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Non-asymptotic Random Matrix Theory: what is it?

Weak and Strong Laws of Large Numbers provide asymptotic results: WLLN says that for i.i.d.
random variables, under simple assumptions on the “niceness” of distributions, the sample mean
converges to the population mean in probability as the number of samples, m, tends to infinity.

But it does not tell us what m to pick to ensure a certain error bound with at least a certain
probability.

Similarly, asymptotic results exist that show that the max, min singular values of a random
Gaussian matrix A of size N × n with N > n, converge to

√
N ±

√
n as N, n → ∞ with

N/n = C .

This course provides results that help obtain finite sample (non-asymptotic) high probability
bounds on the minimum and maximum singular values of large matrices

with either independent entries

or matrices of the form ZZ′ with Z containing independent subG entries

or on sums of independent random matrices that have bounded norms

or...

There is more
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Applications I

Compressed Sensing / Sparse Recovery: Given y := Ax recover x from y when y is
shorter than x . Use sparsity of x .

Low-rank Matrix Completion: Given a subset of entries of a low-rank matrix M, complete

the matrix
▶ given y = PΩ(M), find M. Ω: set of indices of the observed entries

Matrix Sensing: given a set of n linear functions of M, find M using the fact that M is

low-rank
▶ given y = A(M) where A(.) is a linear operator, find M. This can be written as

yi =< Ai ,M > where < A,B >= trace(A′B) is the usual inner product.

Robust PCA: given Y := X + L, find X and L
▶ L = unknown low rank matrix.
▶ X = sparse matrix (corresponds to outliers)

Phase retrieval: compute vector x from y := |Ax |2. Here |.| means element-wise

magnitude of the vector. More specifically yi = |Aix |2 (here Ai is the i-th row of A).
▶ the term phase retrieval comes from Fourier imaging where A is the DFT matrix;

but now it’s used more generally for any matrix A

Sparse PR

Low Rank PR
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Applications II

Bounding the degree of dense or sparse random graphs

Community detection in networks/graphs

▶ A random n/w with n nodes, node connections independent, two communities,
nodes within a community are connected w.p. p, nodes in different communities are
connected with probability q < p. If q sufficiently smaller than p, it should be
possible to detect the communities given a realization of the graph

Ranking and individualized ranking estimation

CS: projection imaging - MRI, CT, single-pixel camera, radar, ...

MC: recommendation system design, e.g., Netflix problem

Matrix sensing: one special case is phase retrieval. Notice that we can rewrite
yi = Aixx ′Ai ′ =< xx ′,AiAi ′ >

RPCA: recommendation system design in the presence of outliers, Video analytics, Survey
data analysis,

Phase retrieval: astronomy, X-ray crystallography,...

Graphs: model computer or social networks. Degree of graph: expected number of
neighbors of a given node
Community detection: detecting communities in social n/w
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Applications: some details I

1 Compressive Sensing / Sparse Recovery
Recover an s-sparse n-length vector x from y := Ax with A being an m × n matrix with
m < n. Suppose A is random Gaussian. Then how large does m need to be so that x can
be exactly recovered?
Answer: if s ≪ n, m ≪ n suffices, with high probability, to exactly recover x using an
“efficient algorithm”. In particular, m of order s log(n/s) suffices.
“efficient algorithm”: an algorithm that is guaranteed to run in time that is at most
polynomial in the signal dimension, n.
“intractable algorithm”: algo with complexity exponential in the signal dimension or in
the sparsity: O(en) or O(es) etc.
App: This problem with A being random Fourier occurs in medical imaging: MRI and CT.

2 PCA
Given a symmetric p.s.d. matrix M, find the column span of its top r eigenvectors, or,
sometimes, find the “optimal” rank r approximation. Here “optimal” means
minL ||M− L||2
App: find the r directions with the largest variance for a dataset, D: here
M = (D− µ)(D− µ)T , with µ the mean (expected value) of the data vectors
If an n ×m matrix D is approx rank r , it can be expressed as D = L+W where L is rank
r and W is the residual error. If columns of W are mutually independent and either
bounded or sub-Gaussian, how large should m be in order to guarantee accurate subpsace
recovery?
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Applications: some details II

3 Low rank matrix sensing and completion
Sensing: recover M from yi := ⟨Ai ,M⟩, i = 1, 2, . . . ,m.
Completion: recover M from a subset of its entries.

4 Phase Retrieval (PR)
5 Sparse PR
6 Low Rank PR
7 Community detection in networks/graphs
8 Bounding the degree of dense or sparse random graphs
9 ....
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Non-convex Problems: Alternating Minimization and Gradient Descent I

Alternating Min
Goal: compute minx,y f (x , y) when f (.) is non-convex

Clearly minx,y f (x , y) = minx (miny f (x , y)) but of course in most cases, RHS is also hard
to compute.

Consider the class of problems where the min is easy when one variable is fixed, i.e.,

miny f (x0, y) is easy for a given x0 and minx f (x , y0) is easy for a given y0.
▶ A common solution: Alt-Min
▶ Start with an initial guess x0.
▶ Compute y1 ∈ argminy f (x0, y)
▶ Compute x1 ∈ argminy f (x , y1)
▶ Repeat above until a stopping criterion is met.

Guarantees? Till very recently none. Recent work:
▶ If initialized carefully, Alt-Min gets to within a small error of the true solution in a

finite number of iterations. Possible to bound this number also.
▶ A common approach to initialization: “spectral method” - compute the top

eigenvector of an appropriately defined matrix
▶ Guarantees exist for Matrix Completion and for Phase Retrieval

Gradient descent based approaches for non-convex problems
With a suitable initialization, it is possible to get a guarantee
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Non-convex Problems: Alternating Minimization and Gradient Descent II

Truncated gradient descent idea of “truncated Wirtinger flow” paper: the gradient turns
out to be a weighted average of certain vectors; discard those weights that are too large
and compute a truncated gradient estimate
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Applications Details I

Compressive Sensing

1 Goal is to find an n-length sparse vector x (a vector with at most s nonzero entries with
s ≪ n) from only m measurements y = Ax when m < n. Here A is an m × n matrix.

