Probability Review/New Material High Dim Probability \& Linear Algebra for ML and Sig Proc

Namrata Vaswani
Iowa State University

Reading material, Relevant Courses I

(1) The book "High Dimensional Probability for Data Science" by Roman Vershynin; and early parts
(2) The tutorial article on "Non-asymptotic Random Matrix Theory" also by Vershynin
(3) Probability:
https://www.ece.iastate.edu/~namrata/EE527_Spring14/Probability_recap_3.pdf

Good courses to take at ISU: EE 523, STAT 542, 543, EE/Math 623X
(4) Linear Algebra (based on first few chapters of Horn and Johnson, Matrix Analysis): https://www.ece.iastate.edu/~namrata/EE527_Spring14/linearAlgebraNotes.pdf

Good courses to take at ISU: MATH 510 (first half of the course); if too advanced, then first take MATH 407/507.
(5) Review of Basics:
(1) Probability:
https://www.ece.iastate.edu/~namrata/EE527_Spring12/322_recap.pdf
http://cs229.stanford.edu/section/cs229-prob.pdf
http://cs229.stanford.edu/section/more_on_gaussians.pdf

Reading material, Relevant Courses II

(2) Linear Algebra: Andrew Ng's review from CS229 course at Stanford: http://cs229.stanford.edu/section/cs229-linalg.pdf also
http://cs229.stanford.edu/livenotes2020spring/linearalgebra-slides.pdf

Reading I

Chapter 1 of book (Vershynin's book)

Notation I

- Order etc
- Order notation: $f(n) \in O(g(n))$ means that there exists an $n_{0}<\infty$ such that for all $n>n_{0}, f(n) \leq C g(n)$ for a numerical constant C
- Omega notation: $f(n) \in \Omega(g(n))$ means that there exists an $n_{0}<\infty$ such that for all $n>n_{0}, f(n) \geq C g(n)$ for a numerical constant C
- $a \ll b$ means a / b is less than $O(1)$
- Re-use of letter C: C is used to denote different numerical constants in different uses
- Linear algebra
- For a matrix A, A^{\prime} or A^{\top} or A^{\top} denotes matrix transpose; other use of MATLAB notation too.
- Sphere in $\Re^{n}: \mathcal{S}^{n-1}$, e.g., circle is a sphere in \Re^{2} and is denoted by \mathcal{S}^{1}
- Norms: $\|$.$\| : 12$-norm, $\|.\|_{1}$: I1-norm, $\|.\|_{F}$: Frobenius norm
- Indicator function: $\mathbb{1}_{\text {statement }}=1$ if statement is true and $=0$ otherwise.
- Probability
- For a set A, A^{c} denotes its complement set.
- Cumulative Distribution Function (CDF): $F_{X}(x):=\operatorname{Pr}(X \leq x$
- MGF $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$ for a scalar X. For a vector, $\underline{X}, M_{\underline{X}}(\underline{u})=\mathbb{E}\left[e^{\underline{u}^{\prime} \underline{X}}\right]$
- Characteristic function: $C_{X}(t)=\mathbb{E}\left[e^{i t X}\right]$: it is the FT of the distribution of X computed at frequency $-t$.

Notation II

- $\operatorname{Pr}(A, B)=\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A \cap B)$.
- Gaussian $\mathcal{N}(\mu, \Sigma)$
- Bernoulli with probability of a $1 p: \operatorname{Bern}(p)$
- Symmetric Bernoulli SymBern: $X=-1$ w.p. $1 / 2$ and $X=+1$ w.p. $1 / 2$
- w.h.p. :
- w.p. :

Basics: Simple algebra bounds: move to the end I

(1) https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
(2) Simple algebra bounds

