Probability Review/New Material High Dim Probability & Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

<ロト <部ト <注入 <注下 = 正

900

Reading material, Relevant Courses I

- The book "High Dimensional Probability for Data Science" by Roman Vershynin; and early parts
- 2 The tutorial article on "Non-asymptotic Random Matrix Theory" also by Vershynin
- Probability: https://www.ece.iastate.edu/~namrata/EE527_Spring14/Probability_recap_3.pdf

Good courses to take at ISU: EE 523, STAT 542, 543, EE/Math 623X

Linear Algebra (based on first few chapters of Horn and Johnson, Matrix Analysis): https://www.ece.iastate.edu/~namrata/EE527_Spring14/linearAlgebraNotes.pdf

Good courses to take at ISU: MATH 510 (first half of the course); if too advanced, then first take MATH 407/507.

6 Review of Basics:

Probability:

https://www.ece.iastate.edu/~namrata/EE527_Spring12/322_recap.pdf http://cs229.stanford.edu/section/cs229-prob.pdf http://cs229.stanford.edu/section/more_on_gaussians.pdf

イロト 不得 トイラト イラト 二日

Linear Algebra: Andrew Ng's review from CS229 course at Stanford: http://cs229.stanford.edu/section/cs229-linalg.pdf also http://cs229.stanford.edu/livenotes2020spring/linearalgebra-slides.pdf

3

イロト 不得 トイヨト イヨト

Chapter 1 of book (Vershynin's book)

E

イロト イヨト イヨト イヨト

Notation I

- Order etc
 - Order notation: $f(n) \in O(g(n))$ means that there exists an $n_0 < \infty$ such that for all $n > n_0$, $f(n) \le Cg(n)$ for a numerical constant C
 - Omega notation: $f(n) \in \Omega(g(n))$ means that there exists an $n_0 < \infty$ such that for all $n > n_0$, $f(n) \ge Cg(n)$ for a numerical constant C
 - $a \ll b$ means a/b is less than O(1)
 - Re-use of letter C: C is used to denote different numerical constants in different uses
- Linear algebra
 - For a matrix A, A' or A^T or A^T denotes matrix transpose; other use of MATLAB notation too.
 - Sphere in \Re^n : S^{n-1} , e.g., circle is a sphere in \Re^2 and is denoted by S^1
 - ▶ Norms: ||.||: I2-norm, ||.||₁: I1-norm, ||.||_F: Frobenius norm
 - ▶ Indicator function: 1 statement = 1 if statement is true and = 0 otherwise.
- Probability
 - ▶ For a set *A*, *A^c* denotes its complement set.
 - Cumulative Distribution Function (CDF): $F_X(x) := \Pr(X \le x)$
 - MGF $M_X(t) = \mathbb{E}[e^{tX}]$ for a scalar X. For a vector, \underline{X} , $M_{\underline{X}}(\underline{u}) = \mathbb{E}[e^{\underline{u}'\underline{X}}]$
 - ► Characteristic function: C_X(t) = E[e^{itX}]: it is the FT of the distribution of X computed at frequency -t.

- $Pr(A, B) = Pr(A \text{ and } B) = Pr(A \cap B).$
- Gaussian *N*(μ, Σ)
- Bernoulli with probability of a 1 p: Bern(p)
- Symmetric Bernoulli SymBern: X = -1 w.p. 1/2 and X = +1 w.p. 1/2
- ▶ w.h.p. :
- ▶ w.p. :

3

<ロト <回ト < 回ト < 回ト < 回ト -

Basics: Simple algebra bounds: move to the end I

https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

2 Simple algebra bounds

- For any x > 0, $1 + x < e^x$ used very often to convert $\Pi_i(1 + \mu_i)$ to $e^{\sum_i \mu_i}$ (appears when bounding MGF of sums of indep r.v.s)
- For 0 < x < 1, $\log(1 + x) > x/(1 + x/2)$
- For all x > -1, $\log(1 + x) \le x$
- For any x > 0, $e^x < x + e^{x^2}$ used in subGaussian properties' equivalence. • ?? For any $x \ge 0$, $\frac{1}{1-x} \le e^{2x}$

