## Random Processes, Gaussian Width, Chaining High Dim Probability & Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

<ロト <部ト <注入 <注下 = 正

500

## Random Process

- A r. process is a (possibly uncountably infinite) collection of r. variables X<sub>t</sub>, t ∈ T. The set T can be a subset of R<sup>n</sup>.
  - ▶ In classical examples, the set *T* is a subset of ℜ and often denotes the time index continuous time or discrete time
    - ★ If T is a finite set, say  $T = \{1, 2, ..., n\}$ , then we get a r. vector in  $\Re^n$ .
    - \* If T is set of integers, then we often refer to  $X_t$  as a r. sequence
    - \* Brownian motion:  $T = \{t \ge 0\}$ ,  $X_t$  continuous almost surely, and  $X_t X_s \sim \mathcal{N}(0, t s)$
  - ▶ When  $T \subseteq \Re^n$ : we often use the term random field, e.g., water temperature at different locations on earth
- 2 Assume zero mean,  $\mathbb{E}[X_t] = 0$  for all  $t \in T$ .

Sovariance function  $\Sigma(t, s) := cov(X_t, X_s)$ 

**Canonical pseudo-metric** / Increments of  $X_t$ : Define a "distance pseudo-metric" on T using the r. process  $X_t$ :

 $d_X(.,.)$  is a pseudo-metric in general because d(t,s) = 0 does not imply t = s. The book often uses  $||X_t - X_s||_2$  at various places but all of it should be  $||X_t - X_s||_{L^2}$ Gaussian Random Process (GP)

**1**  $X_t, t \in T$  is a GP iff for, any finite subset  $T_0 \subseteq T$ ,  $(X_t)_{t \in T_0}$  is a Gaussian r. vector

イロト 不得 トイラト イラト 二日

- **2** Equivalently  $X_t, t \in T$  is a GP iff every finite linear combination  $\sum_{t \in T_0} a_t X_t$  is a Gaussian r. variable
- **3** The distribution of a zero-mean GP is completely determined by  $\Sigma(t, s)$  and equivalently also by d(t, s) (Ex 7.1.8)
- Canonical GP: For a set  $T \subset \Re^n$ ,

$$X_t = t^{\top}g, t \in T$$

with  $g \sim \mathcal{N}(0, I_n)$ Solution For a canonical GP,  $d_X(t, s)$  is a metric.

Bounding  $\mathbb{E}[\sup_{t \in T} X_t]$  using another GP: Slepian and Sudakov-Fernique

- Assuming zero-mean GP everywhere
- Slepian's inequality
- Sudakov-Fernique inequality: If

$$\forall t,s \in T, \ E[(X_t - X_s)^2] \leq E[(Y_t - Y_s)^2]$$

then

$$\mathbb{E}[\sup_{t\in T} X_t] \leq \mathbb{E}[\sup_{t\in T} Y_t]$$

4 Application to get a tight bound on  $\mathbb{E}[||A||]$  for A with i.i.d. Gaussian entries.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

**5** Sudakov-minoration inequality: For any  $\epsilon \geq 0$ ,

$$\mathbb{E}[\sup_{t\in\mathcal{T}}X_t]\geq c\epsilon\sqrt{\mathcal{N}(\mathcal{T},d_X,\epsilon)}$$

where  $\mathcal{N}(\mathcal{T}, d, \epsilon)$  is the covering number of  $\mathcal{T}$  in metric  $d_X(.,.)$  (smallest size of epsilon net that covers  $\mathcal{T}$  when the eps-balls are defined using d(.)).