- For any $x \geq 0,1+x \leq e^{x}$
used very often to convert $\Pi_{i}\left(1+\mu_{i}\right)$ to $e^{\sum_{i} \mu_{i}}$ (appears when bounding MGF of sums of indep r.v.s)
- For $0<x<1, \log (1+x) \geq x /(1+x / 2)$
- For all $x>-1, \log (1+x) \leq x$
- For any $x \geq 0, e^{x}<x+e^{x^{2}}$
used in subGaussian properties' equivalence.
- ?? For any $x \geq 0, \frac{1}{1-x} \leq e^{2 x}$
- For any $z>0, \max \left(|z-1|,|z-1|^{2}\right) \leq\left|z^{2}-1\right|$
- For any $z>0,|z-1| \geq \delta$ implies $\left|z^{2}-1\right| \geq \max \left(\delta, \delta^{2}\right)$.
- Stirling /factorial bounds

$$
\begin{aligned}
& \star \Gamma(x)<x^{x} \Gamma(x):=? ? \\
& \star p!>(p / e)^{p}, \text { easy to see that } p!<p^{p} \\
& \star\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq \sum_{k^{\prime}=0}^{k}\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}
\end{aligned}
$$

- Taylor series

$$
\star \exp (x)=\sum_{p=0}^{\infty} \frac{x^{p}}{p!}
$$

(3) Copy more from page 23,30 of Vershynin book. TBD

Basics: Probability concepts assumed I

(1) Probability concepts assumed:

Probability axioms, disjoint events, independent events, conditional probability define, DeMorgan's laws, counting arguments

Use: try to convert an exact probability computation into probability of union of disjoint events, or intersection of independent events, or some combination of these ideas.

For upper bounding $\operatorname{Pr}\left(\cup_{i} A_{i}\right)$: use union bound
For lower bounding $\operatorname{Pr}\left(\cup_{i} A_{i}\right)$: use DeMorgan's + independence, and lower bounds on $\operatorname{Pr}\left(A_{i}\right)$ or
use $\operatorname{Pr}(A) \geq \operatorname{Pr}(A, B)$ followed by lower bound $\operatorname{Pr}(B)$ and $\operatorname{Pr}(A \mid B)$ (see use of this in the random vectors' theorem).

Many more ideas of course
Random variables: define PMF, joint PMF, PDF, joint PDF, CDF, joint CDF. Conditional CDF, conditional PDF.

Quick test of concepts: Given random variables (r.v.) $X_{1}, X_{2}, \ldots X_{n}$.
(1) Compute distribution of $Z=\left|X_{1}+1\right|$
(2) Compute distribution of $Z=X_{1} \bmod 5$ (remainder when X_{1} is divided by 5 .
(3) Compute the distribution of $Z=X_{1}+X_{2}$. First
(4) Compute the distribution of the smallest r.v., $Z=\min \left(X_{1}, X_{2}, \ldots X_{n}\right)$.
(5) Compute the distribution of the second smallest r.v. (2nd order statistic).

Probability Review I

(1) Chain rule: extension of $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right)$

$$
\operatorname{Pr}\left(A_{1}, A_{2}, \ldots A_{n}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \ldots \operatorname{Pr}\left(A_{k} \mid A_{1}, A_{2}, \ldots A_{k}-1\right) \ldots \operatorname{Pr}\left(A_{n} \mid A_{1}, A_{2}, \ldots A_{n-1}\right)
$$

(2) Total expectation theorem for events, Law of iterated expectations for r.v.s

Consider events $A_{1}, A_{2}, \ldots, A_{n}$ that form a partition of the sample space. Partition means: all the events are disjoint and their union forms the entire sample space. Simplest example of a partition is $n=2, A_{1}=A, A_{2}=A^{c}$.
We have

$$
\mathbb{E}[X]=\sum_{i} \mathbb{E}\left[X \mid A_{i}\right] \operatorname{Pr}\left(A_{i}\right)
$$

If we set $X=\mathbb{1}_{E}$ for an event $E_{\text {, }}$, the above gives the total probability result.

$$
\operatorname{Pr}(E)=\sum_{i} \operatorname{Pr}\left(E \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right)
$$

For two r.v.s X, Y (scalar or vector r.vs),

$$
\mathbb{E}[g(X, Y)]=\mathbb{E}[\mathbb{E}[g(X, Y) \mid X]]
$$

(here $\mathbb{E}[$.$] takes expectation w.r.t. all r.v.s - here X, Y ; \mathbb{E}[. \mid X]$ takes expectation conditioned on X.