For any
$$z > 0$$
, $\max(|z-1|, |z-1|^2) \le |z^2 - 1|$

- For any z > 0, $|z 1| \ge \delta$ implies $|z^2 1| \ge \max(\delta, \delta^2)$.
- Stirling /factorial bounds

★
$$\Gamma(x) < x^x \Gamma(x) := ??$$

★ $p! > (p/e)^p$, easy to see that $p! < p^p$

★
$$(\frac{n}{k})^k \le {\binom{n}{k}} \le \sum_{k'=0}^k {\binom{n}{k}} \le (\frac{en}{k})^k$$

Taylor series

$$\star \exp(x) = \sum_{p=0}^{\infty} \frac{x^p}{p!}$$

Copy more from page 23, 30 of Vershynin book. TBD

◆ロト ◆帰 ト ◆臣 ト ◆臣 ト ◆ □ ●

Probability concepts assumed:

Probability axioms, disjoint events, independent events, conditional probability define, DeMorgan's laws, counting arguments

Use: try to convert an exact probability computation into probability of union of disjoint events, or intersection of independent events, or some combination of these ideas.

For upper bounding $Pr(\cup_i A_i)$: use union bound

For lower bounding $Pr(\cup_i A_i)$: use DeMorgan's + independence, and lower bounds on $Pr(A_i)$ or use $Pr(A) \ge Pr(A, B)$ followed by lower bound Pr(B) and Pr(A|B) (see use of this in the random vectors' theorem).

Many more ideas of course

Random variables: define PMF, joint PMF, PDF, joint PDF, CDF, joint CDF. Conditional CDF, conditional PDF.

Quick test of concepts: Given random variables (r.v.) $X_1, X_2, \ldots X_n$.

- **1** Compute distribution of $Z = |X_1 + 1|$
- 2 Compute distribution of $Z = X_1 \mod 5$ (remainder when X_1 is divided by 5.
- 3 Compute the distribution of $Z = X_1 + X_2$. First
- Occupie the distribution of the smallest r.v., $Z = \min(X_1, X_2, ..., X_n)$.
- Sompute the distribution of the second smallest r.v. (2nd order statistic).

Probability Review I

• Chain rule: extension of $P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$

 $\Pr(A_1, A_2, \dots, A_n) = \Pr(A_1) \Pr(A_2 | A_1) \dots \Pr(A_k | A_1, A_2, \dots, A_k - 1) \dots \Pr(A_n | A_1, A_2, \dots, A_{n-1})$

2 Total expectation theorem for events, Law of iterated expectations for r.v.s Consider events A_1, A_2, \ldots, A_n that form a partition of the sample space. Partition means: all the events are disjoint and their union forms the entire sample space. Simplest example of a partition is n = 2, $A_1 = A$, $A_2 = A^c$. We have

$$\mathbb{E}[X] = \sum_{i} \mathbb{E}[X|A_i] \operatorname{Pr}(A_i)$$

If we set $X = \mathbb{1}_E$ for an event E_{i} , the above gives the total probability result.

$$\Pr(E) = \sum_{i} \Pr(E|A_i) \Pr(A_i)$$

For two r.v.s X, Y (scalar or vector r.vs),

$$\mathbb{E}[g(X,Y)] = \mathbb{E}[\mathbb{E}[g(X,Y)|X]]$$

(here $\mathbb{E}[.]$ takes expectation w.r.t. all r.v.s - here $X, Y; \mathbb{E}[.|X]$ takes expectation conditioned on X.

Namrata Vaswani (Iowa State U.)

