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High-dimensional random vectors |

@ 2-norm of a subGaussian vector is close to v/n w.h.p. :

Theorem (Concen of norm of a subG vector)

Let X € R" be a r. vector with independent entries X; with E[X?] = 1. Let K = max;||X;||y,
Then || X|| — /n is a sub-G r.v. with sub-G norm at most K2. Equivalently,

Pr(|lIX|| — v/n| > t) < 2exp(—ct®/K*)

Proof:
@ For asubG r.v. with E[Z%] =1, Kz > 1
*  Reason: using 1 + x < €, with x = Zz/Kg E[1 + ZZ/KZ] < ]E[eZZ/KZ] which implies
1+ l/K2 < ]E[eZZ/KQ]. By subG property, ]E[eZz/KZ] < 2 and this gives K > 1.

ey L 2 _1 2 ; ; 2
@ Consider <[ X||* — 1=+ 37,(X? — 1). By the properties from earlier, X7 — 1 are

independent, zero mean, sub-expo r.v.s with Kexpo < CK?2. So we can apply the
sub-expo Bernstein inequality to conclude that

1
Pr(|;||XH2 —1] > u) < 2exp <7c% min(u?, u))

(the above also used K > 1).
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High-dimensional random vectors |l

@ Use |z — 1| > § implies |22 — 1| > max(, d2) and the fact that A = B implies
Pr(A) < Pr(B) to conclude that

1 1 n
Pr(Z=IXI =11 2 8) < Pr(IIXIP = 1] 2 max(5,6%)) < 2exp (—e158%)

(used: for u = max(8,62), min(u?, u) = §2).
@ Set 6 = t/+/n to conclude that

1
Pr(lIXI| — v/l > £) < 2exp (fcﬁﬁ)

© When working with random vectors, we generally subtract mean first to get zero-mean
random vectors.

© Isotropic random vectors: X € R" is isotropic if
E[XXT] = I

Properties of isotropic X
> E[(a” X)?] = ||a||? for all a € R" (this is equivalent to the definition)
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High-dimensional random vectors Il

> E[|[X]?] = n

> X, Y independent and isotropic, then E[(X'Y)?] = n
* Implication of this and concentration of norm result (Remark 3.2.5): can

argue that if X, Y are indep., then ﬁ, Hi\\:ll are almost orthogonal, i.e. their

inner product is of order 1/+/n.
TBD: quantify above claim, it is not quantified in the book.

> Examples of isotropic r. vectors:

i.i.d symmetric Bernoulli;

standard Gaussian vector;

any “product” distribution (coordinates of X are independent) with zero
mean and unit variance;

* coordinate distribution (X equally likely to be v/ne;, i =1,2,..., n; recall e;
is the i-th column of |

X ~ Unif(v/nS"~1): this is isotropic but coordinates are not independent
(proof is not obvious, TBD);

* unif distrib on frames

* % %

*

@ Sub-Gaussian random vector
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High-dimensional random vectors IV

> Definition:
X is a sub-G vector iff a’ X is sub-G for all a € R". Sub-G norm of X is

XNl == sup ll2" X1y,

aesS

> Sub-G with independent coordinates X = (X1, X2, ...X)" with X;'s independent
sub-G: then

X[y, < € _max |||y,
i=1,2,...,n

@ Spherical distribution is sub-Gaussian: Z ~ Unif (1/nS"1) is sub-G with subG norm at
most C. Proof:

@ Use the following property: For a standard Gaussian random vector, X, i.e.,

X ~ N(0,1)

X
6 := — ~ Unif(s"71),
X[l

Also, ||X||, € are independent.
@ Use this property to conclude that we can express Z as

Z =/nG/| G|

where G ~ N(0,1).
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High-dimensional random vectors V

© To prove that Z is sub-G, we need to prove that a’Z is sub-G for all a € R".
@ Rotation invariance property of G implies that a’G = e{ U,G = G1 where
G = U,G ~ N(0,1) too and ||G|| = ||G||. Here U, is an orthonormal matrix
with first column a/||a]|.
@ Thus, w.log, a'Z = v/nGi1/||Gy]| and we need to bound
Pr(v/nG1/|[Gul| > u).