Probability Review II

(3) Independence and Conditional independence of events, r.v.s:
(1) Two events independent: $\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$
(2) A set of n events is independent if for any subset $S \subseteq[1,2, \ldots n]$,

$$
\operatorname{Pr}\left(\cap_{i \in S} A_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right)
$$

(3) A set of n r.v.s, $X_{1}, X_{2}, \ldots X_{n}$ independent iff joint distribution is equal to product of marginals

$$
F_{X_{1}, X_{2}, \ldots X_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)
$$

(4) Conditional independence given $Z=z$ for all $z \in C$: above holds conditioned on $Z=z$ for all $z \in C$.

5 i.i.d. : independent and $F_{X_{i}}(x)=F_{X_{1}}(x)$, so that

$$
F_{X_{1}, x_{2}, \ldots x_{n}}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)=\prod_{i=1}^{n} F_{X_{1}}\left(x_{i}\right)
$$

Probability Review III

(6) X, Y (scalars or vectors) independent implies

$$
\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]
$$

(1) Conditionally independent given event C : above holds given event C. Same for conditional indep given a r.v.
(8) X indep of $Y, Z \Rightarrow X$ indep Y; and X conditionally indep Y given Z.
(4) Cauchy-Schwarz inequality
(1) For two vectors v_{1}, v_{2},

$$
\left(v_{1}^{\prime} v_{2}\right)^{2} \leq\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}
$$

(2) For two scalar r.v.s X, Y,

$$
\mathbb{E}[X Y]^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]
$$

3 obvious extensions apply for random vectors and matrices.
(5) Union bound: for a set of events A_{i}, suppose that $\operatorname{Pr}\left(A_{i}\right) \geq 1-p_{i}$. Then

$$
\operatorname{Pr}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \equiv \operatorname{Pr}\left(\cap_{i} A_{i}\right)=1-\operatorname{Pr}\left(\cup_{i} A_{i}^{c}\right) \geq 1-\sum_{i} P\left(A_{i}^{c}\right) \geq 1-\sum_{i} p_{i}
$$

Probability Review IV

(6) Moment Generating Function (MGF) $M_{X}(t):=\mathbb{E}\left[e^{t X}\right]$ for a scalar X.
For a vector, $\underline{X}, M_{\underline{X}}(\underline{u})=\mathbb{E}\left[e^{u^{T}} \underline{X}\right]$
(7) Characteristic function: $C_{X}(t):=\mathbb{E}\left[e^{i t X}\right]$:
it is the FT of the distribution of X computed at frequency $-t$.

Gaussian r.v.s I

Scalar Gaussian r.v.

First note that a scalar Gaussian r.v. X with mean μ and variance σ^{2} has the following pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Its characteristic function can be computed by computing the Fourier transform at $-t$ to get

$$
C_{X}(t)=e^{j \mu t} e^{-\frac{\sigma^{2} t^{2}}{2}}
$$

Gaussian random vector (Jointly Gaussian r.v.s) Any of the following can be used as a definition of j G. All vectors should ideally be replaced by \underline{X} etc.

Gaussian r.v.s II

(1) The $n \times 1$ random vector X is jointly Gaussian if and only if the scalar

$$
u^{T} X
$$

is Gaussian distributed for all $n \times 1$ vectors u
(2) The random vector X is jointly Gaussian if and only if its characteristic function, $C_{X}(u):=\mathbb{E}\left[e^{i u^{T} X}\right]$ can be written as

$$
C_{X}(u)=e^{i u^{T} \mu} e^{-u^{T} \Sigma u / 2}
$$

where $\mu=\mathbb{E}[X]$ and $\Sigma=\operatorname{cov}(X)$.