Independence and Conditional independence of events, r.v.s:

1 Two events independent: Pr(A, B) = Pr(A)Pr(B)

2 A set of *n* events is independent if for any subset $S \subseteq [1, 2, ...n]$,

$$\Pr(\cap_{i\in S}A_i) = \prod_{i\in S}\Pr(A_i)$$

 \bigcirc A set of *n* r.v.s, $X_1, X_2, ..., X_n$ independent iff joint distribution is equal to product of marginals

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$

- **G** Conditional independence given Z = z for all $z \in C$: above holds conditioned on Z = z for all $z \in C$.
- **③** i.i.d. : independent and $F_{X_i}(x) = F_{X_1}(x)$, so that

$$F_{X_1,X_2,...X_n}(x_1,x_2,...x_n) = \prod_{i=1}^n F_{X_i}(x_i) = \prod_{i=1}^n F_{X_1}(x_i)$$

Namrata Vaswani (Iowa State U.)

6 X, Y (scalars or vectors) independent implies

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$

- Conditionally independent given event C: above holds given event C. Same for conditional indep given a r.v.
- **3** X indep of $Y, Z \Rightarrow X$ indep Y; and X conditionally indep Y given Z.
- Cauchy-Schwarz inequality
 - For two vectors v_1, v_2 ,

$$(v_1'v_2)^2 \le \|v_1\|^2 \|v_2\|^2$$

2 For two scalar r.v.s X, Y,

$$\mathbb{E}[XY]^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$$

- 3 obvious extensions apply for random vectors and matrices.
- **(5)** Union bound: for a set of events A_i , suppose that $Pr(A_i) \ge 1 p_i$. Then

$$\Pr(A_1, A_2, \dots, A_n) \equiv \Pr(\cap_i A_i) = 1 - \Pr(\cup_i A_i^c) \ge 1 - \sum_i \Pr(A_i^c) \ge 1 - \sum_i \exp(A_i^c) = \sum_i \exp(A_i^c) \ge 1 - \sum_i \exp(A_i^c) = \sum_i \exp(A_i^c) \ge 1 - \sum_i \exp(A_i^c) = \sum_i \exp(A_i^c) =$$

3

イロト 不得下 イヨト イヨト

Scalar Gaussian r.v.

First note that a scalar Gaussian r.v. X with mean μ and variance σ^2 has the following pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Its characteristic function can be computed by computing the Fourier transform at -t to get

$$C_X(t) = e^{j\mu t} e^{-\frac{\sigma^2 t^2}{2}}$$

Gaussian random vector (Jointly Gaussian r.v.s)

Any of the following can be used as a definition of j G. All vectors should ideally be replaced by \underline{X} etc.

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

The n × 1 random vector X is jointly Gaussian if and only if the scalar

$\mu^T X$

is Gaussian distributed for all $n \times 1$ vectors u

2 The random vector X is jointly Gaussian if and only if its characteristic function, $C_X(u) := \mathbb{E}[e^{iu^T X}]$ can be written as

$$C_X(u) = e^{iu^T \mu} e^{-u^T \Sigma u/2}$$

where $\mu = \mathbb{E}[X]$ and $\Sigma = cov(X)$.

- ▶ Proof idea one side: Given X has above $C_X(u)$, show that $V := u^T X$ is G for any vector u. To do this, show that $C_V(t)$ has the G c.f. expression. To show this, use the fact that $C_V(t) = C_X(tu)$ for scalar t.
- ▶ Proof idea other side: Given u'X is G for any u. Let V := u'X. Its mean and variance are $\mu = u^T \mu$ and $\sigma^2 = u^T \Sigma u$ and thus $C_V(t) = e^{j\mu t} e^{-\frac{\sigma^2 t^2}{2}}$. Now, $C_X(u) = C_V(1) = e^{j\mu}e^{-\frac{\sigma^2}{2}}$. Substituting for μ, σ^2 gives the $C_X(u)$ expression we want to get.

The random vector X is j G if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.

