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Reading material, Relevant Courses I

1 The book “High Dimensional Probability for Data Science” by Roman Vershynin; and
early parts

2 The tutorial article on “Non-asymptotic Random Matrix Theory” also by Vershynin

3 Probability:
https://www.ece.iastate.edu/~namrata/EE527_Spring14/Probability_recap_3.pdf

Good courses to take at ISU: EE 523, STAT 542, 543, EE/Math 623X

4 Linear Algebra (based on first few chapters of Horn and Johnson, Matrix Analysis):
https://www.ece.iastate.edu/~namrata/EE527_Spring14/linearAlgebraNotes.pdf

Good courses to take at ISU: MATH 510 (first half of the course); if too advanced, then
first take MATH 407/507.

5 Review of Basics:

1 Probability:
https://www.ece.iastate.edu/~namrata/EE527_Spring12/322_recap.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/more_on_gaussians.pdf
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Reading material, Relevant Courses II

2 Linear Algebra: Andrew Ng’s review from CS229 course at Stanford:

http://cs229.stanford.edu/section/cs229-linalg.pdf

also
http://cs229.stanford.edu/livenotes2020spring/linearalgebra-slides.pdf
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Reading I

Chapter 1 of book (Vershynin’s book)
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Notation I

Order etc
▶ Order notation: f (n) ∈ O(g(n)) means that there exists an n0 < ∞ such that for

all n > n0, f (n) ≤ Cg(n) for a numerical constant C
▶ Omega notation: f (n) ∈ Ω(g(n)) means that there exists an n0 < ∞ such that for

all n > n0, f (n) ≥ Cg(n) for a numerical constant C
▶ a ≪ b means a/b is less than O(1)
▶ Re-use of letter C : C is used to denote different numerical constants in different

uses

Linear algebra
▶ For a matrix A, A′ or AT or A⊤ denotes matrix transpose; other use of MATLAB

notation too.
▶ Sphere in ℜn: Sn−1, e.g., circle is a sphere in ℜ2 and is denoted by S1

▶ Norms: ∥.∥: l2-norm, ∥.∥1: l1-norm, ∥.∥F : Frobenius norm
▶ Indicator function: 1statement = 1 if statement is true and = 0 otherwise.

Probability
▶ For a set A, Ac denotes its complement set.
▶ Cumulative Distribution Function (CDF): FX (x) := Pr(X ≤ x
▶ MGF MX (t) = E[etX ] for a scalar X . For a vector, X , MX (u) = E[eu′X ]
▶ Characteristic function: CX (t) = E[e itX ]: it is the FT of the distribution of X

computed at frequency −t.
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Notation II

▶ Pr(A,B) = Pr(A and B) = Pr(A ∩ B).
▶ Gaussian N (µ,Σ)
▶ Bernoulli with probability of a 1 p: Bern(p)
▶ Symmetric Bernoulli SymBern: X = −1 w.p. 1/2 and X = +1 w.p. 1/2
▶ w.h.p. :
▶ w.p. :
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Basics: Simple algebra bounds: move to the end I

1 https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

2 Simple algebra bounds

▶ For any x ≥ 0, 1 + x ≤ ex

used very often to convert Πi (1 + µi ) to e
∑

i µi (appears when bounding MGF of
sums of indep r.v.s)

▶ For 0 < x < 1, log(1 + x) ≥ x/(1 + x/2)
▶ For all x > −1, log(1 + x) ≤ x

▶ For any x ≥ 0, ex < x + ex
2

used in subGaussian properties’ equivalence.
▶ ?? For any x ≥ 0, 1

1−x
≤ e2x

▶ For any z > 0, max(|z − 1|, |z − 1|2) ≤ |z2 − 1|
▶ For any z > 0, |z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2).
▶ Stirling /factorial bounds

⋆ Γ(x) < xx Γ(x) :=??
⋆ p! > (p/e)p , easy to see that p! < pp

⋆ ( n
k
)k ≤

(n
k

)
≤

∑k
k′=0

(n
k

)
≤ ( en

k
)k

▶ Taylor series

⋆ exp(x) =
∑∞

p=0
xp

p!

3 Copy more from page 23, 30 of Vershynin book. TBD
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Basics: Probability concepts assumed I

1 Probability concepts assumed:
Probability axioms, disjoint events, independent events, conditional probability define,
DeMorgan’s laws, counting arguments

Use: try to convert an exact probability computation into probability of union of disjoint
events, or intersection of independent events, or some combination of these ideas.

