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Quadratic Forms / Chaos I

General

1 Chaos: X⊤AX with X being a r. vector with independent, zero-mean, coordinates.
2 Clearly E[Chaos] = trace(A) if E[X 2

i ] = 1 (unit variance also). Without this,
E[Chaos] =

∑
i ai iE[X 2

i ]
3 Concentration bounds not so easy; use the ”decoupling trick”: replace Chaos by X⊤AX ′

where X ′ is an indep copy of X .
4 Jensen’s inequality: for convex F, F (E[X ]) ≤ E[F (X )] (recall)

Main results

1 Theorem 6.1.1 / Remark 6.1.3: Decoupling
Let X be an n-length vector with independent zero-mean coordinates and A a matrix with
ZEROS on DIAGONAL. Then for every convex func F ,

E[F (X⊤AX )] ≤ E[F (4X⊤AX ′)]

(NOTE: no subG or other distribution assumption needed)
(NOTE 2: I had a MAJOR MISTAKE in DECOUPLING RESULT – NOW FIXED -
RHS expression is also E[F (.)] : the expectation is outside)
More generally, for any A,

E[F (
∑
i ̸=j

aijXiXj )] ≤ E[F (
∑
ij

aijXiX
′
j )] = E[F (4X⊤AX ′)]

Do Ex 6.1.4, 6.1.5: easy modifications of above proof.
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Quadratic Forms / Chaos II

2 Hanson-Wright inequality: concen bound for chaos: this requires subGaussian distrib
Let X be a n-length vector with indep zero-mean, subG-K coordinates. Then

Pr(|X⊤AX − E[X⊤AX ]| ≥ t) ≤ 2 exp

(
−min

(
t2

K4∥A∥2F
,

t2

K2∥A∥

))

K : max of all subG norms of all vectors.
W.l.o.g. can assume K ≥ 1: reason is simpler than the one I earlier gave: for subG, we
always use an upper bound on subG norm, so even the true max subG norm is 0.2, it is
upper bounded by 1. We use K ≥ 1 in the last step to argue that K4 ≥ K2

1 Application: Bound ∥BX∥ for a given matrix B and for a r vector X having
independent, zero-mean, unit variance subG(K) entries (Theorem 6.3.2). Idea:
∥BX∥2 = X⊤(B⊤B)X = chaos with A ≡ B⊤B.

3 Lemma 6.1.2: Let Y ,Z indep and E[Z ] = 0. Then for every convex F (.),

F (Y ) ≤ E[F (Y + Z)|Y ]

and so
E[F (Y )] ≤ E[F (Y + Z)]

Proof: F (Y ) = F (Y + E[Z ]) = F (Y + E[Z |Y ]) = F (E[Y + Z |Y ]) ≤ E[F (Y + Z)|Y ]
Use EZ=0; indep of Y ,Z ; cond on Y , Y is constant; Jensen.
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Quadratic Forms / Chaos III

4 Lemma 6.2.2: MGF of Gaussian chaos
Let G ,G ′ are independent and each is standard Gaussian vector. Then

E[exp(λG⊤AG ′)] ≤ exp(Cλ2∥A∥2F ), ∀ |λ| < c/∥A∥

Proof: write SVD of A, use rotation invar of Gaussian, condition on X ′ and use expression
for scalar Gaussians’ MGF, finally use the fact that Gaussian-squared is sub-expo and use
sub-expo property (MGF bound). Recall that ∥A∥2F is sum of its singular values while ∥A∥
is its max singular value.

5 Lemma 6.2.3: Comparison lemma: MGF of subG chaos is upper bounded by that of
Gaussian chaos
Let X ,X ′ independent, zero-mean, subG(K) r vectors. Then,

E[exp(λX⊤AX ′)] ≤ E[exp(λ(CK2)G⊤AG ′)]

where G ,G ′ are independent and both are standard Gaussian r. vectors.

Proof: Recall that MGF of a standard Gaussian is MGF (s) = exp(s2/2), and that of a

zero mean variance v Gaussian is exp(s2v/2).
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Quadratic Forms / Chaos IV

1 First condition on X ′, and use subG property followed by comparing with above to
show that

EX |X ′ [exp(λX⊤AX ′)] ≤ exp(λ2(CK2)∥AX ′∥2) = EG |X ′ [exp((λ
√
2CK)(G⊤AX ′)]

The last equality follows by using the fact that (G⊤AX ′) is zero-mean Gaussian
with variance v = ∥AX ′∥2 and comparing second expression with its MGF

2 Thus,

E[exp(λX⊤AX ′)] = EX ′EX |X ′ [exp(λX⊤AX ′)]

≤ EX ′EG |X ′ [exp((λ
√
2CK)(G⊤AX ′)]

= EGEX ′|G [exp((λ
√
2CK)(X ′⊤AG)]

≤ EG [exp((λ
√
2CK)2(CK2)∥AG∥2]