2 It has been shown by Candes et al that if A satisfies the s-RIP (restricted isometry
property), then exact recovery of an s-sparse x can be guaranteed.

3 s-RIP: A matrix A satisfies this if for any subset T ⊂ {1, 2, . . . , n} of size s, the m × |T |
sub-matrix AT is an approximate isometry. This means that, for all vectors z ∈ ℜs ,

(1− δs)∥z∥2 ≤ ∥AT z∥2 ≤ (1 + δs)∥z∥2

for a δs < 1. δs is called the Restricted Isometry Constant. The smaller it is the better is
the approx isometry.
This requirement is equivalent to requiring that

(1− δs) ≤ smin(AT ) ≤ smax(AT ) ≤ 1 + δs

for all subsets T of size s. Here smin, smax denote the min and max singular values.
4 For matrices A with independent, zero mean sub-Gaussian rows, and sub-G norm a

constant, and a fixed subset T of size s, we can use the subG rows’ Theorem to show that
σmax(AT ), σmin(AT ) are upper/lower bounded by

√
m ± C(

√
s + t) w.p. at least

1− exp(−ct2).
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Applications Details II

5 By using another union bound over all sets T of size s (there are
(n
s

)
≤ es log n/s such

subsets), the above bound holds w.p. at least 1− exp(s log(n/s)− ct2). To ensure that
this probability is large enough (is at least 1− exp(−s log(n/s))), we need to set

t = C
√

s log n/s with a C large enough. With this choice of t, to ensure that the min
singular value is at least

√
m(1− δs), we need m ≥ Cs log(n/s)/δ2s .

PCA:

1 Given a dataset with covariance matrix Σ, PCA finds the directions of largest variability in
the dataset by computing the eigenvectors of Σ with the r largest eigenvalues, and
projecting each data vector onto the subspace spanned by these r eigenvectors. One can
argue that, for a fixed r , this projection minimizes the expected squared reconstruction
error. For more details on PCA, see
https://www.ece.iastate.edu/~namrata/MachLearn_SigProc/Summary_Notes.pdf

(see latest dropbox file actually, to be updated).
2 The true cov matrix Σ is unknown. Assuming the data is zero mean, we can compute its

empirical estimate as

Σm =
m∑
i=1

XiX
′
i

3 Clearly, E[Σm] = Σ.

Namrata Vaswani (Iowa State U.) High Dim Prob & Lin Alg for ML 10 / 62

https://www.ece.iastate.edu/~namrata/MachLearn_SigProc/Summary_Notes.pdf


Applications Details III

4 Assume that the Xi ’s are sub-G. Can use the subG rows’ Theorem to argue the following:

suppose m ≥ n; then,

1 E[∥Σm − Σ∥] ≤ CK2
√

n/m∥Σ∥
2 Pr(∥Σm − Σ∥ > CK2(

√
n + t)/

√
m) ≤ exp(−t2)

3 Thus, to get an estimate Σm that is within ϵ∥Σ∥ error of the true Σ, we need

m ≥ C K2

∥Σ∥n.

5 Davis-Kahan sin theta theorem: bounds the perturbation of eigen-vectors or of subspaces
of eigenvectors when a symmetric matrix is perturbed. Subspaces version:

Theorem (Davis-Kahan for principal subspaces)

Let D, D̂ be Hermitian matrices of size n × n with top r eigenvectors denoted by the n × r
matrices with ortho cols U, Û. Then

SD(Û,U) := ∥(I− ÛÛ′)U∥ ≤
∥(D̂−D)U∥

λr (D)− λr+1(D̂)
≤

∥(D̂−D∥
λr (D)− λr+1(D)− ∥D̂−D∥

This shows that if Σm is close to Σ in 2-norm, then their corresponding top eigenvectors
also span subspaces that are close to each other in the subspace distance defined by SD.
This measures the sine of the largest principal angle between the two subspaces.
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Applications Details IV

6 The goal of PCA is to find the span of U which is the matrix of top r eigenvectors of Σ.

7 By using the above result followed by the Theorem given earlier to bound ∥Σm − Σ∥ we
can decide on the required sample complexity m (required number of samples/data-points
m to guarantee accurate principal subspace recovery. For a general matrix Σ, we will need
m ≥ CK2n/ϵ2 to get an ϵ accurate estimate of Σ

8 Can get a modified result with a lower sample complexity for the setting where Σ is
approximately low rank: the effective rank, trace(Σ)/∥Σ∥, is much smaller than n.

Low Rank Matrix Recovery

1 LR Matrix Completion , LR Matrix Sensing, Compressive PCA (LR Compressive Sensing),
LR Phase Retrieval

2 Non-convex solutions to all these problems consist of a spectral initialization step, that
provides the initial estimate of the column span of the unknown LR matrix, followed by
either an alternating minimization algorithm or a gradient descent (GD) method.

3 Spectral init: compute top r left singular vectors of a carefully defined matrix (usually a
sum of independent matrices).

4 To show that the spectral init output indeed is a good approx to the true column span of
the LR matrix, the typical approach involves use of the Davis-Kahan sin theta theorem,
followed by use of one of the results from earlier to obtain high probability bounds on each
of the terms in the Davis-Kahan bound.

5 In some cases, Davis-Kahan can be replaced by Wedin’s sin theta theorem.
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Applications Details V

6 For analyzing the iterations, one again arrives at a subspace error bound either using one
of the above two results, or directly using other ideas. The terms of this bound are then
bounded with high probability using one of the results from above.

7 Typically: either one of the two matrix results given above is used or ideas similar to the
proof of the sub-Gaussian result are used to bound the terms directly.

