Probability Review/New Material

High Dim Probability & Linear Algebra for ML and Sig Proc

Namrata Vaswani

Iowa State University

Reading material, Relevant Courses I

- The book "High Dimensional Probability for Data Science" by Roman Vershynin; and early parts
- 2 The tutorial article on "Non-asymptotic Random Matrix Theory" also by Vershynin
- Probability: https://www.ece.iastate.edu/~namrata/EE527_Spring14/Probability_recap_3.pdf

Good courses to take at ISU: EE 523, STAT 542, 543, EE/Math 623X

- Linear Algebra (based on first few chapters of Horn and Johnson, Matrix Analysis): https://www.ece.iastate.edu/~namrata/EE527_Spring14/linearAlgebraNotes.pdf
 - Good courses to take at ISU: MATH 510 (first half of the course); if too advanced, then first take MATH 407/507.
- 6 Review of Basics:
 - Probability:

https://www.ece.iastate.edu/~namrata/EE527_Spring12/322_recap.pdf http://cs229.stanford.edu/section/cs229-prob.pdf http://cs229.stanford.edu/section/more_on_gaussians.pdf

Reading material, Relevant Courses II

Linear Algebra: Andrew Ng's review from CS229 course at Stanford: http://cs229.stanford.edu/section/cs229-linalg.pdf also http://cs229.stanford.edu/livenotes2020spring/linearalgebra-slides.pdf Reading I

Chapter 1 of book (Vershynin's book)

Notation I

Order etc

- ▶ Order notation: $f(n) \in O(g(n))$ means that there exists an $n_0 < \infty$ such that for all $n > n_0$, $f(n) \le Cg(n)$ for a numerical constant C
- ▶ Omega notation: $f(n) \in \Omega(g(n))$ means that there exists an $n_0 < \infty$ such that for all $n > n_0$, $f(n) \ge Cg(n)$ for a numerical constant C
- ▶ $a \ll b$ means a/b is less than O(1)
- Re-use of letter C: C is used to denote different numerical constants in different uses

Linear algebra

- For a matrix A, A' or A^T or A^T denotes matrix transpose; other use of MATLAB notation too.
- ▶ Sphere in \Re^n : S^{n-1} , e.g., circle is a sphere in \Re^2 and is denoted by S^1
- ► Norms: ||.||: I2-norm, ||.||₁: I1-norm, ||.||_F: Frobenius norm
- ▶ Indicator function: $\mathbb{1}_{statement} = 1$ if statement is true and = 0 otherwise.

Probability

- ▶ For a set A, A^c denotes its complement set.
- ▶ Cumulative Distribution Function (CDF): $F_X(x) := \Pr(X \le x)$
- ▶ MGF $M_X(t) = \mathbb{E}[e^{tX}]$ for a scalar X. For a vector, \underline{X} , $M_X(\underline{u}) = \mathbb{E}[e^{\underline{u}'\underline{X}}]$
- ▶ Characteristic function: $C_X(t) = \mathbb{E}[e^{itX}]$: it is the FT of the distribution of X computed at frequency -t.

Notation II

- ▶ $Pr(A, B) = Pr(A \text{ and } B) = Pr(A \cap B)$.
- ▶ Gaussian $\mathcal{N}(\mu, \Sigma)$
- ▶ Bernoulli with probability of a 1 p: Bern(p)
- ▶ Symmetric Bernoulli *SymBern*: X = -1 w.p. 1/2 and X = +1 w.p. 1/2
- ► w.h.p. :
- ▶ w.p. :

