# Quadratic forms and Symmetrization, Chap 6 

High Dim Probability \& Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

## Quadratic Forms / Chaos I

General
(1) Chaos: $X^{\top} \mathbf{A} X$ with $X$ being a $r$. vector with independent, zero-mean, coordinates.
(2) Clearly $\mathbb{E}[$ Chaos $]=\operatorname{trace}(\mathbf{A})$ if $\mathbb{E}\left[X_{i}^{2}\right]=1$ (unit variance also). Without this, $\mathbb{E}[$ Chaos $]=\sum_{i} a_{i} \mathbb{E}\left[X_{i}^{2}\right]$
(3) Concentration bounds not so easy; use the "decoupling trick" : replace Chaos by $X^{\top} A X^{\prime}$ where $X^{\prime}$ is an indep copy of $X$.
(4) Jensen's inequality: for convex $\mathrm{F}, F(\mathbb{E}[X]) \leq \mathbb{E}[F(X)]$ (recall)

Main results
(1) Theorem 6.1.1 / Remark 6.1.3: Decoupling

Let $X$ be an $n$-length vector with independent zero-mean coordinates and $\mathbf{A}$ a matrix with ZEROS on DIAGONAL. Then for every convex func $F$,

$$
\mathbb{E}\left[F\left(X^{\top} \mathbf{A} X\right)\right] \leq \mathbb{E}\left[F\left(4 X^{\top} \mathbf{A} X^{\prime}\right)\right]
$$

(NOTE: no subG or other distribution assumption needed)
(NOTE 2: I had a MAJOR MISTAKE in DECOUPLING RESULT - NOW FIXED RHS expression is also $\mathbb{E}[F()$.$] : the expectation is outside)$ More generally, for any A,

$$
\mathbb{E}\left[F\left(\sum_{i \neq j} a_{i j} X_{i} X_{j}\right)\right] \leq \mathbb{E}\left[F\left(\sum_{i j} a_{i j} X_{i} X_{j}^{\prime}\right)\right]=\mathbb{E}\left[F\left(4 X^{\top} \mathbf{A} X^{\prime}\right)\right]
$$

Do Ex 6.1.4, 6.1.5: easy modifications of above proof.

## Quadratic Forms / Chaos II

(2) Hanson-Wright inequality: concen bound for chaos: this requires subGaussian distrib Let $X$ be a $n$-length vector with indep zero-mean, subG- $K$ coordinates. Then

$$
\operatorname{Pr}\left(\left|X^{\top} \mathbf{A} X-\mathbb{E}\left[X^{\top} \mathbf{A} X\right]\right| \geq t\right) \leq 2 \exp \left(-\min \left(\frac{t^{2}}{K^{4}\|A\|_{F}^{2}}, \frac{t^{2}}{K^{2}\|A\|}\right)\right)
$$

$K$ : max of all subG norms of all vectors.
W.I.o.g. can assume $K \geq 1$ : reason is simpler than the one I earlier gave: for subG, we always use an upper bound on subG norm, so even the true max subG norm is 0.2 , it is upper bounded by 1. We use $K \geq 1$ in the last step to argue that $K^{4} \geq K^{2}$
(1) Application: Bound $\|\mathbf{B} X\|$ for a given matrix $\mathbf{B}$ and for a $r$ vector $X$ having independent, zero-mean, unit variance sub $G(K)$ entries (Theorem 6.3.2). Idea: $\|\mathbf{B} X\|^{2}=X^{\top}\left(\mathbf{B}^{\top} \mathbf{B}\right) X=$ chaos with $\mathbf{A} \equiv \mathbf{B}^{\top} \mathbf{B}$.
(3) Lemma 6.1.2: Let $Y, Z$ indep and $\mathbb{E}[Z]=0$. Then for every convex $F($.$) ,$

$$
F(Y) \leq \mathbb{E}[F(Y+Z) \mid Y]
$$

and so

$$
\mathbb{E}[F(Y)] \leq \mathbb{E}[F(Y+Z)]
$$

Proof: $F(Y)=F(Y+\mathbb{E}[Z])=F(Y+\mathbb{E}[Z \mid Y])=F(\mathbb{E}[Y+Z \mid Y]) \leq \mathbb{E}[F(Y+Z) \mid Y]$ Use $E Z=0$; indep of $Y, Z$; cond on $Y, Y$ is constant; Jensen.