Community detection in graphs:

A random n/w with n nodes, node connections independent, two communities, nodes
within a community are connected w.p. p, nodes in different communities are connected
with probability q < p. If q sufficiently smaller than p, it should be possible to detect the
communities given a realization of the graph
Spectral clustering algorithm.
(i) Compute adjacency matrix of the graph (Aij = 1 if i connected to j , zero otherwise).
A is symmetric.
(ii) Compute the eigenvector of A corresponding to second largest eigenvalue. Denote by
v2(A)
(iii) Partition the nodes based on the signs of entries of v2(A)
Idea this works: Can show that E[A] is a rank-2 matrix. Its first eigenvector is the all-ones
vector scaled by 1/

√
n; the second eigenvector is a vector of +1/

√
n,−1/

√
n’s with the

sign indicating which community it belongs to. Write A = E[A] + H. If H is small, one
can argue that the eigenvectors of A will be close to those of E[A] (Davis-Kahan sin theta
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Applications Details VI

theorem) as long as the eigen-gaps are large enough. Here this means
min((p − q)/2, q) ≥ µ > 0.
To bound ∥H∥ = ∥A− E[A]∥, we use Theorem 4.4.5 of book
Since the entries of A are independent and each is either Bern(p) or Bern(q), the matrix
contains sub-Gaussian independent entries. The rows may not be isotropic so our previous
result does not apply, but an easier result that only provides an upper bound on ∥A∥
(Theorem 4.4.5 of book) applies. This result does not use isotropy. Proved using
∥A∥ = maxx,y unit norm x ′Ay ; for fixed x , y , x ′Ay =

∑
i,j xiyjAij ; can show this is a sub-G

with sub-G norm CK2; then use subG tail bound; followed by epsilon-net argument and
union bound.

A detailed set of slides on Low Rank Phase Retrieval and its linear version, Compressive PCA,
follows.
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Old slides on sparse recovery
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The sparse recovery / compressed sensing problem

Given y := Ax where A is a fat matrix, find x .
▶ underdetermined system, without any other info, has infinite solutions

Key applications where this occurs: Computed Tomography (CT) or MRI
▶ CT: acquire radon transform of cross-section of interest
▶ typical set up: obtain line integrals of the cross-section along a set of parallel lines

at a given angle, and repeated for a number of angles from 0 to π), common set
up: 22 angles, 256 parallel lines per angle

▶ by Fourier slice theorem, can use radon transform to compute the DFT along radial
lines in the 2D-DFT plane

▶ Projection MRI is similar, directly acquire DFT samples along radial lines
▶ parallel lines is most common type of CT, other geometries also used.

Given 22x256 data points of 2D-DFT of the image, need to compute the 256x256 image
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Limitation of zero-filling

A traditional solution: zero filling + I-DFT

▶ set the unknown DFT coeff’s to zero, take I-DFT
▶ not good: leads to spatial aliasing

Zero-filling is the minimum energy (2-norm) solution, i.e. it solves minx ∥x∥2 s.t. y = Ax .

Reason

▶ clearly, min energy solution in DFT domain is to set all unknown coefficients to
zero, i.e. zero-fill

▶ (energy in signal) = (energy in DFT)*2π, so min energy solution in DFT domain is
also the min energy solution

The min energy solution will not be sparse because 2-norm is not sparsity promoting

▶ In fact it will not be sparse in any other ortho basis either because ∥x∥2 = ∥Φx∥2
for any orthonormal Φ. Thus min energy solution is also min energy solution in Φ
basis and thus is not sparse in Φ basis either

But most natural images, including medical images, are approximately sparse (or are
sparse in some basis)
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Sparsity in natural signals/images

Most natural images, including medical images, are approximately sparse (or are sparse in

some basis)
▶ e.g. angiograms are sparse
▶ brain images are well-approx by piecewise constant functions (gradient is sparse):

sparse in TV norm
▶ brain, cardiac, larynx images are approx. piecewise smooth: wavelet sparse

Sparsity is what lossy data compression relies on: JPEG-2000 uses wavelet sparsity, JPEG
uses DCT sparsity

But first acquire all the data, then compress (throw away data)

In MRI or CT, we are just acquiring less data to begin with - can we still achieve
exact/accurate reconstruction?

Namrata Vaswani (Iowa State U.) High Dim Prob & Lin Alg for ML 18 / 62



Use sparsity as a regularizer

Min energy solution minx ∥x∥2 s.t. y = Ax is not sparse, but is easy to compute
x̂ = A′(AA′)−1y

Can we try to find the min sparsity solution, i.e. find minx ∥x∥0 s.t. y = Ax

Claim: If true signal, x0, is exactly S-sparse, this will have a unique solution that is

EXACTLY equal to x0 if spark(A) > 2S
▶ spark(A) = smallest number of columns of A that are linearly dependent.
▶ in other words, any set of (spark-1) columns are always linearly independent

proof in class

Even when x is approx-sparse this will give a good solution

But finding the solution requires a combinatorial search: O(
∑S

k=1 choosemk) = O(mS )
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Practical solutions [Chen,Donoho’95] [Mallat,Zhang’93]

Basis Pursuit: replace ℓ0 norm by ℓ1 norm: closest norm to ℓ0 that is convex

min
x

∥x∥1 s.t. y = Ax

Greedy algorithms: Matching Pursuit, Orthogonal MP

Key idea: all these methods “work” if columns of A are sufficiently “incoherent”

“work”: give exact reconstruction for exactly sparse signals and zero noise, give small
error recon for approx. sparse (compressible) signals or noisy measurements
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Compressive Sensing

name: instead of capturing entire signal/image and then compressing, can we just acquire
less data?

i.e. can we compressively sense?

MRI (or CT): data acquired one line of Fourier projections at a time (or random transform
samples at one angle at a time)

if need less data: faster scan time

new technologies that use CS idea:
▶ single-pixel camera,
▶ A-to-D: take random samples in time: works when signal is Fourier sparse
▶ imaging by random convolution
▶ decoding “sparse” channel transmission errors.

Main contribution of CS: theoretical results
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General form of Compressive Sensing

Assume that an N-length signal, z, is S-sparse in the basis Φ, i.e. z = Φx and x is
S-sparse.

We sense
y := Ψz = ΨΦ︸︷︷︸Ax

It is assumed that Ψ is “incoherent w.r.t. Φ”
▶ or that A := ΨΦ is “incoherent”

Find x , and hence z = Φx , by solving

min
x

∥x∥1 s.t. y = Ax

A random Gaussian matrix, Ψ, is “incoherent” w.h.p for S-sparse signals if it contains
O(S logN) rows

And it is also incoherent w.r.t. any orthogonal basis, Φ w.h.p. This is because if Ψ is r-G,
then ΨΦ is also r-G (ϕ any orthonormal matrix).