- Proof uses $C_X(u)$ expression definition.
- ▶ Proof: suppose X = AZ + a where $Z \sim \mathcal{N}(0, I)$; get an expression for its c.f. by using the c.f. definition and the fact that Z is a vector of i.i.d. standard Gaussian scalar r.v.s and thus $\mathbb{E}[e^{itZ_j}] = e^{t^2/2}$ for any t. Show that the c.f. of X satisfies the $C_X(u)$ formula given in 2 with $\mu_X = a$, $\Sigma_X = AA^T$.
- Proof (other side): suppose X is j G with mean μ_X and covariance Σ_X; X can always be expressed as X = Σ^{1/2}Z + μ where Z := Σ^{-1/2}(X − μ); show that Z is std. G (by getting an expression for its c.f.).
 (c.f. of a std G Z is C_Z(u) = e^{||u||²/2}).
- The random vector X is j G if and only if it can be written as an affine function of jointly Gaussian r.v's.
 - Proof: Suppose X is an affine function of a j G r.v. Y, i.e. X = BY + b. Since Y is j G, by 3, it can be written as Y = AZ + a where Z ∼ N(0, I) (i.i.d. standard Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and thus, by 3, X is j G.
 - Proof (other side): X is j G. So by 3, it can be written as X = BZ + b. But $Z \sim \mathcal{N}(0, I)$ i.e. Z is a j G r.v.

The random vector X is jointly Gaussian if and only if its joint pdf can be written as

$$f_X(x) = \frac{1}{(\sqrt{2\pi})^n det(\Sigma)} e^{-(X-\mu)^T \Sigma^{-1} (X-\mu)/2}$$
(1)

Proof: follows by computing the characteristic function from the pdf and vice versa. Suppose X has above PDF. Then $C_X(u) = \mathbb{E}[\exp(iu'X)] = \int_x \exp(i\sum_j u_j x_j) f_X(x) dx$, here x is a vector. Change of variables: let $z = \Sigma^{-1/2}(x - \mu)$ and substitute into the integral. Integral will decouple into a product with term in the product being c.f. of a scalar Gaussian. Use formula, to finally get the vector Gaussian c.f. expression. Thus X is j G. Suppose X is j G. Then it has the given c.f. By uniqueness of Fourier transform, its density is given by (1).

Properties

1 If X_1, X_2 are j G, then the conditional distribution of X_1 given X_2 is also j G

If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.

Any subset of X is also j G.

Integral identity

For a scalar r.v. Z that is non-negative, i.e., $Z \ge 0$ w.p. 1,

$$\mathbb{E}[Z] = \int_{\tau=0}^{\infty} \Pr(Z > \tau) d\tau$$

Proof: Use $x = \int_{t=0}^{x} 1 dt = \int_{t=0}^{\infty} \mathbb{1}(t \le x) dt$ followed by moving expectation inside integral sign (allowed since indicator func is bounded).

2 Use integral identity to convert w.h.p. bound to bound on expectation:

Given a non-negative r.v. Z that satisfies $Pr(Z > u_0 + t) \le e^{-t^2}$ for all $t \ge 0$ ($Z \le 1.1u_0$ w.h.p.) for a $u_0 \gg 2$ (u_0 is more than order 1). This implies

 $\mathbb{E}[Z] \leq u_0 + 2 \leq 1.1 u_0$ the second bound assumes $u_0 \gg 2$

- To use this second bound of $1.1u_0$, scale Z so that $u_0 \gg 2$.
- Similarly, if we are told that $Pr(Z < u_0 t) \le e^{-t^2}$ for all $t \ge 0$ ($Z \ge 0.9u_0$ w.h.p.), assuming $2 \ll u_0$, we can show that

$$\mathbb{E}[Z] \ge u_0 - 2 \ge 0.9u_0$$

 Proof idea: apply integral identity, split integral into 0 to u₀ and then u₀ to ∞. In the first one, bound the probability by 1, in the second one, use the assumption, to get E[Z] ≤ u₀ + ∫_{t=0}[∞] e^{-t²} dt ≤ u₀ + √2π/2 < u₀ + 2. Proof idea for lower bound: E[Z] ≥ ∫<sub>u₀<sup>u₀</sub> Pr(Z > τ)dτ = ∫_{t=0}^{u₀} Pr(Z > u₀ - t)dt ≥ ∫_{t=0}^{u₀}(1 - e^{-t²})dt
 Gaussian tail bounds: X ~ N(0, 1):
</sub></sup>

$$(\frac{1}{t} - \frac{1}{t^3})\frac{1}{\sqrt{2\pi}}e^{-t^2/2} \le \Pr(X \ge t) \le \frac{1}{\sqrt{2\pi}}\frac{1}{t}e^{-t^2/2}$$

