^{n-1}, y \in S^{m-1}} y'Ax$. In some proofs, the above norm definition is needed. One can show that

$$\|A\| \leq \frac{1}{1 - 2\epsilon} \max_{\bar{x} \in \mathcal{N}_{\epsilon}(\mathcal{S}^{n-1}), \bar{y} \in \mathcal{N}_{\epsilon}(\mathcal{S}^{m-1})} \bar{y}' A \bar{x}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

1 Bound on min and max singular values of an $m \times n$ matrix with independent isotropic sub-Gaussian rows.

Theorem (Sub-Gaussian rows matrix)

Let A be an $m \times n$ matrix whose rows, A^i , are independent, zero-mean, sub-G, isotropic r.vectors. Let $K = \max_i ||A^i||_{\psi_2}$. Then, for a large enough numerical constant C,

$$\sqrt{m} - CK^2(\sqrt{n} + t) \le s_i(A) \le \sqrt{m} + CK^2(\sqrt{n} + t)$$

w.p. at least $1 - 2\exp(-t^2)$. Here $s_i(A)$ is the *i*-th singular value of A.

Claim: The bounds of the theorem will hold if we can instead prove that

$$\|\frac{1}{m}A'A - \mathbf{I}\| \le K^2 \max(\delta, \delta^2), \ \delta = \frac{\sqrt{n} + t}{\sqrt{m}}$$
(1)

(this claim follows using the simple algebra fact that $\max(|z-1|, |z-1|^2) \le |z^2 - 1|)$ Bounding $\|\frac{1}{m}A'A - I\|$:

() Approximation: use the following results for epsilon-nets: for a symmetric M,

$$\|M\| := \max_{x \in \mathcal{S}^{n-1}} |x'Ax| \le \frac{1}{1 - 2\epsilon} \max_{x \in \mathcal{N}_{\epsilon}} |x'Ax|$$

where $\mathcal{N}_{\epsilon} \subset S^{n-1}$ is an epsilon-net on S^{n-1} . By the covering number bound, we can find a 1/4-net for which

$$|\mathcal{N}_{\epsilon}| \leq (1+2/\epsilon)^n$$

Using these with $\epsilon=1/4$ and simplifying,

$$\|\frac{1}{m}A'A - \mathbf{I}\| \le 2\max_{x \in \mathcal{N}_{1/4}} |\frac{1}{m}\|Ax\|^2 - 1|$$

and

$$|\mathcal{N}_{1/4}| \leq 9^n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

② Concentration: for a fixed x ∈ N_{1/4} ⊂ Sⁿ⁻¹: Since the rows Aⁱ are isotropic (implies E[(x'Aⁱ)²] = 1), sub-G, independent, with sub-G norm at most K,

$$\frac{1}{m} \|Ax\|^2 - 1 = \frac{1}{m} \sum_{i=1}^m ((x'A^i)^2 - 1),$$

is a sum of *m* independent, zero-mean, sub-expo r.v.s with sub-expo norm at most CK^2/m . We can apply sub-expo Bernstein ineq to conclude that

$$\Pr(|\frac{1}{m} \|Ax\|^2 - 1| \ge \epsilon/2) \le 2\exp(-cm\min(\epsilon^2/K^4, \epsilon/K^2))$$

Use $\epsilon = \mathcal{K}^2 \max(\delta, \delta^2)$ with $\delta = \mathcal{C}(\sqrt{n} + t)/\sqrt{m}$ to get

$$\Pr(|\frac{1}{m}\|Ax\|^2 - 1| \ge K^2 \max(\delta, \delta^2)) \le 2\exp(-cM\delta^2) \le 2\exp(-cC^2(n+t^2))$$

Namrata Vaswani (Iowa State U.)

③ Union bound: over all $x \in \mathcal{N}_{1/4} \subset \mathcal{S}^{n-1}$ gives:

$$\mathsf{Pr}(\max_{x \in \mathcal{N}_{1/4}} |\frac{1}{m} \|Ax\|^2 - 1| \geq K^2 \max(\delta, \delta^2)) \leq 9^n 2 \exp(-cC^2(n+t^2)) \leq \exp(-t^2)$$

by choosing C large enough.

By combining this with the Approximation step, (1) holds w.p. $\geq 1 - \exp(-t^2)$. Implication of the theorem: if $m \geq CK^2 n$, then the min singular value of A/\sqrt{m} is at least a constant c < 1 and the max singular value is at most a constant C > 1, thus the condition number is a constant.