© Apply concentration of norm result on ||G|| with t = v/n/2 to conclude that
Pr(|Gll > v/n/2) > 1— 2exp(—cn)
—_———
Ev

(follows since K for a standard Gaussian vector is a constant).
@ Using total probability with Ev, Ev€,

Pr(v/nGu/l1Gill > u) < Pr(v/nGy/lIGill > u and Ev) + Pr(Ev®)
< Pr(Gy > u/2 and Ev) + 2 exp(—cn)
< Pr(Gy > u/2) + 2exp(—cn)
< 2exp(—u?/8) 4 2exp(—cn) < 4exp(—u?/8)
Reason for last bound:

If u < +/n, then first term dominates and we can conclude that Z is sub-G.
If u> +/n, then Pr(v/nGi1/||G1|| > u) = 0 since G; < ||Gy]|
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Epsilon-net |

Epsilon net is a finite set of points that is used to “cover’ a compact set in a metric space by
using balls of radius e. More precisely, it is a set of finite points so that any point on the
compact set is within € distance of some point in the epsilon-net.

Definition for A, that covers S"~! in Euclidean distance: N C 8"~ ! is an € — net of
S"~Lif for any x € S"71, there exists a X € N s.t. ||x — X|| < e.

Bound size of epsilon-net: can use volume arguments to show that we can find an e-net
that covers S"~1 with cardinality

el < (142/€)"
Use to bound ||A|| by using [|A|| = max,cgn—1 [|Ax]|:

Suppose x is the point on the sphere that achieves the above max. By definition, there
exists an X(x) in the net s.t. ||Xx — x|| <e. Thus

Al = [IAx]I = IACx + x = X)[| < [|AX]] + [|A][l[x = x[| < [|AX]| + [|Alle

So
1-— All < ||AX]| < m AX
( Al < [|Ax|| < ief\}i [|Ax]]

and hence

1
Al < —— max [|Ax||
1 — € xeN.
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@ Use to bound omin(A) by using omin(A) = min, cgn—1 ||Ax||:

proceed as above; this bound uses the bound on ||A|| from above.

Al <

@ Use to bound ||A|| by using ||A|| = max,cgn—1 ,cgm—1 Y Ax. In some proofs, the above
norm definition is needed. One can show that

< max
1 —2¢e xeN (S—1),7EN(ST)

7 AR

«O> «Fr o« » Q¥

it
it
v



High-dimensional random matrices and their sums |

@ Bound on min and max singular values of an m X n matrix with independent isotropic
sub-Gaussian rows.

Theorem (Sub-Gaussian rows matrix)

Let A be an m X n matrix whose rows, A, are independent, zero-mean, sub-G, isotropic
r.vectors. Let K = max; ||A’||,4,. Then, for a large enough numerical constant C,

Vm — CK?(v/n+ t) < si(A) < vVm + CK*(v/n + t)

w.p. at least 1 — 2exp(—t2). Here s;(A) is the i-th singular value of A.

v
Claim: The bounds of the theorem will hold if we can instead prove that
1 t
LA 1) < K2 max(s,8%), 5= Y (1)
m vm

(this claim follows using the simple algebra fact that max(|z — 1|,|z — 1]2) < |22 — 1|)
Bounding H%A’A —1:
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M| =

max |x Ax| <

1-—

@ Approximation: use the following results for epsilon-nets: for a symmetric M,

max |x" Ax|

where M. C 8”71 is an epsilon-net on S"~1. By the covering number bound, we

can find a 1/4-net for which
[Nel < (1+2/¢)"

Using these with € = 1/4 and simplifying,

and

I—A'A-I <2 max |~ | Ax|?