- Proof idea - one side: Given X has above $C_{X}(u)$, show that $V:=u^{T} X$ is G for any vector u. To do this, show that $C_{V}(t)$ has the G c.f. expression. To show this, use the fact that $C_{V}(t)=C_{X}(t u)$ for scalar t.
- Proof idea - other side: Given $u^{\prime} X$ is G for any u. Let $V:=u^{\prime} X$. Its mean and variance are $\mu=u^{T} \mu$ and $\sigma^{2}=u^{T} \Sigma u$ and thus $C_{V}(t)=e^{j \mu t} e^{-\frac{\sigma^{2} t^{2}}{2}}$. Now, $C_{X}(u)=C_{V}(1)=e^{j \mu} e^{-\frac{\sigma^{2}}{2}}$. Substituting for μ, σ^{2} gives the $C_{X}(u)$ expression we want to get.

Gaussian r.v.s III

(3) The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.

- Proof uses $C_{X}(u)$ expression definition.
- Proof: suppose $X=A Z+a$ where $Z \sim \mathcal{N}(0, I)$; get an expression for its c.f. by using the c.f. definition and the fact that Z is a vector of i.i.d. standard Gaussian scalar r.v.s and thus $\mathbb{E}\left[e^{i t Z_{j}}\right]=e^{t^{2} / 2}$ for any t. Show that the c.f. of X satisfies the $C_{X}(u)$ formula given in 2 with $\mu_{X}=a, \Sigma_{X}=A A^{T}$.
- Proof (other side): suppose X is $\mathrm{j} G$ with mean μ_{X} and covariance $\Sigma_{X} ; X$ can always be expressed as $X=\Sigma^{1 / 2} Z+\mu$ where $Z:=\Sigma^{-1 / 2}(X-\mu)$; show that Z is std. G (by getting an expression for its c.f.).
(c.f. of a std G Z is $C_{Z}(u)=e^{\|u\|^{2} / 2}$).
(4) The random vector X is $\mathrm{j} G$ if and only if it can be written as an affine function of jointly Gaussian r.v's.
- Proof: Suppose X is an affine function of a j G r.v. Y, i.e. $X=B Y+b$. Since Y is j G, by 3 , it can be written as $Y=A Z+a$ where $Z \sim \mathcal{N}(0, I)$ (i.i.d. standard Gaussian). Thus, $X=B A Z+(B a+b)$, i.e. it is an affine function of Z, and thus, by $3, X$ is j G.
- Proof (other side): X is $\mathrm{j} G$. So by 3 , it can be written as $X=B Z+b$. But $Z \sim \mathcal{N}(0, I)$ i.e. Z is a $\mathrm{j} G$ r.v.

Gaussian r.v.s IV

(5) The random vector X is jointly Gaussian if and only if its joint pdf can be written as

$$
\begin{equation*}
f_{X}(x)=\frac{1}{(\sqrt{2 \pi})^{n} \operatorname{det}(\Sigma)} e^{-(X-\mu)^{T} \Sigma^{-1}(X-\mu) / 2} \tag{1}
\end{equation*}
$$

- Proof: follows by computing the characteristic function from the pdf and vice versa. Suppose X has above PDF. Then $C_{X}(u)=\mathbb{E}\left[\exp \left(i u^{\prime} X\right)\right]=\int_{X} \exp \left(i \sum_{j} u_{j} x_{j}\right) f_{X}(x) d x$, here x is a vector. Change of variables: let $z=\Sigma^{-1 / 2}(x-\mu)$ and substitute into the integral. Integral will decouple into a product with term in the product being c.f. of a scalar Gaussian. Use formula, to finally get the vector Gaussian c.f. expression. Thus X is j G. Suppose X is j G. Then it has the given c.f. By uniqueness of Fourier transform, its density is given by (1).

Properties

(1) If X_{1}, X_{2} are j G , then the conditional distribution of X_{1} given X_{2} is also j G
(2) If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.
(3) Any subset of X is also $\mathrm{j} G$.