2 Bound on expected value: using the above result and the integral identity applied to $Z = ||A^{\top}A - m\mathbf{I}||/(CK^2)$,

$$\mathbb{E}[\|\frac{1}{m}A'A - \mathbf{I}\|] \le CK^2(\sqrt{n/m} + (n/m))$$

High-dimensional random matrices and their sums V

▶ Proof: above result and max(a, b) < a + b tells us that $Pr(Z < (\sqrt{mn} + n + \sqrt{mt} + t^2)) \ge 1 - exp(-t^2)$. Let $u_0 = (\sqrt{mn} + n)$. Thus, using integral identity applied to $Z = ||A^\top A - m\mathbf{I}||/(CK^2)$,

$$\mathbb{E}[Z] \le u_0 + \int_{\tau=u_0}^{\infty} \Pr(Z > \tau) d\tau$$

= $u_0 + \int_{t=0}^{\infty} \Pr(Z > u_0 + \sqrt{m}t + t^2)(\sqrt{m} + 2t) dt$
 $\le u_0 + \sqrt{m} \int_{t=0}^{\infty} \exp(-t^2) dt + \int_{t=0}^{\infty} \exp(-t^2) 2t dt$
 $\le u_0 + \sqrt{m} \frac{\sqrt{2\pi}}{2} + 2$

Second row used $\tau = u_0 + \sqrt{mt} + t^2$ so that $d\tau = \sqrt{m}dt + 2tdt$; third row used Theorem conclusion; last row follows by using Gausian pdf integral for second term and basic integration rules for last term. Since $u_0 = (\sqrt{mn} + n)$, for *n* large enough, $u_0 + C\sqrt{m} + 2 < 1.1u_0$. Thus,

Since $u_0 = (\sqrt{mn} + n)$, for *n* large enough, $u_0 + C\sqrt{m} + 2 < 1.1u_0$. Thu $\mathbb{E}[Z] \le 1.1u_0$ and so $\mathbb{E}[Z/m] \le 1.1u_0/m$, i.e.,

$$\mathbb{E}[\|\frac{1}{m}A'A - \mathbf{I}\|] \le CK^2(\sqrt{n/m} + (n/m))$$

High-dimensional random matrices and their sums VI

We can also use the Theorem and integral identity to show that

 $\sqrt{m} - CK^2\sqrt{n} \leq \mathbb{E}[s_n(A)], \text{ and } \mathbb{E}[s_1(A)] \leq \sqrt{m} + CK^2\sqrt{n}$

Can obtain an easy extension for the non-isotropic case as well.

Matrix Bernstein:

Theorem (Matrix Bernstein)

Let $X_1, X_2, ..., X_m$ be independent, zero-mean, $d_1 \times d_2$ matrices with $||X_i|| \le L$ for all i = 1, 2, ..., m. Define the "variance parameter" of the sum

$$\boldsymbol{\nu} := \max\left(\|\sum_{i} \mathbb{E}[\mathbf{X}_{i} \mathbf{X}_{i}^{\top}]\|, \|\sum_{i} \mathbb{E}[\mathbf{X}_{i}^{\top} \mathbf{X}_{i}]\|\right)$$

Then

$$\Pr(\|\sum_{i=1}^{m} \mathbf{X}_{i}\| \geq t) \leq (d_{1} + d_{2}) \exp\left(-c \frac{t^{2}}{v + Lt/3}\right) \leq 2 \exp(\log \max(d_{1}, d_{2}) - c \min(\frac{t^{2}}{v}, \frac{t}{L}))$$

3

イロト イボト イヨト イヨト

- For symmetric matrices X_i of size $n \times n$, $v = \|\sum_i \mathbb{E}[X_i^2]\|$, $d_1 = d_2 = n$.
- 2 For nonzero mean matrices, the above bound, along with Weyl's inequality, implies that, w.p. $\geq 1 - 2 \exp(\log \max(d_1, d_2) - c \min(\frac{t^2}{t}, \frac{t}{t}))$,

$$s_{\min}(\sum_{i=1}^m \mathbb{E}[\mathbf{X}_i]) - t \leq s_{\min}(\sum_{i=1}^m \mathbf{X}_i) \leq s_{\max}(\sum_{i=1}^m \mathbf{X}_i) \leq s_{\max}(\sum_{i=1}^m \mathbb{E}[\mathbf{X}_i]) + t$$

i.e. the min and max singular values of the sum are close to those of the expected values w.h.p.

S Proof: See Vershynin book Sec 5.4 or the original reference "User-friendly tail bounds for sums of random matrices" by Joel Tropp. Main ideas:

- first prove the result for sums of symmetric matrices, then extend to any general matrices using the dilation trick;

- for symmetric matrices: bound the MGF of $\lambda_{\max}(\sum_{i=1}^{m} \mathbf{X}_i)$ conditioned on X_1, X_2, X_{m-1} , using Leib's inequality or Gold-Thompson inequality; followed by averaging over X_{m-1} and repeating the steps. Do this one at a time, eventually get a bound on the MGF. Not straightforward.

Matrix Bernstein vs subGaussian rows' result:

Matrix Bernstein bounds the norm of the sum of bounded, independent, zero-mean random matrices.

SubG rows' result: A'A can also be interpreted as the sum of rank-one matrices $A'A = \sum_i (A^i)(A^i)'$ with A^i being sub-Gaussian. Matrix Bernstein applies to this setting if the A^i are bounded.