## Quadratic Forms / Chaos III

(4) Lemma 6.2.2: MGF of Gaussian chaos

Let $G, G^{\prime}$ are independent and each is standard Gaussian vector. Then

$$
\mathbb{E}\left[\exp \left(\lambda G^{\top} \mathbf{A} G^{\prime}\right)\right] \leq \exp \left(C \lambda^{2}\|\mathbf{A}\|_{F}^{2}\right), \forall|\lambda|<c /\|A\|
$$

Proof: write SVD of A, use rotation invar of Gaussian, condition on $X^{\prime}$ and use expression for scalar Gaussians' MGF, finally use the fact that Gaussian-squared is sub-expo and use sub-expo property (MGF bound). Recall that $\|\mathbf{A}\|_{F}^{2}$ is sum of its singular values while $\|\mathbf{A}\|$ is its max singular value.
(5) Lemma 6.2.3: Comparison lemma: MGF of subG chaos is upper bounded by that of Gaussian chaos
Let $X, X^{\prime}$ independent, zero-mean, $\operatorname{sub} G(K) r$ vectors. Then,

$$
\mathbb{E}\left[\exp \left(\lambda X^{\top} \mathbf{A} X^{\prime}\right)\right] \leq \mathbb{E}\left[\exp \left(\lambda\left(C K^{2}\right) G^{\top} \mathbf{A} G^{\prime}\right)\right]
$$

where $G, G^{\prime}$ are independent and both are standard Gaussian r. vectors.
Proof: Recall that MGF of a standard Gaussian is $\operatorname{MGF}(s)=\exp \left(s^{2} / 2\right)$, and that of a zero mean variance $v$ Gaussian is $\exp \left(s^{2} v / 2\right)$.

## Quadratic Forms / Chaos IV

(1) First condition on $X^{\prime}$, and use subG property followed by comparing with above to show that

$$
\mathbb{E}_{X \mid X^{\prime}}\left[\exp \left(\lambda X^{\top} \mathbf{A} X^{\prime}\right)\right] \leq \exp \left(\lambda^{2}\left(C K^{2}\right)\left\|\mathbf{A} X^{\prime}\right\|^{2}\right)=\mathbb{E}_{G \mid X^{\prime}}\left[\exp \left((\lambda \sqrt{2 C} K)\left(G^{\top} \mathbf{A} X^{\prime}\right)\right]\right.
$$

The last equality follows by using the fact that ( $G^{\top} \mathbf{A} X^{\prime}$ ) is zero-mean Gaussian with variance $v=\left\|\mathbf{A} X^{\prime}\right\|^{2}$ and comparing second expression with its MGF
(2) Thus,

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda X^{\top} \mathbf{A} X^{\prime}\right)\right] & =\mathbb{E}_{X^{\prime}} \mathbb{E}_{X \mid X^{\prime}}\left[\exp \left(\lambda X^{\top} \mathbf{A} X^{\prime}\right)\right] \\
& \leq \mathbb{E}_{X^{\prime}} \mathbb{E}_{G \mid X^{\prime}}\left[\exp \left((\lambda \sqrt{2 C} K)\left(G^{\top} \mathbf{A} X^{\prime}\right)\right]\right. \\
& =\mathbb{E}_{G} \mathbb{E}_{X^{\prime} \mid G}\left[\exp \left((\lambda \sqrt{2 C} K)\left(X^{\prime \top} \mathbf{A} G\right)\right]\right. \\
& \leq \mathbb{E}_{G}\left[\exp \left((\lambda \sqrt{2 C} K)^{2}\left(C K^{2}\right)\|\mathbf{A} G\|^{2}\right]\right. \\
& =\mathbb{E}_{G}\left[\mathbb{E}_{G^{\prime} \mid G}\left[\exp \left(\sqrt{2(\lambda \sqrt{2 C} K)^{2}\left(C K^{2}\right)} G^{\prime \top} \mathbf{A} G\right)\right]\right] \\
& =\mathbb{E}\left[\exp \left(\lambda\left(\tilde{C} K^{2}\right) G^{\prime \top} \mathbf{A} G\right)\right]
\end{aligned}
$$

second row used previous step, third row is Fubini, fourth row used subG property of $X^{\prime}$, fifth row compares with scalar Gaussian MGF of $G^{\prime \top} \mathbf{A} G$ given $G$ (this is scalar Gaussian with variance $\|\mathbf{A} G\|^{2}$ ), last row simplifies

## Quadratic Forms / Chaos V

## Proof of Decoupling result

(1) Step 1: replace chaos by "partial chaos" (sum of disjoint sets of $\mathrm{i}, \mathrm{j}$ )
(1) Let $I=\left\{i: \delta_{i}=1\right\}$ and $\delta_{i} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ and indep of $X$. Clearly $\mathbb{E}_{\delta}\left[\delta_{i}\left(1-\delta_{j}\right)\right]=1 / 4$ for $i \neq j$.
(2) Clearly $I^{c}=\left\{j: \delta_{j}=0\right\}=\left\{j: 1-\delta_{j}=1\right\}$ and so $\delta_{i}\left(1-\delta_{j}\right) \neq 0$ only if $i \in I, j \in I^{c}$.