Integral identity and its use, Gaussian tail bound I

(1) Integral identity

For a scalar r.v. Z that is non-negative, i.e., $Z \geq 0$ w.p. 1 ,

$$
\mathbb{E}[Z]=\int_{\tau=0}^{\infty} \operatorname{Pr}(Z>\tau) d \tau
$$

Proof: Use $x=\int_{t=0}^{x} 1 d t=\int_{t=0}^{\infty} \mathbb{1}(t \leq x) d t$ followed by moving expectation inside integral sign (allowed since indicator func is bounded).
(2) Use integral identity to convert w.h.p. bound to bound on expectation:

Given a non-negative r.v. Z that satisfies $\operatorname{Pr}\left(Z>u_{0}+t\right) \leq e^{-t^{2}}$ for all $t \geq 0\left(Z \leq 1.1 u_{0}\right.$ w.h.p.) for a $u_{0} \gg 2$ (u_{0} is more than order 1). This implies

$$
\mathbb{E}[Z] \leq u_{0}+2 \leq 1.1 u_{0} \text { the second bound assumes } u_{0} \gg 2
$$

- To use this second bound of $1.1 u_{0}$, scale Z so that $u_{0} \gg 2$.
- Similarly, if we are told that $\operatorname{Pr}\left(Z<u_{0}-t\right) \leq e^{-t^{2}}$ for all $t \geq 0\left(Z \geq 0.9 u_{0}\right.$ w.h.p.), assuming $2 \ll u_{0}$, we can show that

$$
\mathbb{E}[Z] \geq u_{0}-2 \geq 0.9 u_{0}
$$

Integral identity and its use, Gaussian tail bound II

- Proof idea: apply integral identity, split integral into 0 to u_{0} and then u_{0} to ∞. In the first one, bound the probability by 1 , in the second one, use the assumption, to get $\mathbb{E}[Z] \leq u_{0}+\int_{t=0}^{\infty} e^{-t^{2}} d t \leq u_{0}+\sqrt{2 \pi} / 2<u_{0}+2$.
Proof idea for lower bound:

$$
\mathbb{E}[Z] \geq \int_{\tau=0}^{u_{0}} \operatorname{Pr}(Z>\tau) d \tau=\int_{t=0}^{u_{0}} \operatorname{Pr}\left(Z>u_{0}-t\right) d t \geq \int_{t=0}^{u_{0}}\left(1-e^{-t^{2}}\right) d t
$$

(3) Gaussian tail bounds: $X \sim \mathcal{N}(0,1)$:

$$
\left(\frac{1}{t}-\frac{1}{t^{3}}\right) \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \leq \operatorname{Pr}(X \geq t) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} / 2}
$$

Proof idea:

- Upper bound: use $\int_{x=t}^{\infty} e^{-x^{2} / 2} d x \leq \int_{x=t}^{\infty}(x / t) e^{-x^{2} / 2} d x$ and then use change of variables to solve the integral.
- Lower bound: see page 12 of Vershynin book

Markov inequality and applications I

For a non-negative r.v. Z,

$$
\operatorname{Pr}(Z>s) \leq \frac{\mathbb{E}[Z]}{s}
$$

Proof: easy application of integral identity

$$
\mathbb{E}[Z] \geq \int_{0}^{s} \operatorname{Pr}(Z>\tau) d \tau \geq \operatorname{Pr}(Z>s)\left(\int_{0}^{s} d \tau\right)=\operatorname{Pr}(Z>s) s
$$

Applications: basic ideas
(1) Apply this to $Z=|X-\mu|$ with $\mu=\mathbb{E}[X]$, to get Chebyshev's inequality.
(2) Apply this to $Z=e^{t X}$ for any $t \geq 0$. notice $e^{t X}$ is always non-negative.

$$
\operatorname{Pr}(X>s)=\operatorname{Pr}\left(e^{t X}>e^{t s}\right) \leq e^{-t s} \mathbb{E}\left[e^{t X}\right]=e^{-t s} M_{X}(t)
$$

Since this bound holds for all $t \geq 0$, we can take a $\min _{t \geq 0}$ of the RHS or we can substitute in any convenient value of t.
(3) To get a bound for $\operatorname{Pr}(X<-s)$, use $Z=e^{-t X}$ for $t \geq 0$.