Same property for random Bernoulli.
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Quantifying “incoherence”

Rows of A need to be “dense”, i.e. need to be computing a “global transform” of x .

Mutual coherence parameter, µ := maxi ̸=j |A′
iAj |/∥Ai∥2∥Aj∥2

spark(A) = smallest number of columns of A that are linearly dependent.

Or, any set of (spark(A)− 1) columns of A are always linearly independent.

RIP, ROP

many newer approaches...
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Quantifying “incoherence”: RIP

A K × N matrix, A satisfies the S-Restricted Isometry Property if constant δS defined
below is positive.

Let AT , T ⊂ {1, 2, . . .N} be the sub-matrix obtained by extracting the columns of A
corresponding to the indices in T . Then δS is the smallest real number s.t.

(1− δS )∥c∥2 ≤ ∥AT c∥2 ≤ (1 + δS )∥c∥2

for all subsets T ⊂ {1, 2, . . .N} of size |T | ≤ S and for all c ∈ ℜ|T |.
▶ In other words, every set of S or less columns of A has singular values b/w

√
1± δS

▶ ⇔ every set of S or less columns of A approximately orthogonal
▶ ⇔ A is approximately orthogonal for any S-sparse vector, c.
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Examples of RIP

If A is a random Gaussian, random Bernoulli, or Partial Fourier matrix with about
O(S logN) rows, it will satisfy RIP(S) w.h.p.

Partial Fourier * Wavelet: somewhat “incoherent”
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Use for spectral estimation and comparison with MUSIC

Given a periodic signal with period N that is a sparse sum of S sinusoids, i.e.

x[n] =
∑
k

X [k]e j2πkn/N

where the DFT vector, X , is a 2S-sparse vector.

In other words, x[n] does not contain sinusoids at arbitrary frequencies (as allowed by
MUSIC), but only contains harmonics of 2π/N and the fundamental period N is known.

In matrix form, x = F∗X where F is the DFT matrix and F−1 = F∗.
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Suppose we only receive samples of x[n] at random times, i.e. we receive y = Hx where H
is an “undersampling matrix” (exactly one 1 in each row and at most one 1 in each
column)

With random time samples it is not possible to compute covariance of
x[n] := [x[n], x[n − 1], . . . x[n −M]]′, so cannot use MUSIC or the other standard spectral
estimation methods.

But can use CS. We are given y = HF∗X and we know X is sparse. Also, A := HF∗ is
the conjugate of the partial Fourier matrix and thus satisfies RIP w.h.p.

If have O(S logN) random samples, we can find X exactly by solving

min
X

∥X∥1 s.t. y = HF∗X
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Quantifying “incoherence”: ROP

θS1,S2 : measures the angle b/w subspaces spanned by AT1 , AT2 for disjoint
sets, T1, T2 of sizes less than/equal to S1, S2 respectively
θS1,S2 is the smallest real number such that

|c1′A′
T1AT2c2| < θS1,S2 ∥c1∥ ∥c2∥

for all c1, c2 and all sets T1 with |T1| ≤ S1 and all sets T2 with |T2| ≤ S2

In other words

θS1,S2 = min
T1,T2:|T1|≤S1,|T2|≤S2

min
c1,c2

|c1′A′
T1AT2c2|

∥c1∥ ∥c2∥

Can show that δS is non-decreasing in S, θ is non-decreasing in S1, S2

Also θS1,S2 ≤ δS1+S2

Also, ∥AT1

′AT2∥ ≤ θ|T1|,|T2|
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Theoretical Results

If x is S-sparse, y = Ax , and if δS + θS,2S < 1, then basis pursuit exactly recovers x

If x is S-sparse, y = Ax + w with ∥w∥2 ≤ ϵ, and δ2S < (
√
2− 1), then solution of

basis-pursuit-noisy, x̂ satisfies
∥x − x̂∥ ≤ C1(δ2S )ϵ

basis-pursuit-noisy:
min
x

∥x∥1 s.t. ∥y − Ax∥2 ≤ ϵ
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MP and OMP
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Applications

DSP applications

Fourier sparse signals
▶ Random sample in time
▶ Random demodulator + integrator + uniform sample with low rate A-to-D

N length signal that is sparse in any given basis Φ
▶ Circularly convolve with an N-tap all-pass filter with random phase
▶ Random sample in time or use random demodulator architecture

Namrata Vaswani (Iowa State U.) High Dim Prob & Lin Alg for ML 31 / 62



Compressibility: one definition
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Papers to Read

Decoding by Linear Programming (CS without noise, sparse signals)

Dantzig Selector (CS with noise)

Near Optimal Signal Recovery (CS for compressible signals)

Applications of interest for DSP
▶ Beyond Nyquist:... Tropp et al
▶ Sparse MRI: ... Lustig et al
▶ Single pixel camera: Rice, Baranuik’s group
▶ Compressive sampling by random convolution : Romberg
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Sparse Recon. with Partial Support Knowledge

Modified-CS (our group’s work)

Weighted ℓ1

von-Borries et al
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Treating Outliers as Sparse Vectors

Dense Error Correction via ell-1 minimization

“Robust” PCA

Recursive “Robust” PCA (our group’s work)
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Phase Retrieval

Recover an n-length signal x∗ from its phaseless (magnitude-only) linear projections

yi := |⟨ai , x∗⟩|, i = 1, 2, . . . ,m

when the design vectors ai are known.

▶ applications: Fourier imaging problems where the phase is impossible or hard to
obtain, e.g., sub-diffraction imaging, Fourier ptychography

Provable solutions: PhaseLift [Candes et al’13], Non-convex iterative algorithms: AltMinPhase

[Netrapalli et al,NIPS’13], Wirtinger Flow [Candes et al, T-IT’15], Truncated WF [Chen et al,NIPS’15],

Reshaped WF [Zhang et al,NIPS’16])

▶ all assume i.i.d. Gaussian ai ’s

TWF and later work on RWF

▶ achieve optimal sample complexity: m ≥ Cn

▶ best time complexity: mn log(1/ϵ)
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Notation

MATLAB notation: ′ denotes transpose, ∥.∥ denotes the l2 norm

Phase-invariant distance: dist(x∗, x̂) := minθ ∥x∗e jθ − x̂∥.
For real-valued signals, this simplifies to

dist(x∗, x̂) = min(∥x∗ − x̂∥, ∥x∗ + x̂∥).