3 Fix $X$ first. Then, $\sum_{i \neq j} a_{i j} X_{i} X_{j}=\sum_{i \neq j} 4 \mathbb{E}\left[\delta_{i}\left(1-\delta_{j}\right)\right] a_{i j} X_{i} X_{j}=$ $\mathbb{E}_{\delta}\left[\sum_{i \neq j} 4 \delta_{i}\left(1-\delta_{j}\right) a_{i j} X_{i} X_{j}\right]=\mathbb{E}_{l}\left[\sum_{i \in l, j \in I^{c}} 4 \delta_{i}\left(1-\delta_{j}\right) a_{i j} X_{i} X_{j}\right]$. Thus,

$$
\sum_{i \neq j} a_{i j} X_{i} X_{j}=\mathbb{E}_{l}\left[\sum_{i \in l, j \in I^{c}} 4 \delta_{i}\left(1-\delta_{j}\right) a_{i j} X_{i} X_{j}\right]=\mathbb{E}_{l}\left[\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right]
$$

(4) Apply $F$, apply Jensen to get,

$$
F\left(\sum_{i \neq j} a_{i j} X_{i} X_{j}\right)=F\left(\mathbb{E}_{l}\left[\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right]\right) \leq \mathbb{E}_{l}\left[F\left(\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]
$$

(5) Take $\mathbb{E}[$.$] over X$, then use Fubini to get

$$
\mathbb{E}_{X}\left[F\left(\sum_{i \neq j} a_{i j} X_{i} X_{j}\right)\right] \leq \mathbb{E}_{X}\left[\mathbb{E}_{l}\left[F\left(\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]\right]=\mathbb{E}_{l}\left[\mathbb{E}_{X}\left[F\left(\sum_{i \in l, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]\right]
$$

## Quadratic Forms / Chaos VI

(6) Since average $\leq \max$, there is at least one $I_{0}$ s.t. the following is true

$$
\begin{aligned}
\mathbb{E}_{l}\left[\mathbb{E}_{X}\left[F\left(\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]\right] & \left.\leq \max _{I} \mathbb{E}_{X}\left[F\left(\sum_{i \in I, j \in I^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]\right] \\
& =\mathbb{E}_{X}\left[F\left(\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]
\end{aligned}
$$

Fix this $I_{0}$ for rest of the proof.
Thus, so far we have shown that

$$
\mathbb{E}_{X}\left[F\left(\sum_{i \neq j} a_{i j} X_{i} X_{j}\right)\right] \leq \mathbb{E}_{X}\left[F\left(\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]
$$

(2) Replace the $X_{j}$ by $X_{j}^{\prime}$
(1) The RHS of above is a function of $X_{I_{0}}, X_{I_{0}^{c}}$, i.e. $R H S=g\left(X_{I_{0}}, X_{I_{0}^{c}}\right)$. Since $X_{I_{0}}, X_{I_{0}^{c}}$ are independent of each other, we can replace the latter by $X_{I_{0}^{c}}^{\prime}$ inside the expected value, i.e.,

$$
\mathbb{E}_{X}\left[F\left(\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}\right)\right]=\mathbb{E}_{X}\left[F\left(\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}^{\prime}\right)\right]
$$

## Quadratic Forms / Chaos VII

(3) Complete partial chaos to chaos by conditioning on $W:=\left\{X_{I_{0}}, X_{I_{0}^{c}}^{\prime}\right\}$ and then using Lemma
(1) Let $Y:=\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}^{\prime}, Z_{1}:=\sum_{i \in I_{0}, j \in I_{0}} 4 a_{i j} X_{i} X_{j}^{\prime}, Z_{2}:=\sum_{i \in I_{0}^{c}, j \in I_{0}} 4 a_{i j} X_{i} X_{j}^{\prime}$, $Z_{3}:=\sum_{i \in I_{0}^{c}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}^{\prime}$ Notice that