Basics: Simple algebra bounds: move to the end I

- 1 https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
- Simple algebra bounds
 - ► For any $x \ge 0$, $1 + x \le e^x$ used very often to convert $\Pi_i(1 + \mu_i)$ to $e^{\sum_i \mu_i}$ (appears when bounding MGF of sums of indep r.v.s)
 - For 0 < x < 1, $\log(1+x) \ge x/(1+x/2)$
 - For all x > -1, $\log(1+x) \le x$
 - For any $x \ge 0$, $e^x < x + e^{x^2}$ used in subGaussian properties' equivalence.
 - ?? For any $x \ge 0$, $\frac{1}{1-x} \le e^{2x}$
 - For any z > 0, $\max(|z-1|, |z-1|^2) \le |z^2-1|$
 - For any z > 0, $|z 1| \ge \delta$ implies $|z^2 1| \ge \max(\delta, \delta^2)$.
 - ► Stirling /factorial bounds
 - ★ $\Gamma(x) < x^x \Gamma(x) := ??$
 - \star $p! > (p/e)^p$, easy to see that $p! < p^p$
 - $\star (\frac{n}{k})^k \le {n \choose k} \le \sum_{k'=0}^k {n \choose k} \le (\frac{en}{k})^k$
 - Taylor series
 - \star exp $(x) = \sum_{p=0}^{\infty} \frac{x^p}{p!}$
- 3 Copy more from page 23, 30 of Vershynin book. TBD

Basics: Probability concepts assumed I

Probability concepts assumed:

Probability axioms, disjoint events, independent events, conditional probability define, DeMorgan's laws, counting arguments

Use: try to convert an exact probability computation into probability of union of disjoint events, or intersection of independent events, or some combination of these ideas.

For upper bounding $Pr(\bigcup_i A_i)$: use union bound

For lower bounding $\Pr(\cup_i A_i)$: use DeMorgan's + independence, and lower bounds on $\Pr(A_i)$ or

use $\Pr(A) \ge \Pr(A,B)$ followed by lower bound $\Pr(B)$ and $\Pr(A|B)$ (see use of this in the random vectors' theorem).

Many more ideas of course

Random variables: define PMF, joint PMF, PDF, joint PDF, CDF, joint CDF. Conditional CDF, conditional PDF.

Quick test of concepts: Given random variables (r.v.) $X_1, X_2, \dots X_n$.

- **1** Compute distribution of $Z = |X_1 + 1|$
- 2 Compute distribution of $Z = X_1 mod 5$ (remainder when X_1 is divided by 5.
- 3 Compute the distribution of $Z = X_1 + X_2$. First
- **4** Compute the distribution of the smallest r.v., $Z = \min(X_1, X_2, ... X_n)$.
- Sompute the distribution of the second smallest r.v. (2nd order statistic).

Probability Review I

① Chain rule: extension of $P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$

$$\Pr(A_1, A_2, \dots A_n) = \Pr(A_1) \Pr(A_2 | A_1) \dots \Pr(A_k | A_1, A_2, \dots A_k - 1) \dots \Pr(A_n | A_1, A_2, \dots A_{n-1})$$

② Total expectation theorem for events, Law of iterated expectations for r.v.s Consider events A_1, A_2, \ldots, A_n that form a partition of the sample space. Partition means: all the events are disjoint and their union forms the entire sample space. Simplest example of a partition is n = 2, $A_1 = A$, $A_2 = A^c$. We have

$$\mathbb{E}[X] = \sum_{i} \mathbb{E}[X|A_{i}] \Pr(A_{i})$$

If we set $X = \mathbb{1}_E$ for an event $E_{,,}$ the above gives the total probability result.

$$\Pr(E) = \sum_{i} \Pr(E|A_i) \Pr(A_i)$$

For two r.v.s X, Y (scalar or vector r.vs),

$$\mathbb{E}[g(X,Y)] = \mathbb{E}[\mathbb{E}[g(X,Y)|X]]$$

(here $\mathbb{E}[.]$ takes expectation w.r.t. all r.v.s - here $X,Y;\mathbb{E}[.|X]$ takes expectation conditioned on X.

Probability Review II

- Independence and Conditional independence of events, r.v.s:
 - **1** Two events independent: Pr(A, B) = Pr(A) Pr(B)
 - ② A set of n events is independent if for any subset $S \subseteq [1, 2, ...n]$,

$$\Pr(\cap_{i\in S}A_i)=\prod_{i\in S}\Pr(A_i)$$

A set of n r.v.s, X₁, X₂, ...X_n independent iff joint distribution is equal to product of marginals

$$F_{X_1,X_2,...X_n}(x_1,x_2,...x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$

- **(a)** Conditional independence given Z = z for all $z \in C$: above holds conditioned on Z = z for all $z \in C$.
- **6** i.i.d. : independent and $F_{X_i}(x) = F_{X_1}(x)$, so that

$$F_{X_1,X_2,...X_n}(x_1,x_2,...x_n) = \prod_{i=1}^n F_{X_i}(x_i) = \prod_{i=1}^n F_{X_1}(x_i)$$