For upper bounding Pr(∪iAi ): use union bound

For lower bounding Pr(∪iAi ): use DeMorgan’s + independence, and lower bounds on
Pr(Ai ) or
use Pr(A) ≥ Pr(A,B) followed by lower bound Pr(B) and Pr(A|B) (see use of this in the
random vectors’ theorem).

Many more ideas of course

Random variables: define PMF, joint PMF, PDF, joint PDF, CDF, joint CDF. Conditional
CDF, conditional PDF.
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Quick test of concepts: Given random variables (r.v.) X1,X2, . . .Xn.

1 Compute distribution of Z = |X1 + 1|
2 Compute distribution of Z = X1mod5 (remainder when X1 is divided by 5.

3 Compute the distribution of Z = X1 + X2. First

4 Compute the distribution of the smallest r.v., Z = min(X1,X2, ...Xn).

5 Compute the distribution of the second smallest r.v. (2nd order statistic).
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Probability Review I

1 Chain rule: extension of P(A1 ∩ A2) = P(A1)P(A2|A1)

Pr(A1,A2, . . .An) = Pr(A1) Pr(A2|A1) . . .Pr(Ak |A1,A2, ...Ak−1) . . .Pr(An|A1,A2, ...An−1)

2 Total expectation theorem for events, Law of iterated expectations for r.v.s
Consider events A1,A2, . . . ,An that form a partition of the sample space. Partition
means: all the events are disjoint and their union forms the entire sample space. Simplest
example of a partition is n = 2, A1 = A, A2 = Ac .
We have

E[X ] =
∑
i

E[X |Ai ] Pr(Ai )

If we set X = 1E for an event E ,, the above gives the total probability result.

Pr(E) =
∑
i

Pr(E |Ai ) Pr(Ai )

For two r.v.s X ,Y (scalar or vector r.vs),

E[g(X ,Y )] = E[E[g(X ,Y )|X ]]

(here E[.] takes expectation w.r.t. all r.v.s - here X ,Y ; E[.|X ] takes expectation
conditioned on X .
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Probability Review II

3 Independence and Conditional independence of events, r.v.s:

1 Two events independent: Pr(A,B) = Pr(A) Pr(B)
2 A set of n events is independent if for any subset S ⊆ [1, 2, ..n],

Pr(∩i∈SAi ) =
∏
i∈S

Pr(Ai )

3 A set of n r.v.s, X1,X2, ...Xn independent iff joint distribution is equal to product of
marginals

FX1,X2,...Xn (x1, x2, ...xn) =
n∏

i=1

FXi
(xi )

4 Conditional independence given Z = z for all z ∈ C : above holds conditioned on
Z = z for all z ∈ C .

5 i.i.d. : independent and FXi
(x) = FX1

(x), so that

FX1,X2,...Xn (x1, x2, ...xn) =
n∏

i=1

FXi
(xi ) =

n∏
i=1

FX1
(xi )
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Probability Review III

6 X ,Y (scalars or vectors) independent implies

E[g(X )h(Y )] = E[g(X )]E[h(Y )]

7 Conditionally independent given event C : above holds given event C . Same for
conditional indep given a r.v.

8 X indep of Y ,Z ⇒ X indep Y ; and X conditionally indep Y given Z .

4 Cauchy-Schwarz inequality

1 For two vectors v1, v2,
(v ′

1v2)
2 ≤ ∥v1∥2 ∥v2∥2

2 For two scalar r.v.s X ,Y ,
E[XY ]2 ≤ E[X 2]E[Y 2]

3 obvious extensions apply for random vectors and matrices.

5 Union bound: for a set of events Ai , suppose that Pr(Ai ) ≥ 1− pi . Then

Pr(A1,A2, . . . ,An) ≡ Pr(∩iAi ) = 1− Pr(∪iA
c
i ) ≥ 1−

∑
i

P(Ac
i ) ≥ 1−

∑
i

pi
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Probability Review IV

6 Moment Generating Function (MGF)
MX (t) := E[etX ] for a scalar X .

For a vector, X , MX (u) = E[euTX ]
7 Characteristic function : CX (t) := E[e itX ]:

it is the FT of the distribution of X computed at frequency −t.
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Gaussian r.v.s I

Scalar Gaussian r.v.
First note that a scalar Gaussian r.v. X with mean µ and variance σ2 has
the following pdf

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

Its characteristic function can be computed by computing the Fourier
transform at −t to get

CX (t) = e jµte−
σ2t2

2

Gaussian random vector (Jointly Gaussian r.v.s)
Any of the following can be used as a definition of j G.
All vectors should ideally be replaced by X etc.
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Gaussian r.v.s II

1 The n × 1 random vector X is jointly Gaussian if and only if the scalar

uTX

is Gaussian distributed for all n × 1 vectors u
2 The random vector X is jointly Gaussian if and only if its characteristic function,

CX (u) := E[e iuTX ] can be written as

CX (u) = e iu
Tµe−uTΣu/2

where µ = E[X ] and Σ = cov(X ).