= EG

[
EG ′|G

[
exp

(√
2(λ

√
2CK)2(CK2)G ′⊤AG

)]]
= E[exp(λ(C̃K2)G ′⊤AG)]

second row used previous step, third row is Fubini, fourth row used subG property of
X ′, fifth row compares with scalar Gaussian MGF of G ′⊤AG given G (this is scalar
Gaussian with variance ∥AG∥2), last row simplifies
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Quadratic Forms / Chaos V

Proof of Decoupling result

1 Step 1: replace chaos by ”partial chaos” (sum of disjoint sets of i,j)

1 Let I = {i : δi = 1} and δi
iid∼ Bern(1/2) and indep of X . Clearly

Eδ[δi (1− δj )] = 1/4 for i ̸= j .
2 Clearly I c = {j : δj = 0} = {j : 1− δj = 1} and so δi (1− δj ) ̸= 0 only if i ∈ I , j ∈ I c .
3 Fix X first. Then,

∑
i ̸=j aijXiXj =

∑
i ̸=j 4E[δi (1− δj )]aijXiXj =

Eδ[
∑

i ̸=j 4δi (1− δj )aijXiXj ] = EI [
∑

i∈I ,j∈I c 4δi (1− δj )aijXiXj ]. Thus,

∑
i ̸=j

aijXiXj = EI [
∑

i∈I ,j∈I c

4δi (1− δj )aijXiXj ] = EI [
∑

i∈I ,j∈I c

4aijXiXj ]

4 Apply F , apply Jensen to get,

F (
∑
i ̸=j

aijXiXj ) = F (EI [
∑

i∈I ,j∈I c

4aijXiXj ]) ≤ EI [F (
∑

i∈I ,j∈I c

4aijXiXj )]

5 Take E[.] over X , then use Fubini to get

EX [F (
∑
i ̸=j

aijXiXj )] ≤ EX [EI [F (
∑

i∈I ,j∈I c

4aijXiXj )]] = EI [EX [F (
∑

i∈I ,j∈I c

4aijXiXj )]]
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Quadratic Forms / Chaos VI

6 Since average ≤ max , there is at least one I0 s.t. the following is true

EI [EX [F (
∑

i∈I ,j∈I c

4aijXiXj )]] ≤ max
I

EX [F (
∑

i∈I ,j∈I c

4aijXiXj )]]

= EX [F (
∑

i∈I0,j∈I c0

4aijXiXj )]

Fix this I0 for rest of the proof.

Thus, so far we have shown that

EX [F (
∑
i ̸=j

aijXiXj )] ≤ EX [F (
∑

i∈I0,j∈I c0

4aijXiXj )]

2 Replace the Xj by X ′
j

1 The RHS of above is a function of XI0 ,XI c0
, i.e. RHS = g(XI0 ,XI c0

). Since XI0 ,XI c0
are independent of each other, we can replace the latter by X ′

I c0
inside the expected

value, i.e.,
EX [F (

∑
i∈I0,j∈I c0

4aijXiXj )] = EX [F (
∑

i∈I0,j∈I c0

4aijXiX
′
j )]
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Quadratic Forms / Chaos VII

3 Complete partial chaos to chaos by conditioning on W := {XI0 ,X
′
I c0
} and then using

Lemma

1 Let Y :=
∑

i∈I0,j∈I c0
4aijXiX

′
j , Z1 :=

∑
i∈I0,j∈I0

4aijXiX
′
j , Z2 :=

∑
i∈I c0 ,j∈I0

4aijXiX
′
j ,

Z3 :=
∑

i∈I c0 ,j∈I c0
4aijXiX

′
j Notice that

∑
i,j

4aijXiX
′
j = Y + Z1 + Z2 + Z3

2 Notice also that conditioned on W , Y = h(W ) is a constant, the randomness in Z1

is due to X ′
I0

(which is indep of W), that in Z2 is due to XI c0
,X ′

I0
(which is indep of

W), that is Z3 is due to XI c0
(which is indep of W), while Y = h(W ). Thus given

W all the Zi are indep of Y . And E[Zi |W ] = 0 for all three of them.
Thus, given W , Z ≡ Z1 + Z2 + Z3 has zero mean and is indep of Y . This means we
can apply the Lemma 6.1.2 conditioned on W

E[F (Y )|W ] ≤ E[F (Y + Z)|W ] = E[F (Y + Z1 + Z2 + Z3)|W ]
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Quadratic Forms / Chaos VIII

3 Now taking expectation over W ,

E[F (Y )] ≤ E[F (Y + Z1 + Z2 + Z3)]

or
EX [F (

∑
i∈I0,j∈I c0

4aijXiX
′
j )] ≤ E[F (

∑
i,j

4aijXiX
′
j )]

Combining the above three steps,

EX [F (
∑
i ̸=j

aijXiXj )] ≤ E[F (
∑
i,j

4aijXiX
′
j )]

Proof of Hanson-Wright

1 Split the probability into diagonal and off-diagonal (cross) terms.
2 Diagonal term: is a sum of independent sub-expo terms which we have handled before.