$$
\sum_{i, j} 4 a_{i j} X_{i} X_{j}^{\prime}=Y+Z_{1}+Z_{2}+Z_{3}
$$

(2) Notice also that conditioned on $W, Y=h(W)$ is a constant, the randomness in $Z_{1}$ is due to $X_{I_{0}}^{\prime}$ (which is indep of W ), that in $Z_{2}$ is due to $X_{1_{0}}, X_{I_{0}}^{\prime}$ (which is indep of W ), that is $Z_{3}$ is due to $X_{1_{0}^{c}}$ (which is indep of W ), while $Y=h(W)$. Thus given $W$ all the $Z_{i}$ are indep of $Y$. And $\mathbb{E}\left[Z_{i} \mid W\right]=0$ for all three of them.
Thus, given $W, Z \equiv Z_{1}+Z_{2}+Z_{3}$ has zero mean and is indep of $Y$. This means we can apply the Lemma 6.1.2 conditioned on $W$

$$
\mathbb{E}[F(Y) \mid W] \leq \mathbb{E}[F(Y+Z) \mid W]=\mathbb{E}\left[F\left(Y+Z_{1}+Z_{2}+Z_{3}\right) \mid W\right]
$$

## Quadratic Forms / Chaos VIII

(3) Now taking expectation over $W$,

$$
\mathbb{E}[F(Y)] \leq \mathbb{E}\left[F\left(Y+Z_{1}+Z_{2}+Z_{3}\right)\right]
$$

or

$$
\mathbb{E}_{X}\left[F\left(\sum_{i \in I_{0}, j \in I_{0}^{c}} 4 a_{i j} X_{i} X_{j}^{\prime}\right)\right] \leq \mathbb{E}\left[F\left(\sum_{i, j} 4 a_{i j} X_{i} X_{j}^{\prime}\right)\right]
$$

Combining the above three steps,

$$
\mathbb{E}_{X}\left[F\left(\sum_{i \neq j} a_{i j} X_{i} X_{j}\right)\right] \leq \mathbb{E}\left[F\left(\sum_{i, j} 4 a_{i j} X_{i} X_{j}^{\prime}\right)\right]
$$

## Proof of Hanson-Wright

(1) Split the probability into diagonal and off-diagonal (cross) terms.
(2) Diagonal term: is a sum of independent sub-expo terms which we have handled before. Use sub-expo Bern inequality.
(3) Off-diagonal term: bound using decoupling result, comparison lemma, MGF of Gaussian chaos lemma.

## Symmetrization I

(1) Basics: $X$ is symmetric means $X,-X$ have same distribution. This is for zero-mean setting.
More generally, we can say $Y$ is symmetric about its mean if $X=Y-\mathbb{E}[Y]$ is a symmetric r.v.
(1) Let $X$ be any $r v$ and $\zeta$ is SymBern. Then $\zeta X$ and $\zeta|X|$ have same distribution.
(2) If $X$ is symmetric, then it has same the distrib as $\zeta X$ or $\zeta|X|$
(3) For any $\mathrm{rv} X$, let $X^{\prime}$ be independent copy. Then $X-X^{\prime}$ is symmetric.
(1) Thus, $X-X^{\prime}$ and $\zeta\left(X-X^{\prime}\right)$ have same distribution.
(4) Let $X=\left[X_{1}, X_{2} \ldots X_{N}\right]^{\prime}$ be a $r$ vector and $X^{\prime}$ its indep copy. Let $\zeta$ be a vector of indep symBern rvs.
(1) By earlier claims, $X_{i}-X_{i}^{\prime}$ are symmetric and have same distrib as $\zeta_{i}\left(X_{i}-X_{i}^{\prime}\right)$
(2) If the different $X_{i}$ s are indep, then $X_{i}-X_{i}^{\prime}$ s are indep and so are $\zeta_{i}\left(X_{i}-X_{i}^{\prime}\right)$. In this case, $X-X^{\prime}$ has same distrib as $\zeta . *\left(X-X^{\prime}\right)$.

## Symmetrization II

(2) Lemma 6.4.2 on Symmetrization (check that it also works for sums of random matrices) Let $X_{1}, X_{2}, . . X_{N}$ be independent zero-mean r . vectors and $\epsilon_{1}, \epsilon_{2}, . . \epsilon_{N}$ be indep symBern rvs indep of the $X_{i}$ s.

$$
0.5 \mathbb{E}\left[\left\|\sum_{i} \epsilon_{i} X_{i}\right\|\right] \leq \mathbb{E}\left[\left\|\sum_{i} X_{i}\right\|\right] \leq 2 \mathbb{E}\left[\left\|\sum_{i} \epsilon_{i} X_{i}\right\|\right]
$$

Proof: uses above facts and Lemma 6.1.2: $F(Y) \leq \mathbb{E}[F(Y+\mathbb{E}[Z]) \mid Y]$ if $Y, Z$ indep and $F$ convex, applied for $F()=.\|\cdot\|$.
(1) All the exercises are interesting
(3) Theorem 6.5.1: bounding norm of $r$. matrix with not identically distrib entries.