Subspace Distance: 2-norm of sines of principal angles b/w the subspaces

SubsDist(U1,U2) := ∥(I− U1U1
⊤)U2∥F .

where U1,U2 are “basis” matrices (tall matrices with orthonormal columns that span the
corresponding subspace)

Any n × q rank-r matrix X can be written as X = UB

▶ where U is a tall n × r basis matrix; B is r × q

Guarantees assume aik i.i.d. standard Gaussian vectors
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Low Rank PR and its linear version [Nayer, Narayanamurthy, V., Phaseless PCA:.., ICML 2019

Low Rank PR (LRPR): Recover an n× q rank-r matrix X∗ = [x∗1 , x
∗
2 , . . . , x

∗
q] from

yik := |⟨aik , x∗k⟩|, i = 1, . . . ,m, k = 1, . . . , q.

Key application: fast dynamic Fourier ptychography

Linear LRPR (Compressive PCA): Recover X∗ from

zik := ⟨aik , x∗k⟩, i = 1, . . . ,m, k = 1, . . . , q.

Key application: fast dynamic MRI [Zhi Pei Lian et a], [Mathews Jacob et al]

Question: When does m≪ n suffice?

Even linear LRPR has received little attention in theoretical literature so far

▶ Our ICML 2019 paper (Phaseless PCA): first useful guarantee for it

▶ A convex relaxation approach in NeurIPS 2019 [Srinivasa et al,Neurips,2019]
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Related Problems

Our problem (linear version): Recover an n × q rank-r matrix
X∗ = [x∗1 , x

∗
2 , . . . , x

∗
q] from

zik := ⟨aik , x∗k⟩, i ∈ [m], k ∈ [q]

Different from all 3 well-studied low-rank (LR) recovery problems

▶ Multivariate Regression: above prob with aik = ai for all columns k

[Neghaban-Wainwright,2011]

⋆ no independence over k ⇒ impossible to recover X∗ with m < n.

▶ LR matrix sensing: recover X∗ from yi = ⟨Ai ,X
∗⟩ with Ai ’s dense [Netrapalli et al,2013]

⋆ global measurements (yi depends on entire X∗): easier problem

▶ LR matrix completion: recover X∗ from a subset of its entries [Keshavan et

al,2010],[Netrapalli et al,2013]

⋆ completely local measurements
⋆ need rows & cols to be dense’ to allow for correct “interpolation” : ensured

by assuming incoherence of left and right singular vectors

Our problem

▶ non-global measurements of X∗, but global for each column
▶ only need denseness of rows (incoherence of right singular vectors)
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Right incoherence: incoherence of right singular vectors

Recall X∗ is n × q. Let

X∗ SVD
= U∗ Σ∗B∗︸ ︷︷ ︸

B̃∗

be the r -SVD. Here B∗ = V∗′ from std. SVD notation. Thus rows of B∗ are unit 2-norm

Assume that

max
k

∥b∗k∥
2 ≤ µ2 r

q

with µ ≥ 1 but not too large; assume constant w.r.t. n, q, r .

Implications:

Unit 2-norm rows and above ⇒ rows of B∗ (and hence of X∗) are dense, i.e., no entry too
large, most are nonzero

Also, above implies

max
k

∥x∗k∥
2 ≤ (κ2µ2)

∥X∗∥2F
q

(assuming small κ, µ, this means that no signal’s energy is too much larger than the
average energy over all q signals)
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/

Table 1: The 3 well-studied low-rank matrix recovery problems and ours. All need to recover

an n × q rank-r matrix X∗ SVD
= U∗Σ∗V∗⊤ from measurements as specified above.

Problem Measurement Assumptions Global Indep. Ident. Distr. Symmetric
Model Meas.? Meas.? Meas.? (rows, cols)

LRMS yi = ⟨Ai ,X
∗⟩, i ∈ [m] Yes Yes Yes Yes

Ai i.i.d Gauss.

LRMC yjk = ⟨δjkejek⊤,X∗⟩ maxj ∥(U∗′)j∥2 ≤ µ2 r
n
, No Yes No Yes

δjk
iid∼ Bern(p), j ∈ [n], k ∈ [q] maxk ∥(V∗′)k∥2 ≤ µ2 r

q

Multiv. Regr. yik = ⟨aiek⊤,X∗⟩ = ⟨ai , x∗k ⟩ No No No No

(MVR) ai
iid∼ N (0, In), i ∈ [m] -

Linear LRPR yik = ⟨aikek⊤,X∗⟩ = ⟨aik , x∗k ⟩ maxk ∥(V∗′)k∥2 ≤ µ2 r
q

No Yes No No

(our problem) aik
iid∼ N (0, In), i ∈ [m], k ∈ [q]

LRMS: can prove RIP ⇒ simplifies analysis

MVR: cannot use law of large numbers over k ⇒ m has to be more than n.
Negahban-Wainwright,2011 prove m ≥ nr necessary and sufficient

LRMC and our problem:
▶ Most similar: both have non-global, indep. but not ident. dist. meas. ⇒ both need

incoherence assumps.
▶ Difference: LRMC measurements symmetric (across rows, columns) & bounded.
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Proposed algorithm: linear case idea [Nayer et al,Provable LRPR, T-IT,2020]

Consider Linear LRPR: recover X∗ = U∗B̃∗ from

zik := ⟨aik , x∗k ⟩ = ⟨(U∗′aik), b̃
∗
k ⟩ = ⟨(aik ⊗ b̃∗

k ),U
∗
vec⟩, i ∈ [m], k ∈ [q]

(U∗
vec vectorizes the n × r matrix U∗ into an nr length vector; ⊗: Kronecker product)

Given an estimate U, can update each b̃∗k by r -dimensional LS:

b̂k = argmin
b̂

∥(Ak
′U)b̂− zk∥22, k = 1, 2, . . . , q

▶ U′Ak is m × r : this step only needs m ≳ r ; and fast: needs time mqnr

Given estimates bk , can update U∗
vec by nr -dimensional LS:

Ûvec = argmin
Ûvec

∥∥∥∥∥∥∥∥∥


(A1 ⊗ b1)
(A2 ⊗ b2)

...
(Aq ⊗ bq)


′

Ûvec −


z1
z2
...
zq


∥∥∥∥∥∥∥∥∥

2

2

followed by QR decomposition on Û to get a basis matrix U

▶ slower step: needs time mqnr log(1/ϵ)
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Proposed algorithm: LRPR idea [Nayer et al,Provable LRPR,T-IT,2020]

Consider LRPR: recover X∗ from

yik := |zik |, zik = ⟨aik , x∗k ⟩

Modifications needed for LRPR:

Recovery of b̂k ’s now becomes an r -dimensional standard PR problem

▶ outputs b̂k , x̂k = Ub̂k , measurements’ phase ĉik = phase(⟨aik ,Ub̂k ⟩)

Before the LS step for updating U, estimate zik as

▶ ẑik = ĉikyik

Key insight to get a sample complexity gain over standard PR:

conditioned on X∗, we have mq mutually independent measurements

these are not identically distributed, but right incoherence ⇒ similar enough so that
concentration bounds are applicable over all the mq summands in the error terms
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Proposed algorithm: Initialization for linear case [Nayer-Vaswani, arXiv 2021]

Consider

Xinit,full =
1

mq

q∑
k=1

m∑
i=1

aikzikek
′

Not too hard to see that
E[Xinit,full ] = X∗

Thus, if mq large enough, the span of top r left singular vectors of Xinit,full should
also be a good estimate of span(U∗) w.h.p. But

aikzik ’s are sub-exponential with max sub-expo norm σ∗
max

√
r/q: not small enough

▶ heavy tailed; a few “bad” measurements can bias the average a lot

Fix: truncate (sum over only the “good” zik s) [Candes, Chen, NIPS’15 (TWF)] – converts the
r.v.s to sub-Gaussian

Compute Uinit as top r left singular vectors of

Xinit :=
1

mq

∑
i,k:z2

ik
≤ 9

mq

∑
ik z2

ik

aikzikek
′
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Proposed algorithm: Initialization for LRPR [Nayer et al, Provable LRPR, T-IT,2020]

Previous slide idea does not work because of phaseless measurements.
Consider

YU,full =
1

mq

q∑
k=1

m∑
i=1

y2ikaikaik
′

Not too hard to see that its expected value equals

1

q
[U∗(Σ∗2)U∗′ + 2trace(Σ∗2)I]

Thus, if mq large enough, the span of top r left singular vectors of YU,full should
also be a good estimate of span(U∗) w.h.p.

Since y2ikaikaik
′ is heavy-tailed, a few “bad” (large) measurements can bias the average –

need large mq to be robust to this.

Fix: truncate (throw away “bad” yik s) [Candes, Chen, NIPS’15 (TWF)]

Compute Uinit as top r left singular vectors of

YU :=
1

mq

∑
i,k:y2

ik
≤ 9

mq

∑
ik y2

ik

y2ikaikaik
′
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AltMin for Linear LRPR

1: U← top r singular vectors of Xinit :=
1

mq

∑
i,k:z2ik≤

9
mq

∑
ik z

2
ik

yikaikek
′

2: for t = 0 : T do
3: b̂k ← LS({yk ,U′Ak}) for each k = 1, 2, · · · , q

4: X̂t ← UB̂ where B̂ = [b̂1, b̂2, . . . b̂q]

5: QR decomposition: B̂
QR
= RBB

6: Û← argminŨ
∑q

k=1

∑m
i=1(zik − aik ′Ũbk)2

7: QR decomp: Û
QR
= URU

8: end for
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AltMin-LowRaP: Alt-Min for Low Rank PR [Nayer et al, Provable LRPR, T-IT,2020]

1: U← top r singular vectors of YU :=
1

mq

∑
i,k:y2ik≤

9
mq

∑
ik y

2
ik

y2ikaikaik
′

2: for t = 0 : T do
3: b̂k ← PR({yk ,U′Ak}) for each k = 1, 2, · · · , q

4: X̂t ← UB̂ where B̂ = [b̂1, b̂2, . . . b̂q]

5: QR decomposition: B̂
QR
= RBB

6: ĉik ← phase(⟨aik , x̂ik⟩), i = 1, 2, . . . ,m, k = 1, 2, · · · , q

7: Û← argminŨ
∑q

k=1

∑m
i=1(ĉikyik − aik ′Ũbk)2

8: QR decomp: Û
QR
= URU

9: end for

PR: use any of the standard PR methods, e.g. Truncated or Reshaped Wirtinger
Flow. Estimate r : can be done using YU as well.,
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Guarantee [Nayer,Vaswani, T-IT submitted/revised (Sample-Efficient LRPR)]

Recover X∗ (n × q matrix with rank r) from zik = ⟨aik , x∗k ⟩, i ∈ [1,m], k ∈ [1, q].

Theorem (Guarantee for AltMin for linear LRPR)

Assume µ-incoherence of right singular vectors of X∗. Set T := C log(1/ϵ).
Assume that, for each new update step, we use a new (independent) set of mq
measurements with m satisfying

mq ≥ Cκ,µ nr2

and m ≥ C max(r , log q, log n). Then, w.p. at least 1− 10n−10,

SubsDist(UT ,U∗) ≤ ϵ and ∥X̂− X∗∥F ≤ ϵ∥X∗∥F ,

Also, the errors decay exponentially with iteration t.

Time complexity: mqnr log2(1/ϵ). Sample complexity: Cκ,µ nr2 log(1/ϵ).
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Main Result for LRPR [Nayer,Vaswani, T-IT submitted/revised (Sample-Efficient LRPR)]

Recover X∗ (n × q matrix with rank r) from yik = |⟨aik , x∗k ⟩|, i ∈ [1,m], k ∈ [1, q].