▶ Proof idea - one side: Given X has above CX (u), show that V := uTX is G for any
vector u. To do this, show that CV (t) has the G c.f. expression. To show this, use
the fact that CV (t) = CX (tu) for scalar t.

▶ Proof idea - other side: Given u′X is G for any u. Let V := u′X . Its mean and

variance are µ = uTµ and σ2 = uTΣu and thus CV (t) = e jµte−
σ2t2

2 . Now,

CX (u) = CV (1) = e jµe−
σ2

2 . Substituting for µ, σ2 gives the CX (u) expression we
want to get.
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Gaussian r.v.s III

3 The random vector X is j G if and only if it can be written as an affine function of i.i.d.

standard Gaussian r.v’s.

▶ Proof uses CX (u) expression definition.
▶ Proof: suppose X = AZ + a where Z ∼ N (0, I ); get an expression for its c.f. by

using the c.f. definition and the fact that Z is a vector of i.i.d. standard Gaussian

scalar r.v.s and thus E[e itZj ] = et
2/2 for any t. Show that the c.f. of X satisfies the

CX (u) formula given in 2 with µX = a,ΣX = AAT .
▶ Proof (other side): suppose X is j G with mean µX and covariance ΣX ; X can

always be expressed as X = Σ1/2Z + µ where Z := Σ−1/2(X − µ); show that Z is
std. G (by getting an expression for its c.f.).

(c.f. of a std G Z is CZ (u) = e||u||
2/2).

4 The random vector X is j G if and only if it can be written as an affine function of jointly

Gaussian r.v’s.

▶ Proof: Suppose X is an affine function of a j G r.v. Y , i.e. X = BY + b. Since Y is
j G, by 3, it can be written as Y = AZ + a where Z ∼ N (0, I ) (i.i.d. standard
Gaussian). Thus, X = BAZ + (Ba+ b), i.e. it is an affine function of Z , and thus,
by 3, X is j G.

▶ Proof (other side): X is j G. So by 3, it can be written as X = BZ + b. But
Z ∼ N (0, I ) i.e. Z is a j G r.v.

Namrata Vaswani (Iowa State U.) High Dim Prob & Lin Alg for ML 16 / 26



Gaussian r.v.s IV

5 The random vector X is jointly Gaussian if and only if its joint pdf can be written as

fX (x) =
1

(
√
2π)ndet(Σ)

e−(X−µ)TΣ−1(X−µ)/2 (1)

▶ Proof: follows by computing the characteristic function from the pdf and vice versa.
Suppose X has above PDF. Then
CX (u) = E[exp(iu′X )] =

∫
x exp(i

∑
j ujxj )fX (x)dx , here x is a vector. Change of

variables: let z = Σ−1/2(x − µ) and substitute into the integral. Integral will
decouple into a product with term in the product being c.f. of a scalar Gaussian.
Use formula, to finally get the vector Gaussian c.f. expression. Thus X is j G.
Suppose X is j G. Then it has the given c.f. By uniqueness of Fourier transform, its
density is given by (1).

Properties
1 If X1,X2 are j G, then the conditional distribution of X1 given X2 is also j G
2 If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of

their covariance matrix are zero), then they are also mutually independent.
3 Any subset of X is also j G.
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Integral identity and its use, Gaussian tail bound I

1 Integral identity
For a scalar r.v. Z that is non-negative, i.e., Z ≥ 0 w.p. 1,

E[Z ] =

∫ ∞

τ=0
Pr(Z > τ)dτ

Proof: Use x =
∫ x
t=0 1dt =

∫∞
t=0 1(t ≤ x)dt followed by moving expectation inside integral

sign (allowed since indicator func is bounded).
2 Use integral identity to convert w.h.p. bound to bound on expectation:

Given a non-negative r.v. Z that satisfies Pr(Z > u0 + t) ≤ e−t2 for all t ≥ 0 (Z ≤ 1.1u0
w.h.p.) for a u0 ≫ 2 (u0 is more than order 1). This implies

E[Z ] ≤ u0 + 2 ≤ 1.1u0 the second bound assumes u0 ≫ 2

▶ To use this second bound of 1.1u0, scale Z so that u0 ≫ 2.
▶ Similarly, if we are told that Pr(Z < u0 − t) ≤ e−t2 for all t ≥ 0 (Z ≥ 0.9u0

w.h.p.), assuming 2 ≪ u0, we can show that

E[Z ] ≥ u0 − 2 ≥ 0.9u0
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Integral identity and its use, Gaussian tail bound II

▶ Proof idea: apply integral identity, split integral into 0 to u0 and then u0 to ∞. In
the first one, bound the probability by 1, in the second one, use the assumption, to

get E[Z ] ≤ u0 +
∫∞
t=0 e

−t2dt ≤ u0 +
√
2π/2 < u0 + 2.

Proof idea for lower bound:
E[Z ] ≥

∫ u0
τ=0 Pr(Z > τ)dτ =

∫ u0
t=0 Pr(Z > u0 − t)dt ≥

∫ u0
t=0(1− e−t2 )dt

3 Gaussian tail bounds: X ∼ N (0, 1):

(
1

t
−

1

t3
)

1
√
2π

e−t2/2 ≤ Pr(X ≥ t) ≤
1

√
2π

1

t
e−t2/2

Proof idea:

▶ Upper bound: use
∫∞
x=t e

−x2/2dx ≤
∫∞
x=t(x/t)e

−x2/2dx and then use change of
variables to solve the integral.

▶ Lower bound: see page 12 of Vershynin book
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Markov inequality and applications I

For a non-negative r.v. Z ,

Pr(Z > s) ≤
E[Z ]

s

Proof: easy application of integral identity

E[Z ] ≥
∫ s

0
Pr(Z > τ)dτ ≥ Pr(Z > s)(

∫ s

0
dτ) = Pr(Z > s)s

Applications: basic ideas

1 Apply this to Z = |X − µ| with µ = E[X ], to get Chebyshev’s inequality.

2 Apply this to Z = etX for any t ≥ 0. notice etX is always non-negative.

Pr(X > s) = Pr(etX > ets) ≤ e−tsE[etX ] = e−tsMX (t)

Since this bound holds for all t ≥ 0, we can take a mint≥0 of the RHS or we can
substitute in any convenient value of t.

3 To get a bound for Pr(X < −s), use Z = e−tX for t ≥ 0.
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Markov inequality and applications II

4 Useful for sums of independent r.v.s: if S =
∑

i Xi with Xi ’s independent, then
MX (t) =

∏
i MXi

(t). So then we get

Pr(
∑
i

Xi > s) ≤ min
t≥0

e−tsM∑
i Xi

(t) = min
t≥0

e−ts
∏
i

E[etXi ]

5 Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding’s lemma bounds the
MGF of any bounded r.v.)

6 Followed by often using 1 + x ≤ ex to simplify things

7 Final step: either minimizer over t ≥ 0 by differentiating the expression or a pick a
convenient value of t to substitute.

8 disregard this in first read: Final final step that is used sometimes: suppose get a bound
g(s) but want to show g(s) ≤ f (s) for some simpler expression f (s): try to show that
g(s)− f (s) is a decreasing function for the desired range of s values with g(0)− f (0) = 0
or something similar: this is used in Chernoff inequality for Bern(pi ) r.v.s. for small s
setting.
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Old recap document I

Quick test of concepts: Given random variables (r.v.) X1,X2, . . .Xn.

1 Compute distribution of Z = |X1 + 1|
2 Compute distribution of Z = X1mod5 (remainder when X1 is divided by 5.
3 Compute the distribution of Z = X1 + X2. First
4 Compute the distribution of the smallest r.v., Z = min(X1,X2, ...Xn).
5 Compute the distribution of the second smallest r.v. (2nd order statistic).

Some Topics

1 Chain Rule: extension of P(A1 ∩ A2) = P(A1)P(A2|A1)

P(A1,A2, . . . ,An) = P(A1)P(A2|A1)P(A3|A1,A2) . . .P(An|A1,A2, . . .An−1)

2 Total probability: if B1,B2, . . .Bn form a partition of the sample space, then

P(A) =
n∑

i=1

P(A|Bi )P(Bi )

Partition: The events are mutually disjoint and their union is equal to the sample space.