Proof idea:

- ▶ Upper bound: use $\int_{x=t}^{\infty} e^{-x^2/2} dx \leq \int_{x=t}^{\infty} (x/t) e^{-x^2/2} dx$ and then use change of variables to solve the integral.
- Lower bound: see page 12 of Vershynin book

For a non-negative r.v. Z,

$$\Pr(Z > s) \leq \frac{\mathbb{E}[Z]}{s}$$

Proof: easy application of integral identity

$$\mathbb{E}[Z] \geq \int_0^s \Pr(Z > \tau) d\tau \geq \Pr(Z > s) (\int_0^s d\tau) = \Pr(Z > s) s$$

Applications: basic ideas

- **(**) Apply this to $Z = |X \mu|$ with $\mu = \mathbb{E}[X]$, to get Chebyshev's inequality.
- 2 Apply this to $Z = e^{tX}$ for any $t \ge 0$. notice e^{tX} is always non-negative.

$$\Pr(X > s) = \Pr(e^{tX} > e^{ts}) \le e^{-ts} \mathbb{E}[e^{tX}] = e^{-ts} M_X(t)$$

Since this bound holds for all $t \ge 0$, we can take a min_{t \ge 0} of the RHS or we can substitute in any convenient value of t.

3 To get a bound for
$$Pr(X < -s)$$
, use $Z = e^{-tX}$ for $t \ge 0$.

Markov inequality and applications II

③ Useful for sums of independent r.v.s: if $S = \sum_{i} X_{i}$ with X_{i} 's independent, then $M_{X}(t) = \prod_{i} M_{X_{i}}(t)$. So then we get

$$\Pr(\sum_{i} X_i > s) \le \min_{t \ge 0} e^{-ts} M_{\sum_i X_i}(t) = \min_{t \ge 0} e^{-ts} \prod_{i} \mathbb{E}[e^{tX_i}]$$

- Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding's lemma bounds the MGF of any bounded r.v.)
- **(** Followed by often using $1 + x \le e^x$ to simplify things
- **(**) Final step: either minimizer over $t \ge 0$ by differentiating the expression or a pick a convenient value of t to substitute.
- **3** disregard this in first read: Final final step that is used sometimes: suppose get a bound g(s) but want to show $g(s) \le f(s)$ for some simpler expression f(s): try to show that g(s) f(s) is a decreasing function for the desired range of s values with g(0) f(0) = 0 or something similar: this is used in Chernoff inequality for $Bern(p_i)$ r.v.s. for small s setting.

Old recap document I

Quick test of concepts: Given random variables (r.v.) $X_1, X_2, \ldots X_n$.

- **1** Compute distribution of $Z = |X_1 + 1|$
- 2 Compute distribution of $Z = X_1 \mod 5$ (remainder when X_1 is divided by 5.
- **3** Compute the distribution of $Z = X_1 + X_2$. First
- Occupate the distribution of the smallest r.v., $Z = \min(X_1, X_2, ..., X_n)$.
- Ompute the distribution of the second smallest r.v. (2nd order statistic).

Some Topics

1 Chain Rule: extension of
$$P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$$

 $P(A_1, A_2, \ldots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2) \ldots P(A_n|A_1, A_2, \ldots, A_{n-1})$

Total probability: if B₁, B₂,... B_n form a partition of the sample space, then

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Partition: The events are mutually disjoint and their union is equal to the sample space.
Onion bound: suppose P(A_i) ≥ 1 − p_i for small probabilities p_i, then

$$P(\cap_i A_i) = 1 - P(\cup_i A_i^c) \ge 1 - \sum_i P(A_i^c) \ge 1 - \sum_i p_i$$

Namrata Vaswani (Iowa State U.)

