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Random Process

1 A r. process is a (possibly uncountably infinite) collection of r. variables Xt , t ∈ T . The

set T can be a subset of ℜn.

▶ In classical examples, the set T is a subset of ℜ and often denotes the time index -

continuous time or discrete time

⋆ If T is a finite set, say T = {1, 2, . . . , n}, then we get a r. vector in ℜn.
⋆ If T is set of integers, then we often refer to Xt as a r. sequence
⋆ Brownian motion: T = {t ≥ 0}, Xt continuous almost surely, and

Xt − Xs ∼ N (0, t − s)
▶ When T ⊆ ℜn: we often use the term random field, e.g., water temperature at

different locations on earth

2 Assume zero mean, E[Xt ] = 0 for all t ∈ T .
3 Covariance function Σ(t, s) := cov(Xt ,Xs)
4 Canonical pseudo-metric / Increments of Xt : Define a “distance pseudo-metric” on T

using the r. process Xt :

dX (t, s) := ||Xt − Xs ||L2 , where ||Z ||L2 :=
√

E [Z2]

dX (., .) is a pseudo-metric in general because d(t, s) = 0 does not imply t = s.
The book often uses ||Xt − Xs ||2 at various places but all of it should be ||Xt − Xs ||L2

Gaussian Random Process (GP)

1 Xt , t ∈ T is a GP iff for, any finite subset T0 ⊆ T , (Xt)t∈T0
is a Gaussian r. vector
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2 Equivalently Xt , t ∈ T is a GP iff every finite linear combination
∑

t∈T0
atXt is a Gaussian

r. variable
3 The distribution of a zero-mean GP is completely determined by Σ(t, s) and equivalently

also by d(t, s) (Ex 7.1.8)
4 Canonical GP: For a set T ⊂ ℜn,

Xt = t⊤g , t ∈ T

with g ∼ N (0, In)
5 For a canonical GP, dX (t, s) is a metric.

Bounding E[supt∈T Xt ] using another GP: Slepian and Sudakov-Fernique

1 Assuming zero-mean GP everywhere
2 Slepian’s inequality
3 Sudakov-Fernique inequality: If

∀t, s ∈ T , E [(Xt − Xs)
2] ≤ E [(Yt − Ys)

2]

then
E[sup

t∈T
Xt ] ≤ E[sup

t∈T
Yt ]

4 Application to get a tight bound on E[||A||] for A with i.i.d. Gaussian entries.
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5 Sudakov-minoration inequality: For any ϵ ≥ 0,

E[sup
t∈T

Xt ] ≥ cϵ
√

N (T , dX , ϵ)

where N (T , d , ϵ) is the covering number of T in metric dX (., .) (smallest size of epsilon
net that covers T when the eps-balls are defined using d(.)).

Proof for compact set T : follows from S-F

▶

E[sup
t∈T

Xt ] ≥ E[ sup
t∈epsNet(T )

Xt ]

▶ RHS is sup over a finite set, and hence sup can be replaced by max.
▶ Define Yt = ϵgt/

√
2 with gt ∼ N (0, 1).

▶ For two points t, s ∈ epsNet, the distance is more than epsilon (reason: epsNet is
the smallest possible epsNet – maximal eps-separated subset of T)

▶ Thus, one can show that S-F applies and we get

E[ sup
t∈epsNet

Xt ] ≥ E[ sup
t∈epsNet

Yt ] = (ϵ/
√
2)E[ max

t∈epsNet
gt ] ≥ cϵ

√
logN (T , dX , ϵ)

▶ Last inequality follows by Ex 2.5.11 that lower bounds max of indep Gaussian r.v.s
and the fact that |epsNet| = N (T , dX , ϵ)

6 Application to bound covering numbers of the set T in Euclidean distance metric: apply
S-m with Xt = t⊤g , t ∈ T
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Gaussian width

1 G width of set T ⊂ ℜn

w(T ) := E[supt∈T t
⊤g ], g ∼ N (0, In)

Note from above that
w(T ) ≥ cϵ

√
logN (T , ϵ)

2 Properties : TBD
3 Clearly w(c1T ) = c1w(T )
4 Relation to spherical width: roughly w(T ) ≈

√
nws(T )

5 Define diam(T )
6 Examples: computing or upper/lower bounding Gaussian width of unit ball and sphere, of

unit ell-1 ball

Chaining: Dudley’s inequality (Chap 8.1)

1 TBD
2 Sudakov-minor tells us Dudley is not tight

Applications

1 Application to get a tight bound on E[||A||] for A with i.i.d. Gaussian entries.
2 By Sudakov-minor,

w(T ) ≥ cϵ
√

logN (T , ϵ)

3 Sudakov-minor tells us that Dudley is not tight
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4 G width is used to quantify sample complexity of sparse recovery and many similar

problems: see Theorem 10.5.1 Proof of this result :

▶ This result follows from Escape from Mesh result of Sec 9.4,
▶ which, in turn, uses Corollary 8.6.2/8.6.3 (Talagrand’s comparison inequality).
▶ Proof of Corollary 8.6.2/8.6.3: uses a generic chaining bound (Thm 8.5.3), and

lower bound of Theorem 8.6.1
▶ Proof of lower bound of Theorem 8.6.1 uses a multi-scale version of Sudakov-minor.
▶ Cor 8.6.2, 8.6.3: Xt is a zero-mean subG process, Yt is zero-mean GP. If

∀t, s ∈ T , ||Xt − Xs ||ψ2
≤ KdY (t, s), dY (t, s) := ||Yt − Ys ||L2

Then,
E[sup

t∈T
Xt ] ≤ CKE[sup

t∈T
Yt ]

Pick Yt = t⊤g (canonical GP), then the result becomes: If

∀t, s ∈ T , ||Xt − Xs ||ψ2
≤ K ||t − s||,

Then,
E[sup

t∈T
Xt ] ≤ CKw(T )

▶ In summary, the sparse recovery sample complexity guarantee uses

⋆ Gaussian width and upper bound on it for ell-1 ball
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⋆ a difficult multi-scale version of Sudakov-minor (proof of Sudakov-minor uses
S-F)

⋆ a generic chaining result (proof of Dudley introduces the chaining idea)

Proof sketches for Slepian and S-F: Gaussian interpolation idea

1 TBD
2 S-F: same overall approach, pick fβ(x) :=??
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