3 Union bound: suppose P(Ai ) ≥ 1− pi for small probabilities pi , then

P(∩iAi ) = 1− P(∪iA
c
i ) ≥ 1−

∑
i

P(Ac
i ) ≥ 1−

∑
i

pi
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Old recap document II

4 Independence and Conditional Independence
▶ events A,B are independent iff

P(A,B) = P(A)P(B)

▶ events A1,A2, . . .An are mutually independent iff
for any subset S ⊆ {1, 2, . . . , n},

P(∩i∈SAi ) =
∏
i∈S

P(Ai )

▶ analogous definition for random variables: for mutually independent r.v.’s the joint
pdf of any subset of r.v.’s is equal to the product of the marginal pdf’s.

▶ events A,B are conditionally independent given an event C iff

P(A,B|C) = P(A|C)P(B|C)

▶ extend to a set of events as above
▶ extend to r.v.’s as above

5 Aside: Given X is independent of {Y ,Z}. Then,
▶ X is independent of Y ; X is independent of Z
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Old recap document III

▶ X is conditionally independent of Y given Z
▶ E[XY |Z ] = E[X |Z ]E[Y |Z ]
▶ E[XY |Z ] = E[X ]E[Y |Z ]

6 Law of Iterated Expectations:

EX ,Y [g(X ,Y )] = EY [EX |Y [g(X ,Y )|Y ]]

7 Conditional Variance Identity:

VarX ,Y [g(X ,Y )] = EY [VarX |Y [g(X ,Y )|Y ]] + VarY [EX |Y [g(X ,Y )|Y ]]

8 Cauchy-Schwartz Inequality:

1 For vectors v1, v2, (v ′
1v2)

2 ≤ ∥v1∥22∥v2∥22
2 For vectors:

(
1

n

n∑
i=1

x ′i yi )
2 ≤ (

1

n

n∑
i=1

∥xi∥22)(
1

n

n∑
i=1

∥yi∥22)

3 For matrices:

∥
1

n

n∑
i=1

XiY ′
i ∥

2 ≤ ∥
1

n

n∑
i=1

XiX ′
i ∥2∥

1

n

n∑
i=1

YY ′∥2
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Old recap document IV

4 For scalar r.v.’s X ,Y : (E[XY ])2 ≤ E[X 2]E[Y 2]
5 For random vectors X ,Y ,

(E[X ′Y ])2 ≤ E[∥X∥22]E[∥Y ∥22]

6 Proof follows by using the fact that E[(X − αY )2] ≥ 0. Get a quadratic equation in
α and use the condition to ensure that this is non-negative

7 For random matrices X ,Y,

∥E[XY ′]∥22 ≤ λmax(E[XX ′])λmax(E[YY ′]) = ∥E[XX ′]∥2∥E[YY ′]∥2

Recall that for a positive semi-definite matrix M, ∥M∥2 = λmax(M).
8 Proof: use the following definition of ∥M∥2: ∥M∥2 = maxx,y :∥x∥2=1,∥y∥2=1 |x ′My |,

and then apply C-S for random vectors.

9 Hoeffding’s lemma: bounds the MGF of a zero mean and bounded r.v..
▶ Suppose E[X ] = 0 and P(X ∈ [a, b]) = 1, then

MX (s) := E[esX ] ≤ e
s2(b−a)2

8 if s > 0

Proof: use Jensen’s inequality followed by mean value theorem, see
http://www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf
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Old recap document V

10 Convergence in probability. A sequence of random variables, X1,X2, . . .Xn converges to a
constant a in probability means that for every ϵ > 0,

lim
n→∞

Pr(|Xn − a| > ϵ) = 0

11 Convergence in distribution. A sequence of random variables, X1,X2, . . .Xn converges to
random variable Z in distribution means that

lim
n→∞

FXn (x) = FZ (x), for almost all pointsx

12 Convergence in probability implies convergence in distribution
13 Consistent Estimator. An estimator for θ based on n random variables, θ̂n(X), is

consistent if it converges to θ in probability for large n.
14 Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, X1,X2, . . .Xn,

with finite mean µ. Define

X̄n :=
1

n

n∑
i=1

Xi

For any ϵ > 0,
lim

n→∞
P(|X̄n − µ| > ϵ) = 0

Proof: use Chebyshev if σ2 is finite. Else use characteristic function
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