Proof for compact set T: follows from S-F

$$\mathbb{E}[\sup_{t \in T} X_t] \geq \mathbb{E}[\sup_{t \in epsNet(T)} X_t]$$

- RHS is sup over a finite set, and hence sup can be replaced by max.
- Define  $Y_t = \epsilon g_t / \sqrt{2}$  with  $g_t \sim \mathcal{N}(0, 1)$ .
- For two points t, s ∈ epsNet, the distance is more than epsilon (reason: epsNet is the smallest possible epsNet maximal eps-separated subset of T)
- Thus, one can show that S-F applies and we get

$$\mathbb{E}[\sup_{t \in epsNet} X_t] \geq \mathbb{E}[\sup_{t \in epsNet} Y_t] = (\epsilon/\sqrt{2})\mathbb{E}[\max_{t \in epsNet} g_t] \geq c\epsilon\sqrt{\log \mathcal{N}(\mathcal{T}, d_X, \epsilon)}$$

• Last inequality follows by Ex 2.5.11 that lower bounds max of indep Gaussian r.v.s and the fact that  $|epsNet| = \mathcal{N}(T, d_X, \epsilon)$ 

S-m with  $X_t = t^\top g$ ,  $t \in T$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Gaussian width

$$w(T) := \mathbb{E}[sup_{t \in T}t^{\top}g], g \sim \mathcal{N}(0, \mathbf{I}_n)$$

Note from above that

$$w(T) \geq c\epsilon \sqrt{\log \mathcal{N}(T, \epsilon)}$$

Properties : TBD

- 3 Clearly  $w(c_1T) = c_1w(T)$
- 4 Relation to spherical width: roughly  $w(T) \approx \sqrt{n} w_s(T)$
- Define diam(T)
- 6 Examples: computing or upper/lower bounding Gaussian width of unit ball and sphere, of unit ell-1 ball

Chaining: Dudley's inequality (Chap 8.1)



2 Sudakov-minor tells us Dudley is not tight

## Applications



Application to get a tight bound on E[||A||] for A with i.i.d. Gaussian entries.

By Sudakov-minor,

$$w(T) \ge c\epsilon \sqrt{\log \mathcal{N}(T, \epsilon)}$$

Sudakov-minor tells us that Dudley is not tight

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

G width is used to quantify sample complexity of sparse recovery and many similar problems: see Theorem 10.5.1 Proof of this result :

- This result follows from Escape from Mesh result of Sec 9.4,
- which, in turn, uses Corollary 8.6.2/8.6.3 (Talagrand's comparison inequality).
- Proof of Corollary 8.6.2/8.6.3: uses a generic chaining bound (Thm 8.5.3), and lower bound of Theorem 8.6.1
- ▶ Proof of lower bound of Theorem 8.6.1 uses a multi-scale version of Sudakov-minor.
- Cor 8.6.2, 8.6.3:  $X_t$  is a zero-mean subG process,  $Y_t$  is zero-mean GP. If

$$\forall t, s \in T, ||X_t - X_s||_{\psi_2} \leq K d_Y(t, s), d_Y(t, s) := ||Y_t - Y_s||_{L^2}$$

Then,

$$\mathbb{E}[\sup_{t\in T} X_t] \leq CK\mathbb{E}[\sup_{t\in T} Y_t]$$

Pick  $Y_t = t^{\top}g$  (canonical GP), then the result becomes: If

$$\forall t, s \in T, ||X_t - X_s||_{\psi_2} \leq K||t - s||,$$

Then,

$$\mathbb{E}[\sup_{t\in T} X_t] \leq CKw(T)$$

- In summary, the sparse recovery sample complexity guarantee uses
  - ★ Gaussian width and upper bound on it for ell-1 ball

Namrata Vaswani (Iowa State U.)

イロト 不得下 イヨト イヨト 二日

- ★ a difficult multi-scale version of Sudakov-minor (proof of Sudakov-minor uses S-F)
- ★ a generic chaining result (proof of Dudley introduces the chaining idea)

Proof sketches for Slepian and S-F: Gaussian interpolation idea

TBD

2 S-F: same overall approach, pick  $f_{\beta}(x) := ??$ 

イロト 不得下 イヨト イヨト 二日

bb I

Namrata Vaswani (Iowa State U.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