Matrix Bern is a better result for bounded r. matrices because the probability contains $\exp(\log n - (terms))$ while use of the eps-net argument for the subG rows results in the probability containing $\exp(n - (terms))$.

イロト イボト イヨト イヨト

Upper bound on max singular value of matrix **A** with each entry subG I

Theorem (Thm 4.4.5 of book)

 \bm{A} is $m\times n,$ each entry \bm{A}_{ij} is zero mean, independent, subG with subG norm at most K. Then

 $||\mathbf{A}|| \leq CK(\sqrt{m} + \sqrt{n} + t)$ w.p. at least $1 - 2\exp(-t^2)$

Proof: use $||A|| = \max_{\mathbf{x},\mathbf{y}} \mathbf{x}^T A \mathbf{y} = \sum_{ij} \mathbf{A}_{ij} \mathbf{x}_i \mathbf{y}_j$, eps-net, for a fixed $\mathbf{x}, \mathbf{y}, \mathbf{A}_{ij} \mathbf{x}_i \mathbf{y}_j$ is subG- $(K|\mathbf{x}_i||\mathbf{y}_j|)$ and so we can use subG Hoeffding. Notice:

- This result does not require the rows of A to be isotropic. But then it only gives upper bound.
- In particular this allows for upper bounding of the norm of a matrix in which some entries of a row are even zero.
- Solution: Symmetric matrix with above/on diagonal entries subG.

Upper bound on max singular value of matrix **A** with each entry subG II

Corollary (Cor 4.4.8 of book)

A is $n \times n$, symmetric, each entry above and on diagonal is zero mean, independent, subG with subG norm at most K.

$$||\mathbf{A}|| \leq C \mathcal{K}(\sqrt{n}+t)$$
 w.p. at least $1-4\exp(-t^2)$

Proof: $\mathbf{A} = \mathbf{A}^{top} + \mathbf{A}^{bottom}$, $||A|| \le 2||\mathbf{A}^{top}||$, \mathbf{A}^{top} has zeros below the diagonal. So rows have a few zero entries. Can still apply Thm 4.4.5 though. Application of this result: adjacency matrix of a graph.

Davis Kahan sin theta thereom I

Reference: book and Spectral Methods for Data Science (by Yuxin Chen and others)

for subspace estimation:

Symmetric matrices S, \hat{S} . $\mathbf{U}, \hat{\mathbf{U}}$ are top r eigenvectors

$$\text{SubsDist}(\mathbf{U}, \hat{\mathbf{U}}) \leq \frac{||\mathcal{S} - \hat{\mathcal{S}}||}{\lambda_r(\mathcal{S}) - \lambda_{r+1}(\hat{\mathcal{S}})} \leq \frac{||\mathcal{S} - \hat{\mathcal{S}}||}{\lambda_r(\mathcal{S}) - \lambda_{r+1}(\mathcal{S}) - ||\mathcal{S} - \hat{\mathcal{S}}||}$$

second inequality follows by Weyl.

subspace distance equals sine of largest principal angle between the subspaces

$$\mathrm{SubsDist}(\boldsymbol{U}, \hat{\boldsymbol{U}}) := ||(\boldsymbol{I} - \hat{\boldsymbol{U}}\hat{\boldsymbol{U}}^\top)\boldsymbol{U}||$$

for individual eigenvectors:

$$\sin \theta(\mathbf{u}_i, \hat{\mathbf{u}}_i) \leq \frac{||\mathcal{S} - \hat{\mathcal{S}}||}{\min_{j \neq i} |\lambda_j(\mathcal{S}) - \lambda_i(\mathcal{S})|}$$

Here $\sin \theta(\mathbf{u}_i, \hat{\mathbf{u}}_i) = \sqrt{1 - (\mathbf{u}_i^T \hat{\mathbf{u}}_i)^2}$

19/21

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへ⊙

- network, node, connection graph, vertex, edge
- 2 Graph with *n* vertices can have at most n(n-1)/2 edges
- Solution 3 Assuming everywhere node i not connected to itself.
- Oegree of a node: number of edges from that node.
- Max degree of a graph: maximum degree of all nodes
- **(**) Adjacency matrix of a graph: $n \times n$ matrix **A** s.t. $\mathbf{A}_{ij} = 1$ if i, j connected and zero otherwise
- Random graph: nodes i,j connected with a certain probability
- Brdos Renyi graph, ER(p): any pair of nodes connected w.p. p independent of all others

- **1** Communities in a network: simple model: two communities, each of size n/2, all connections independent, nodes within same community connecting w.p p, those from different communities w.p. q < p.
- Goal: develop an algorithm to find the communities. We do not know which nodes are connected with what probability. We only know the connectivity
- Solution:
 - **1** Define the adjacency matrix \mathbf{A} : $n \times n$ and symmetric with 1-0 entries
 - Ompute second eigenvector A. Call it u₂
 - **③** The signs of \mathbf{u}_2 provide an estimate of the community labels: if $(\mathbf{u}_2)_i > 0$ *i* is in commun 1, else it is in commun 2.

イロト イポト イヨト イヨト