_1|
4 m
[Nijal <97
<O «Fr < » > DA
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High-dimensional random matrices and their sums |1l

@ Concentration: for a fixed x € N1/4 C 8"1: Since the rows A’ are isotropic
(implies E[(x’A1)?] = 1), sub-G, independent, with sub-G norm at most K,

1 1 & ;
—[lAx|?P —1= = Z((X’A’)2 —-1),
m m i1

is a sum of m independent, zero-mean, sub-expo r.v.s with sub-expo norm at most
CK2/m. We can apply sub-expo Bernstein ineq to conclude that

Pr(| L AxIP — 1] > ¢/2) < 2exp(—cmmin(/K*, ¢/K2))
m
Use € = K2 max(6,62) with § = C(y/n+ t)/+/m to get

1
Pr(| =||Ax||? — 1| > K? max(é, §%)) < 2exp(—cmd?) < 2exp(—cC?(n + t2))
m
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High-dimensional random matrices and their sums IV

© Union bound: over all x € N1/4 C S"1 gives:

1
Pr( max |—||Ax|]> — 1| > K2 max(8,6%)) < 9"2exp(—cC?(n + t?)) < exp(—t?)
X€N1/4 m

by choosing C large enough.
By combining this with the Approximation step, (1) holds w.p. > 1 — exp(—t?).

Implication of the theorem: if m > CK2n, then the min singular value of A/\/m is at least
a constant ¢ < 1 and the max singular value is at most a constant C > 1, thus the

condition number is a constant.

@ Bound on expected value: using the above result and the integral identity applied to
Z=||ATA— ml|/(CK?),

Bl A'A 1] < CKA(v/afm + (n/m))
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High-dimensional random matrices and their sums V

> Proof: above result and max(a, b) < a + b tells us that

Pr(Z < (v/mn+ n+ /mt + t?)) > 1 — exp(—t2). Let ug = (v/mn+ n). Thus,
using integral identity applied to Z = ||AT A — ml||/(CK?),

E[Z]Suo—f—/ r(Z > 7)dr
= u + . Pr(Z > up + /mt + t2)(v/m + 2t)dt
t=
<u++vVm 0exp( t )dt+/ exp(—t2)2tdt
t=
< V2m

UO+\/ET+2

Second row used T = uy + /mt + t? so that dT = \/mdt + 2tdt ; third row used
Theorem conclusion; last row follows by using Gausian pdf integral for second term
and basic integration rules for last term.

Since ug = (v/mn + n), for n large enough, up + Cv/m +2 < 1.1ug. Thus,

E[Z] <1.1ug and so E[Z/m] < 1.1ug/m, i.e.,

[l A A~ 1] < CK*(v/nfm + (n/m))
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High-dimensional random matrices and their sums VI

> We can also use the Theorem and integral identity to show that
vm — CK?y/n < E[sa(A)], and E[s1(A)] < vV/m + CK%\/n

> Can obtain an easy extension for the non-isotropic case as well.
© Matrix Bernstein:

Theorem (Matrix Bernstein)

Let X1, X2, ...Xm be independent, zero-mean, di X dy matrices with ||X;|| < L for all
i=1,2,...m. Define the “variance parameter” of the sum

v i= max <|| SEXX]I | ZIE[X,-TX;]>

Then

2

= t2 L2t
Pr(]| ZX,—H >t) < (di + db)exp <_CTL1’/3> < 2exp(log max(di, d2) — cmin(—, —))
i=1

vl
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High-dimensional random matrices and their sums VII

@ For symmetric matrices X; of size nxn, v = || 3, E[X?]||, di = db = n.
@ For nonzero mean matrices, the above bound, along with Weyl's inequality, implies
2
that, w.p. > 1 — 2exp(log max(d1, d2) — cmin(%L, 1)),

smin(Y_JEXi]) = £ < smin (D Xi) < smax(D_ Xi) < smax(D_E[Xi]) + £
i=1 i=1 i1 i1

i.e. the min and max singular values of the sum are close to those of the expected
values w.h.p.