Let $B$ is $\mathrm{n} \times \mathrm{n}$ symmetric matrix with entries on and above diagonal being indep and zero mean. Then

$$
\mathbb{E}[\|B\|] \leq C \sqrt{\log n} \mathbb{E}\left[\max _{i}\left\|B^{i}\right\|\right]
$$

In above $B^{i}$ is $i$-th row of $B$.
(1) This is tight up to $\log$ factor since $\|B\| \geq \max _{i}\left\|B^{i}\right\|$ and so this is true for their expected values too.
(2) Compare this with Cor 4.4.8
$\star$ Cor 4.4.8 needs that the entries are subG-K. This result does not.

## Symmetrization III

$\star$ The above result gives a tighter bound than Cor 4.4.8 (whose bound is $C K \sqrt{n}$ ) for when different rows have very different norms
(3) Extend to non-symmetric or rectangular matrices: uses "dilation" trick: For any matrix $G$, define $B=\left[0, G ; G^{\top}, 0\right]$, can show easily that $B$ is symmetric with eigenvalues $\pm \sigma_{i}(G)$.
Proof:
(1) symmetrization lemma and matrix Khintchine inequality Ex 5.4 .13 which states

$$
\mathbb{E}\left[\left\|\sum_{i} \epsilon_{i} A_{i}\right\|\right] \leq C \sqrt{1+\log n} \sqrt{\left\|\sum_{i} A_{i}^{2}\right\|}
$$

here $A_{i}$ are deterministic matrices.
(2) Split $B$ as

$$
B=\sum_{i \leq j} z_{i j}
$$

where $Z_{i j}=B_{i j}\left(e_{i} e_{j}^{\top}+e_{j} e_{i}^{\top}\right)$ for $i<j$ and $=B_{i j} e_{i} e_{i}^{\top}$ for $i=j$.
(3) Clearly these matrices are independent. So by symmetrization lemma,

$$
\mathbb{E}[\|B\|]=\mathbb{E}\left[\left\|\sum_{i \leq j} z_{i j}\right\|\right] \leq 2 \mathbb{E}\left[\left\|\sum_{i \leq j} \epsilon_{i j} z_{i j}\right\|\right]
$$

## Symmetrization IV

(4) Condition on $Z_{i j}$, apply matrix Khintchine, then take average over Zij to conclude

$$
\mathbb{E}[\|B\|] \leq 2 \mathbb{E}\left[\left\|\sum_{i \leq j} \epsilon_{i j} z_{i j}\right\|\right] \leq C \sqrt{\log n} \mathbb{E}\left[\sqrt{\left\|\sum_{i j} z_{i j}^{2}\right\|}\right]
$$

Simplify and argue that $\sum_{i j} Z_{i j}^{2}$ is a diagonal matrix, thus its norm is its max magnitude entry.
(4) Matrix Khintchine proof:
(1) follows from matrix Bernstein and integral identity.
(5) Matrix completion application Theorem 6.6.1: does not assume incoherence. Let $\mathbf{X}$ be $n \times n$ with rank $r$.
Let $\hat{\mathbf{X}}$ be rank $r$ approx of $Y=P_{\Omega}(X)$ where $\Omega$ is the observed entries set generated using the $\operatorname{Bern}(p)$ model. Then,

$$
\mathbb{E}\left[\frac{1}{n}\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}\right] \leq C \sqrt{\frac{r \log n}{p n^{2}}}\|\mathbf{X}\|_{\max }
$$

(1) If we use incoherence assumption, then from standard results, $\|\mathbf{X}\|_{\max } \leq(\mu r / n)\|\mathbf{X}\|$ Proof:

## Symmetrization V

(1) $\mathbb{E}[Y]=p X$, add subtract $Y / p$, use rank $r$ approx property of $\hat{\mathbf{X}}$,
(2) then we are left to bound $2 \mathbb{E}[\|Y-p X\|]$.
(3) To do this, use rectangular version of previous theorem.
(4) Then, for a fixed $i$, bound the row or column norms using scalar bounded Bernstein or Chernoff inequality, union bound for their max, then integral identity to convert high probab bound to bound on $\mathbb{E}[$.$] . See Ex 6.6.2$
(5) Finally pass to Frob norm by using the fact that $\hat{\mathbf{X}}-\mathbf{X}$ is at most rank $2 r$.