Markov inequality and applications II

(4) Useful for sums of independent r.v.s: if $S=\sum_{i} X_{i}$ with X_{i} 's independent, then $M_{X}(t)=\prod_{i} M_{X_{i}}(t)$. So then we get

$$
\operatorname{Pr}\left(\sum_{i} X_{i}>s\right) \leq \min _{t \geq 0} e^{-t s} M_{\sum_{i} X_{i}}(t)=\min _{t \geq 0} e^{-t s} \prod_{i} \mathbb{E}\left[e^{t X_{i}}\right]
$$

(5) Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding's lemma bounds the MGF of any bounded r.v.)
(6) Followed by often using $1+x \leq e^{x}$ to simplify things
(7) Final step: either minimizer over $t \geq 0$ by differentiating the expression or a pick a convenient value of t to substitute.
(8) disregard this in first read: Final final step that is used sometimes: suppose get a bound $g(s)$ but want to show $g(s) \leq f(s)$ for some simpler expression $f(s)$: try to show that $g(s)-f(s)$ is a decreasing function for the desired range of s values with $g(0)-f(0)=0$ or something similar: this is used in Chernoff inequality for $\operatorname{Bern}\left(p_{i}\right)$ r.v.s. for small s setting.

Old recap document I

Quick test of concepts: Given random variables (r.v.) $X_{1}, X_{2}, \ldots X_{n}$.
(1) Compute distribution of $Z=\left|X_{1}+1\right|$
(2) Compute distribution of $Z=X_{1} \bmod 5$ (remainder when X_{1} is divided by 5 .
(3) Compute the distribution of $Z=X_{1}+X_{2}$. First
(4) Compute the distribution of the smallest r.v., $Z=\min \left(X_{1}, X_{2}, \ldots X_{n}\right)$.
(5) Compute the distribution of the second smallest r.v. (2nd order statistic).

Some Topics

(1) Chain Rule: extension of $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right)$

$$
P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \ldots P\left(A_{n} \mid A_{1}, A_{2}, \ldots A_{n-1}\right)
$$

(2) Total probability: if $B_{1}, B_{2}, \ldots B_{n}$ form a partition of the sample space, then

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Partition: The events are mutually disjoint and their union is equal to the sample space.
(3) Union bound: suppose $P\left(A_{i}\right) \geq 1-p_{i}$ for small probabilities p_{i}, then

$$
P\left(\cap_{i} A_{i}\right)=1-P\left(\cup_{i} A_{i}^{c}\right) \geq 1-\sum_{i} P\left(A_{i}^{c}\right) \geq 1-\sum_{i} p_{i}
$$

Old recap document II

(4) Independence and Conditional Independence

- events A, B are independent iff

$$
P(A, B)=P(A) P(B)
$$

- events $A_{1}, A_{2}, \ldots A_{n}$ are mutually independent iff for any subset $S \subseteq\{1,2, \ldots, n\}$,

$$
P\left(\cap_{i \in S} A_{i}\right)=\prod_{i \in S} P\left(A_{i}\right)
$$

- analogous definition for random variables: for mutually independent r.v.'s the joint pdf of any subset of r.v.'s is equal to the product of the marginal pdf's.
- events A, B are conditionally independent given an event C iff

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

- extend to a set of events as above
- extend to r.v.'s as above
(5) Aside: Given X is independent of $\{Y, Z\}$. Then,
- X is independent of $Y ; X$ is independent of Z

Old recap document III

- X is conditionally independent of Y given Z
- $\mathbb{E}[X Y \mid Z]=\mathbb{E}[X \mid Z] \mathbb{E}[Y \mid Z]$
- $\mathbb{E}[X Y \mid Z]=\mathbb{E}[X] \mathbb{E}[Y \mid Z]$
(6) Law of Iterated Expectations:

$$
\mathbb{E}_{X, Y}[g(X, Y)]=\mathbb{E}_{Y}\left[\mathbb{E}_{X \mid Y}[g(X, Y) \mid Y]\right]
$$