© Proof: See Vershynin book Sec 5.4 or the original reference “User-friendly tail
bounds for sums of random matrices” by Joel Tropp. Main ideas:
- first prove the result for sums of symmetric matrices, then extend to any general
matrices using the dilation trick;
- for symmetric matrices: bound the MGF of Amax(>_/"; X;) conditioned on
X1, X2, Xm—1, using Leib’s inequality or Gold-Thompson inequality; followed by
averaging over X,,—1 and repeating the steps. Do this one at a time, eventually get
a bound on the MGF. Not straightforward.
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High-dimensional random matrices and their sums VIII

@ Matrix Bernstein vs subGaussian rows' result:
Matrix Bernstein bounds the norm of the sum of bounded, independent, zero-mean
random matrices.
SubG rows’ result: A’A can also be interpreted as the sum of rank-one matrices
A'A =3 ,(A)(A) with A’ being sub-Gaussian. Matrix Bernstein applies to this setting if
the A’ are bounded.
Matrix Bern is a better result for bounded r. matrices because the probability contains
exp(log n — (terms)) while use of the eps-net argument for the subG rows results in the
probability containing exp(n — (terms)).
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Upper bound on max singular value of matrix A with each
entry subG |

Theorem (Thm 4.4.5 of book)

A is m x n, each entry Aj; is zero mean, independent, subG with subG norm at
most K. Then

[|A]] < CK(vm+ /n+t) w.p. at least 1 — 2exp(—t2)

Proof: use ||A|| = maxcy x" Ay = > Aijxiyj, eps-net, for a fixed x,y, A;x;y; is
subG-(K|xi||y;|) and so we can use subG Hoeffding.
Notice:

@ This result does not require the rows of A to be isotropic. But then it only gives upper
bound.

@ In particular this allows for upper bounding of the norm of a matrix in which some entries
of a row are even zero.

© Application: symmetric matrix with above/on diagonal entries subG.
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Upper bound on max singular value of matrix A with each
entry subG Il

Corollary (Cor 4.4.8 of book)

A is n X n, symmetric, each entry above and on diagonal is zero mean,
independent, subG with subG norm at most K.

[|A]| < CK(\/n+t) w.p. at least 1 — 4exp(—t?)

Proof: A = AP 4 Abottom || Al| < 2||AtP||, AP has zeros below the diagonal.
So rows have a few zero entries. Can still apply Thm 4.4.5 though.
Application of this result: adjacency matrix of a graph.
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Davis Kahan sin theta thereom |

Reference: book and Spectral Methods for Data Science (by Yuxin Chen and

others)
@ for subspace estimation:
Symmetric matrices S, S. U, 0 are top r eigenvectors

lls =3l

SubsDist(U, 0) < 1S = 51l <

T AS) = A1(8) T A(S) = Arga(S) — IS — S|

second inequality follows by Weyl.

subspace distance equals sine of largest principal angle between the subspaces
SubsDist(U, 0) := ||(1 — 00T)u||
@ for individual eigenvectors:

s = 8|
minj; |A;(S) — Ai(S)

sin 9(“/7 l/jl) <

Here sinO(u;, ;) = /1 — (u7 &i;)2
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Undirected Graphs |

network, node, connection — graph, vertex, edge

Graph with n vertices can have at most n(n — 1)/2 edges
Assuming everywhere node i not connected to itself.
Degree of a node: number of edges from that node.

Max degree of a graph: maximum degree of all nodes

Adjacency matrix of a graph: n x n matrix A s.t. Aj = 1if i, connected and zero
otherwise

Random graph: nodes i,j connected with a certain probability

©0 000000

Erdos Renyi graph, ER(p): any pair of nodes connected w.p. p independent of all others
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Community detection in networks |

e Communities in a network: simple model: two communities, each of size n/2, all
connections independent, nodes within same community connecting w.p p, those from
different communities w.p. g < p.

@ Goal: develop an algorithm to find the communities. We do not know which nodes are
connected with what probability. We only know the connectivity

© Solution:

@ Define the adjacency matrix A : n X n and symmetric with 1-0 entries

@ Compute second eigenvector A. Call it up

© The signs of uy provide an estimate of the community labels: if (uz); > 0/ is in
commun 1, else it is in commun 2.
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