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Random Process

@ A r. process is a (possibly uncountably infinite) collection of r. variables X¢, t € T. The
set T can be a subset of R".

> In classical examples, the set T is a subset of ® and often denotes the time index -
continuous time or discrete time
* If T is a finite set, say T = {1,2,..., n}, then we get a r. vector in R".
* If T is set of integers, then we often refer to X; as a r. sequence
* Brownian motion: T = {t > 0}, X; continuous almost surely, and
Xe — Xs ~ N(0,t —s5)
> When T C R": we often use the term random field, e.g., water temperature at
different locations on earth
@ Assume zero mean, E[X;] =0 forall t € T.
© Covariance function X (t,s) := cov(Xt, Xs)

@ Canonical pseudo-metric / Increments of X;: Define a “distance pseudo-metric” on T
using the r. process X;:

dx(t,s) := || Xt — Xs||2, where ||Z]];2 := 1/ E[Z?]

dx(.,.) is a pseudo-metric in general because d(t,s) = 0 does not imply t = s.
The book often uses || X; — Xs||2 at various places but all of it should be [|X; — X;]||,2
Gaussian Random Process (GP)

@ X:,t € T isa GP iff for, any finite subset To C T, (Xt)teT, is a Gaussian r. vector
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Equivalently X¢, t € T is a GP iff every finite linear combination ar Xt is a Gaussian
te Ty
r. variable
© The distribution of a zero-mean GP is completely determined by ¥(t, s) and equivalently
also by d(t,s) (Ex 7.1.8)
@ Canonical GP: For aset T C R”,

Xe=t'g, teT

with g ~ N(0, I5)
© For a canonical GP, dx(t,s) is a metric.

Bounding E[sup.c 1 X:] using another GP: Slepian and Sudakov-Fernique

@ Assuming zero-mean GP everywhere
@ Slepian’s inequality

Sudakov-Fernique inequality: If
Vt,s € T, E[(Xe — Xs)] < E[(Ye — Y5)*]

then
E[sup X;] < E[sup Y]
teT teT

@ Application to get a tight bound on E[||A||] for A with i.i.d. Gaussian entries.
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© Sudakov-minoration inequality: For any € > 0,
E[sup Xt] > ce/N(T,dx,¢€)
teT

where (T, d, €) is the covering number of T in metric dx(.,.) (smallest size of epsilon
net that covers T when the eps-balls are defined using d(.)).
Proof for compact set T: follows from S-F

>

Efsup X:] > E[  sup X
teT t&epsNet(T)

> RHS is sup over a finite set, and hence sup can be replaced by max.

Define Y: = eg:/+/2 with gr ~ N(0,1).

> For two points t, s € epsNet, the distance is more than epsilon (reason: epsNet is
the smallest possible epsNet — maximal eps-separated subset of T)

» Thus, one can show that S-F applies and we get

E[ sup X¢] >E[ sup Yi]=(¢/V2)E] R gt] > ce/log N(T,dx,¢€)

tEepsNet tEepsNet

v

> Last inequality follows by Ex 2.5.11 that lower bounds max of indep Gaussian r.v.s
and the fact that |epsNet| = N(T,dx,€)

@ Application to bound covering numbers of the set T in Euclidean distance metric: apply
S-mwith X, =tTg, teT
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Gaussian width
@ G width of set T C R"

w(T) :=E[supcrt' g, &~N(0,1n)

Note from above that

w(T) > ce/log N(T,¢)

Q Propertles: TBD
© Clearly w(aiT) = aw(T)
@ Relation to spherical width: roughly w(T) ~ /nws(T)
@ Define diam(T)
@ Examples: computing or upper/lower bounding Gaussian width of unit ball and sphere, of
unit ell-1 ball
Chaining: Dudley’s inequality (Chap 8.1)
@ TBD
@ Sudakov-minor tells us Dudley is not tight
Applications

@ Application to get a tight bound on E[||A||] for A with i.i.d. Gaussian entries.

@ By Sudakov-minor,
w(T) > ce/log N(T,¢)

© Sudakov-minor tells us that Dudley is not tight
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@ G width is used to quantify sample complexity of sparse recovery and many similar
problems: see Theorem 10.5.1 Proof of this result :

» This result follows from Escape from Mesh result of Sec 9.4,

» which, in turn, uses Corollary 8.6.2/8.6.3 (Talagrand’s comparison inequality).

» Proof of Corollary 8.6.2/8.6.3: uses a generic chaining bound (Thm 8.5.3), and
lower bound of Theorem 8.6.1

> Proof of lower bound of Theorem 8.6.1 uses a multi-scale version of Sudakov-minor.

> Cor 8.6.2, 8.6.3: X; is a zero-mean subG process, Y; is zero-mean GP. If

Vt,se T, HXf 7X5||’L/Jz < KdY(tr 5)7 dY(t7 S) = HYf - Y5||L2
Then,
E[sup Xt] < CKE[sup Y]
teT teT
Pick Y; = tT g (canonical GP), then the result becomes: If
Vt75 S T? HXf 7X5||1/)2 S KHtf 5”7

Then,

E[sup X¢] < CKw(T)
teT

» In summary, the sparse recovery sample complexity guarantee uses

* Gaussian width and upper bound on it for ell-1 ball
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S-F)

Proof sketches for Slepian and S-F: Gaussian interpolation idea
@ TBD

* a difficult multi-scale version of Sudakov-minor (proof of Sudakov-minor uses
* a generic chaining result (proof of Dudley introduces the chaining idea)

@ S-F: same overall approach, pick fg(x) :=77?
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