Use sub-expo Bern inequality.
3 Off-diagonal term: bound using decoupling result, comparison lemma, MGF of Gaussian

chaos lemma.
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Symmetrization I

1 Basics: X is symmetric means X ,−X have same distribution. This is for zero-mean
setting.

More generally, we can say Y is symmetric about its mean if X = Y − E[Y ] is a

symmetric r.v.

1 Let X be any rv and ζ is SymBern. Then ζX and ζ|X | have same distribution.
2 If X is symmetric, then it has same the distrib as ζX or ζ|X |
3 For any rv X , let X ′ be independent copy. Then X − X ′ is symmetric.

1 Thus, X − X ′ and ζ(X − X ′) have same distribution.

4 Let X = [X1,X2...XN ]
′ be a r vector and X ′ its indep copy. Let ζ be a vector of

indep symBern rvs.

1 By earlier claims, Xi −X ′
i are symmetric and have same distrib as ζi (Xi −X ′

i )
2 If the different Xi s are indep, then Xi − X ′

i s are indep and so are ζi (Xi − X ′
i ).

In this case, X − X ′ has same distrib as ζ. ∗ (X − X ′).
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Symmetrization II

2 Lemma 6.4.2 on Symmetrization (check that it also works for sums of random matrices)
Let X1,X2, ..XN be independent zero-mean r. vectors and ϵ1, ϵ2, ..ϵN be indep symBern
rvs indep of the Xi s.

0.5E[∥
∑
i

ϵiXi∥] ≤ E[∥
∑
i

Xi∥] ≤ 2E[∥
∑
i

ϵiXi∥]

Proof: uses above facts and Lemma 6.1.2: F (Y ) ≤ E[F (Y + E[Z ])|Y ] if Y ,Z indep and
F convex , applied for F (.) = ∥.∥.

1 All the exercises are interesting

3 Theorem 6.5.1: bounding norm of r. matrix with not identically distrib entries.
Let B is n x n symmetric matrix with entries on and above diagonal being indep and zero
mean. Then

E[∥B∥] ≤ C
√

log nE[max
i

∥B i∥]

In above B i is i-th row of B.

1 This is tight up to log factor since ∥B∥ ≥ maxi ∥B i∥ and so this is true for their
expected values too.

2 Compare this with Cor 4.4.8

⋆ Cor 4.4.8 needs that the entries are subG-K. This result does not.
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Symmetrization III

⋆ The above result gives a tighter bound than Cor 4.4.8 (whose bound is
CK

√
n) for when different rows have very different norms

3 Extend to non-symmetric or rectangular matrices: uses ”dilation” trick: For any
matrix G , define B = [0,G ;G⊤, 0], can show easily that B is symmetric with
eigenvalues ±σi (G).

Proof:

1 symmetrization lemma and matrix Khintchine inequality Ex 5.4.13 which states

E[∥
∑
i

ϵiAi∥] ≤ C
√

1 + log n

√
∥
∑
i

A2
i ∥

here Ai are deterministic matrices.
2 Split B as

B =
∑
i≤j

Zij

where Zij = Bij (eie
⊤
j + eje

⊤
i ) for i < j and = Biieie

⊤
i for i = j .

3 Clearly these matrices are independent. So by symmetrization lemma,

E[∥B∥] = E[∥
∑
i≤j

Zij∥] ≤ 2E[∥
∑
i≤j

ϵijZij∥]
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Symmetrization IV

4 Condition on Zij , apply matrix Khintchine, then take average over Zij to conclude

E[∥B∥] ≤ 2E[∥
∑
i≤j

ϵijZij∥] ≤ C
√

log nE[
√

∥
∑
ij

Z2
ij ∥]

Simplify and argue that
∑

ij Z
2
ij is a diagonal matrix, thus its norm is its max

magnitude entry.

4 Matrix Khintchine proof:

1 follows from matrix Bernstein and integral identity.

5 Matrix completion application Theorem 6.6.1 : does not assume incoherence. Let X be
nxn with rank r .
Let X̂ be rank r approx of Y = PΩ(X ) where Ω is the observed entries set generated using
the Bern(p) model. Then,

E[
1

n
∥X̂− X∥F ] ≤ C

√
r log n

pn2
∥X∥max

1 If we use incoherence assumption, then from standard results, ∥X∥max ≤ (µr/n)∥X∥

Proof:
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Symmetrization V

1 E[Y ] = pX , add subtract Y /p, use rank r approx property of X̂,
2 then we are left to bound 2E[∥Y − pX∥].
3 To do this, use rectangular version of previous theorem.
4 Then, for a fixed i , bound the row or column norms using scalar bounded Bernstein

or Chernoff inequality, union bound for their max, then integral identity to convert
high probab bound to bound on E[.]. See Ex 6.6.2

5 Finally pass to Frob norm by using the fact that X̂− X is at most rank 2r .
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