Theorem (Guarantee for AltMinLowRaP fpr LRPR)

Assume µ-incoherence of right singular vectors of X∗. Set T := C log(1/ϵ). Assume new
(independent) measurements as before with m satisfying

mq ≥ Cκ,µ nr3 (for initialization)

mq ≥ Cκ,µ nr2 (for AltMin iterations)

and m ≥ C max(r , log q, log n). Then, w.p. at least 1− 10n−10,

SubsDist(UT ,U∗) ≤ ϵ, dist(x̂Tk , x
∗
k ) ≤ ϵ∥x∗k∥,

q∑
k=1

dist2(x̂Tk , x
∗
k ) ≤ ϵ∥X∗∥2F

Time complexity: Cmqnr log2(1/ϵ). Sample complexity: Cκ6µ2 nr2(r + log(1/ϵ)).
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Existing work versus our work

Linear LRPR:

Sample Comp. Time Comp.
mq ≳ C ·

SL-ECM n
√
r
√
q 1
ϵ2

nq(r +m)

[Krishnamurthy et al,Asilomar’14] Too large

Convex (n + q)r 1
ϵ2

mqnr 1√
ϵ

[Srinivasa et al, NeurIPS’19] Large Too slow

AltMin (our old w.) nr4 log(1/ϵ) mqnr log2(1/ϵ)
[Nayer et al, Phaseless PCA]

[Nayer et al, Provable LRPR

AltMin (this talk) nr2 log(1/ϵ) mqnr log2(1/ϵ)
[Nayer-Vaswani, Sample-Eff LRPR]

LRPR: no other work
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Discussion: Linear LRPR

Problem: Recover a rank-r n × q matrix X∗ from zik = ⟨aik , x∗k ⟩, i ∈ [m], k ∈ [q].
Solution: AltMin with Spectral Init (non-convex approach)

Treating κ, µ as constants, sample complexity is

mtotq ≥ C nr2 · log(1/ϵ)

Number of unknowns in X∗ is (q + n)r ≈ 2nr
▶ Sub-optimal by a factor of r

▶ reason: non-global meas. ⇒ need to use incoherence to show that the mq scalar
meas. are similar enough so that concentration bounds can be applied jointly over
all mq summands in the error term

▶ Non-convex LRMC solutions’ complexity is also sub-optimal by a factor of r for the
same reason

Related Work

▶ Our older work on Provable LRPR (ICML,2019; T’IT,2020):
⋆ above result improves it by a factor of r2

▶ Neurips 2019 paper (convex relaxation solution):
⋆ above result improves it by a factor of 1

rϵ2
; also much slower approach
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Discussion: LRPR

Recover a rank-r n × q matrix X∗ from yik = |⟨aik , x∗k ⟩|, i ∈ [m], k ∈ [q].

Treating κ, µ as constants, sample complexity is

mtotq ≥ C nr2(r + log(1/ϵ))

Number of unknowns in X∗ is (q + n)r ≈ 2nr
▶ initialization comp. sub-optimal by a factor of r2; reason:

⋆ non-global meas. (same as before) and phaseless meas ⇒ cannot define a
matrix Xinit whose expected value is equal or close to X∗

⋆ need to define a “squared” matrix YU whose expected value is close to
X∗X∗′ + cI

⋆ the same problem for sparse PR as well
▶ iterations comp. sub-optimal by a factor of r ;

⋆ well-known fact from PR and sparse PR: once carefully initialized PR
problems similar to linear ones.

No existing useful guarantees for our problem. Closest well studied problems:
▶ LRMC: also has non-global meas., but LRMC is linear

⋆ best non-convex LRMC guarantees sub-optimal by a factor of r
▶ sparse PR: also has phaseless meas., but meas. are global

⋆ best sparse PR guarantees sub-optimal by a factor of s (sparsity size).

Comparison with standard (unstructured) PR
▶ Standard PR sample complexity is nq: much larger when r2 ≪ q
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Proof Outline: Two main claims

The theorem is an immediate consequence of the following two claims.

Lemma (Initialization)

Pick a δ0 < 0.25. Then, w.p. at least 1− 2 exp

(
n − c

δ20mq

κ4r3

)
− 2 exp

(
−c

δ30mq

κ4µ2r3

)
,

SubsDist(U∗,U0) ≤ δ0

Proof: See Provable Low Rank Phase Retrieval, T-IT 20

Lemma (AltMin Iterations – exponential decay of error)

Assume that SubsDist(U∗,U0) ≤ δ0 = c/κ2 and SubsDist(U∗,Ut) ≤ δt := 0.2tδ0 Then, w.p.

at least 1−
(
exp

(
nr − c mq

κ2µ4r

)
− exp(log q + r − cm)

)
,

SubsDist(U∗,Ut+1) ≤ δt+1 := 0.2δt (1)

Proof: See next few slides
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Proof of the second AltMin iterations lemma I

Let U ≡ Ut , B̂ ≡ B̂t , B ≡ Bt .
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Proof of the second AltMin iterations lemma II

Lemma (Algebra lemma)

SubsDist(U∗,Ut+1) ≤
MainTerm

σmin(X∗B⊤)−MainTerm
where

MainTerm :=
maxW∈SW

|Term1(W)|+maxW∈SW
|Term2(W)|

minW∈SW
Term3(W)

,

Term1(W) :=
∑
ik

bk
⊤W⊤aikaik

⊤(X∗B⊤bk − x∗k )

Term2(W) :=
∑
ik

(c̄∗ik ĉik − 1)(x∗k
⊤aik )(aik

⊤Wbk ),

Term3(W) :=
∑
ik

|aik⊤Wbk |2,

SW := {W ∈ ℜn×r : ∥W∥F = 1},

and c∗ik , ĉik are the phases of aik
⊤x∗k and aik

⊤x̂k .
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Proof of the second AltMin iterations lemma III

Lemma (High probability bounds on the SubsDist bound terms)

Assume that SubsDist(U∗,Ut) ≤ δt with δt < δ0 = c/κ2. Then, it is possible to show that

1 w.p. at least 1− 2 exp

(
nr(log 17)− c

mqϵ21
κ2µ2r

)
− exp(log q + r − cm),

max
W∈SW

|Term1(W)| ≤ Cmϵ1δtσ
∗
max,

2 w.p. at least 1− 2 exp

(
nr log(17)− c

mqϵ22
µ2κr

)
− exp(log q + r − cm),

max
W∈SW

|Term2(W)| ≤ Cm(ϵ2 +
√

δt)δtσ
∗
max,

3 w.p. at least 1− 2 exp

(
nr(log 17)− c

ϵ23mq

µ2κ2r

)
− exp (log q + r − cm) ,

min
W∈SW

Term3(W) ≥ 0.5(1− ϵ3)m,

4 σmin(X
∗B⊤) ≥ σ∗

min.