(7) Conditional Variance Identity:

$$
\operatorname{Var}_{X, Y}[g(X, Y)]=\mathbb{E}_{Y}\left[\operatorname{Var}_{X \mid Y}[g(X, Y) \mid Y]\right]+\operatorname{Var}_{Y}\left[\mathbb{E}_{X \mid Y}[g(X, Y) \mid Y]\right]
$$

(8) Cauchy-Schwartz Inequality:
(1) For vectors $v_{1}, v_{2},\left(v_{1}^{\prime} v_{2}\right)^{2} \leq\left\|v_{1}\right\|_{2}^{2}\left\|v_{2}\right\|_{2}^{2}$
(2) For vectors:

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime} y_{i}\right)^{2} \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\|y_{i}\right\|_{2}^{2}\right)
$$

(3) For matrices:

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{i} \mathcal{Y}_{i}^{\prime}\right\|^{2} \leq\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{i} \mathcal{X}_{i}^{\prime}\right\|_{2}\left\|\frac{1}{n} \sum_{i=1}^{n} \mathcal{Y} \mathcal{Y}^{\prime}\right\|_{2}
$$

Old recap document IV

(4) For scalar r.v.'s $X, Y:(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$
(5) For random vectors X, Y,

$$
\left(\mathbb{E}\left[X^{\prime} Y\right]\right)^{2} \leq \mathbb{E}\left[\|X\|_{2}^{2}\right] \mathbb{E}\left[\|Y\|_{2}^{2}\right]
$$

(6) Proof follows by using the fact that $\mathbb{E}\left[(X-\alpha Y)^{2}\right] \geq 0$. Get a quadratic equation in α and use the condition to ensure that this is non-negative
(1) For random matrices \mathcal{X}, \mathcal{Y},

$$
\left\|\mathbb{E}\left[\mathcal{X} \mathcal{Y}^{\prime}\right]\right\|_{2}^{2} \leq \lambda_{\max }\left(\mathbb{E}\left[\mathcal{X} \mathcal{X}^{\prime}\right]\right) \lambda_{\max }\left(\mathbb{E}\left[\mathcal{Y} \mathcal{Y}^{\prime}\right]\right)=\left\|\mathbb{E}\left[\mathcal{X} \mathcal{X}^{\prime}\right]\right\|_{2}\left\|\mathbb{E}\left[\mathcal{Y} \mathcal{Y}^{\prime}\right]\right\|_{2}
$$

Recall that for a positive semi-definite matrix $M,\|M\|_{2}=\lambda_{\max }(M)$.
(8) Proof: use the following definition of $\|M\|_{2}:\|M\|_{2}=\max _{x, y:\|x\|_{2}=1,\|y\|_{2}=1}\left|x^{\prime} M y\right|$, and then apply $\mathrm{C}-\mathrm{S}$ for random vectors.
(9) Hoeffding's lemma: bounds the MGF of a zero mean and bounded r.v..

- Suppose $\mathbb{E}[X]=0$ and $P(X \in[a, b])=1$, then

$$
M_{X}(s):=\mathbb{E}\left[e^{s X}\right] \leq e^{\frac{s^{2}(b-a)^{2}}{8}} \text { if } s>0
$$

Proof: use Jensen's inequality followed by mean value theorem, see http://www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Old recap document V

(10) Convergence in probability. A sequence of random variables, $X_{1}, X_{2}, \ldots X_{n}$ converges to a constant a in probability means that for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}-a\right|>\epsilon\right)=0
$$

(1) Convergence in distribution. A sequence of random variables, $X_{1}, X_{2}, \ldots X_{n}$ converges to random variable Z in distribution means that

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{Z}(x), \text { for almost all points } x
$$

(12) Convergence in probability implies convergence in distribution
(13) Consistent Estimator. An estimator for θ based on n random variables, $\hat{\theta}_{n}(\underline{X})$, is consistent if it converges to θ in probability for large n.
(14) Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, $X_{1}, X_{2}, \ldots X_{n}$, with finite mean μ. Define

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

For any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0
$$

Proof: use Chebyshev if σ^{2} is finite. Else use characteristic function