High Dim Prob & Lin Alg for ML

Old recap document II

Independence and Conditional Independence

events A. B are independent iff

$$P(A,B) = P(A)P(B)$$

• events A_1, A_2, \ldots, A_n are mutually independent iff for any subset $S \subseteq \{1, 2, \ldots, n\}$,

$$P(\cap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

- analogous definition for random variables: for mutually independent r.v.'s the joint pdf of any subset of r.v.'s is equal to the product of the marginal pdf's.
- events A, B are conditionally independent given an event C iff

$$P(A, B|C) = P(A|C)P(B|C)$$

- extend to a set of events as above
- extend to r v 's as above
- Side: Given X is independent of {Y, Z}. Then,
 - X is independent of Y; X is independent of Z

イロト 不得下 イヨト イヨト 二日

Old recap document III

- X is conditionally independent of Y given Z
- $\blacktriangleright \mathbb{E}[XY|Z] = \mathbb{E}[X|Z]\mathbb{E}[Y|Z]$
- $\blacktriangleright \quad \mathbb{E}[XY|Z] = \mathbb{E}[X]\mathbb{E}[Y|Z]$
- 6 Law of Iterated Expectations:

$$\mathbb{E}_{X,Y}[g(X,Y)] = \mathbb{E}_{Y}[\mathbb{E}_{X|Y}[g(X,Y)|Y]]$$

Conditional Variance Identity:

$$Var_{X,Y}[g(X,Y)] = \mathbb{E}_{Y}[Var_{X|Y}[g(X,Y)|Y]] + Var_{Y}[\mathbb{E}_{X|Y}[g(X,Y)|Y]]$$

Old recap document IV

- **(5)** For random vectors X, Y,

$$(\mathbb{E}[X'Y])^2 \le \mathbb{E}[||X||_2^2]\mathbb{E}[||Y||_2^2]$$

- **()** Proof follows by using the fact that $\mathbb{E}[(X \alpha Y)^2] \ge 0$. Get a quadratic equation in α and use the condition to ensure that this is non-negative
- **7** For random matrices \mathcal{X}, \mathcal{Y} ,

$$\|\mathbb{E}[\mathcal{XY}']\|_2^2 \leq \lambda_{\sf max}(\mathbb{E}[\mathcal{XX}'])\lambda_{\sf max}(\mathbb{E}[\mathcal{YY}']) = \|\mathbb{E}[\mathcal{XX}']\|_2\|\mathbb{E}[\mathcal{YY}']\|_2$$

Recall that for a positive semi-definite matrix M, $||M||_2 = \lambda_{\max}(M)$. Proof: use the following definition of $||M||_2$: $||M||_2 = \max_{x,y:||x||_2=1, ||y||_2=1} |x'My|$, and then apply C-S for random vectors.

- Itoeffding's lemma: bounds the MGF of a zero mean and bounded r.v..
 - Suppose $\mathbb{E}[X] = 0$ and $P(X \in [a, b]) = 1$, then

$$M_X(s):=\mathbb{E}[e^{sX}]\leq e^{rac{s^2(b-a)^2}{8}}$$
 if $s>0$

Proof: use Jensen's inequality followed by mean value theorem, see http://www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Old recap document V

Oconvergence in probability. A sequence of random variables, $X_1, X_2, ..., X_n$ converges to a constant *a* in probability means that for every $\epsilon > 0$,

$$\lim_{n\to\infty}\Pr(|X_n-a|>\epsilon)=0$$

4 Convergence in distribution. A sequence of random variables, X_1, X_2, \ldots, X_n converges to random variable Z in distribution means that

 $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x), \text{ for almost all points} x$

Convergence in probability implies convergence in distribution

(B) Consistent Estimator. An estimator for θ based on *n* random variables, $\hat{\theta}_n(\underline{X})$, is consistent if it converges to θ in probability for large *n*.

Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, $X_1, X_2, \ldots X_n$, with finite mean μ . Define

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

For any $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|>\epsilon)=0$$

Proof: use Chebyshev if σ^2 is finite. Else use characteristic function