Combining above two claims, one can show the following We are starting with the assumption
that SubsDist(U∗,U) ≤ δt := 0.2tδ0 < δ0 = c/κ2. Then, one can show that w.p. at least

1− 2 exp
(
nr(log 17)− c mq min(ϵ1,ϵ2,ϵ3)

2

κ2µ2r

)
− exp(log q + r − cm),

SubsDist(U∗,Ut+1) ≤
Cm(ϵ1+ϵ2+

√
δt )

(1−ϵ3)m
δtσ∗

max

σ∗
min −Numerator

≤
0.14δtσ∗

max/κ

σ∗
min − 0.14 · 0.01σ∗

min

≤ 0.16δt < 0.2δt := δt+1,F .

Second inequality: (i) use δt ≤ δ0; (ii) set ϵ1 = ϵ2 = 0.01/Cκ, ϵ3 = 0.01 and δ0 = 0.01/C2κ2;
(iii) use δ0 = c/κ2 for denominator.
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Proof of the high probability bounds’ lemma

The proof uses
1 “B̂ lemma” given next (bounds ∥gk − b̂k∥ and ∥G− B̂∥F with gk = U′x∗k ),

2 right singular vectors’ incoherence: maxk ∥b∗k∥ ≤ µ
√

r/q, and

3 sub-exponential Bernstein inequality
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B̂ Lemma – I

Assume SubsDist(U∗,U) ≤ δt . Define a rotated version of b̃∗k ,

gk = U′x∗k = U′U∗b̃∗k

Our estimate b̂k can be shown to be an approx of gk : ∥gk − b̂k∥ ≲ ∥(I− UU⊤)U∗b̃∗k∥
▶ proof idea: Given an estimate U, recovery of each b̃∗k is an r -dimensional noisy PR

problem with noise proportional to ∥(I− UU⊤)U∗b̃∗k∥; using a noisy PR result, can
show

∥gk − b̂k∥2 ≤ C∥(I− UU⊤)U∗b̃∗k∥
2

Implications

∥gk − b̂k∥ ≤ Cδt∥x∗k∥

∥B̂− G∥F ≲ δtσ∗
max

▶ proof idea: use
∑

k ∥Mb̃∗k∥
2 = ∥MB̃∗∥2F ≤ ∥M∥2F ∥B̃

∗∥2 = ∥M∥2Fσ
∗
max

2

Also implies x̂k = Ub̂k is an approx of x∗k = Ugk + (I− UU⊤)U∗b̃∗k , can show

This implies ∥X̂− X∗∥F ≲ δtσ∗
max

Above claims and right incoherence imply incoherence of B: ∥bk∥ ≤ κµ
√

r/q.
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B̂ Lemma – II

mat-dist(G, B̂) :=
√∑q

k=1 dist
2(gk , b̂k )

Lemma (B̂ Lemma)

Let gk := U′U∗b̃∗k . Assume that SubsDist(Ut ,U∗) ≤ δt with δt < δ0 = c/κ2. Then, w.p. at
least 1− exp(log q + r − cm),

dist
(
gk , b̂k

)
≤ dist (x∗k , x̂k ) ≤ Cδt∥b̃∗k∥

mat-dist(G, B̂) ≤ mat-dist(X∗, X̂) ≤ Cδtσ
∗
max

∥bk∥ ≤
dist(b̂k , gk ) + ∥gk∥

0.95σ∗
min −mat-dist(G, B̂)

≤ 2κµ
√

r/q.
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Bounding Term1

Let pk := (X∗B⊤bk − x∗k ), then

Term1(W) =
∑
ik

bk
⊤W⊤aikaik

⊤pk = trace(
∑
ik

pkbk
⊤W⊤aikaik

⊤)

Need to bound maxW∈SW
|Term1(W)| where SW = {W : ∥W∥F = 1}. Do this as follows

1 aik ∼ N (0, I) and BB⊤ = I ⇒
∑

k pkbk
⊤ = 0 ⇒ E[Term1] = 0.

2 Use sub-exponential Bernstein and following ideas to bound |Term1(W)| for a fixed W

▶ X̂B⊤bk = x̂k and the previous lemma (B̂ bound) ⇒

∥pk∥ ≤ ∥X∗ − X̂∥F ∥bk∥+ ∥x̂k − x∗k∥ ≲ δtσ
∗
maxκµ

√
r/q

▶ X̂(B⊤B− I) = 0 ⇒

∥[p1, p2, . . . pq ]∥F = ∥X∗(B⊤B− I)∥F ≲ δtσ
∗
max.

3 Define an epsilon-net, S̄W on SW with say ϵ = 1/8. Can show (see Vershynin) that the
number of discrete points on S̄W , is at most (1 + 2/ϵ)nr = 17nr

4 Use union bound to extend the Term1(W) bound from a fixed W ∈ S̄W to all W ∈ S̄W .

5 Develop an “epsilon-net” argument to extend from S̄W to SW .
▶ Can show that if maxW∈S̄W

Term1(W) ≤ d , then maxW∈SW
Term1(W) ≤ 1.5d
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Term3 bound:
1 BB⊤ = I and ∥W∥F = 1 ⇒ E[Term3] = m

∑
k ∥Wbk∥2 = m

2 right incoherence and sub-exponential Bernstein inequality

3 epsilon-net argument as above: a little more complicated for minW∈SW
.

Term2 bound:
1

∑
ik E[1c∗

ik
̸=ĉik

(aik
⊤x∗k )

2] ≲
∑

ik

dist(x∗k ,x̂k )
3

∥x∗
k
∥ ≲ δ3t σ

∗
max

2
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