4 D > 4 P > 4 B > 4 B > B 900

Probability Review III

6 X, Y (scalars or vectors) independent implies

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

- Conditionally independent given event C: above holds given event C. Same for conditional indep given a r.v.
- **8** X indep of $Y, Z \Rightarrow X$ indep Y; and X conditionally indep Y given Z.
- Cauchy-Schwarz inequality
 - For two vectors v_1, v_2 ,

$$(v_1'v_2)^2 \le ||v_1||^2 ||v_2||^2$$

2 For two scalar r.v.s X, Y,

$$\mathbb{E}[XY]^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$$

- 3 obvious extensions apply for random vectors and matrices.
- **1** Union bound: for a set of events A_i , suppose that $Pr(A_i) \ge 1 p_i$. Then

$$\Pr(A_1,A_2,\ldots,A_n) \equiv \Pr(\cap_i A_i) = 1 - \Pr(\cup_i A_i^c) \geq 1 - \sum_i P(A_i^c) \geq 1 - \sum_i p_i$$

Probability Review IV

- Moment Generating Function (MGF) $M_X(t) := \mathbb{E}[e^{tX}]$ for a scalar X.
- For a vector, \underline{X} , $M_{\underline{X}}(\underline{u}) = \mathbb{E}[e^{\underline{u}^T\underline{X}}]$ Characteristic function : $C_X(t) := \mathbb{E}$
- **?** Characteristic function : $C_X(t) := \mathbb{E}[e^{itX}]$: it is the FT of the distribution of X computed at frequency -t.

Scalar Gaussian r.v.

First note that a scalar Gaussian r.v. X with mean μ and variance σ^2 has the following pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Its characteristic function can be computed by computing the Fourier transform at -t to get

$$C_X(t) = e^{j\mu t} e^{-\frac{\sigma^2 t^2}{2}}$$

Gaussian random vector (Jointly Gaussian r.v.s)

Any of the following can be used as a definition of j G.

All vectors should ideally be replaced by X etc.

Gaussian r.v.s II

1 The $n \times 1$ random vector X is jointly Gaussian if and only if the scalar

$$u^T X$$

is Gaussian distributed for all $n \times 1$ vectors u

② The random vector X is jointly Gaussian if and only if its characteristic function, $C_X(u) := \mathbb{E}[e^{iu^T X}]$ can be written as

$$C_X(u) = e^{iu^T \mu} e^{-u^T \Sigma u/2}$$

where $\mu = \mathbb{E}[X]$ and $\Sigma = cov(X)$.

- ▶ Proof idea one side: Given X has above $C_X(u)$, show that $V := u^T X$ is G for any vector u. To do this, show that $C_V(t)$ has the G c.f. expression. To show this, use the fact that $C_V(t) = C_X(tu)$ for scalar t.
- ▶ Proof idea other side: Given u'X is G for any u. Let V:=u'X. Its mean and variance are $\mu=u^T\mu$ and $\sigma^2=u^T\Sigma u$ and thus $C_V(t)=e^{j\mu t}e^{-\frac{\sigma^2t^2}{2}}$. Now, $C_X(u)=C_V(1)=e^{j\mu}e^{-\frac{\sigma^2}{2}}$. Substituting for μ,σ^2 gives the $C_X(u)$ expression we want to get.

Gaussian r.v.s III

- The random vector X is j G if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.
 - ▶ Proof uses $C_X(u)$ expression definition.
 - ▶ Proof: suppose X = AZ + a where $Z \sim \mathcal{N}(0, I)$; get an expression for its c.f. by using the c.f. definition and the fact that Z is a vector of i.i.d. standard Gaussian scalar r.v.s and thus $\mathbb{E}[e^{itZ_j}] = e^{t^2/2}$ for any t. Show that the c.f. of X satisfies the $C_X(u)$ formula given in 2 with $\mu_X = a$, $\Sigma_X = AA^T$.
 - Proof (other side): suppose X is j G with mean μ_X and covariance Σ_X ; X can always be expressed as $X = \Sigma^{1/2}Z + \mu$ where $Z := \Sigma^{-1/2}(X \mu)$; show that Z is std. G (by getting an expression for its c.f.). (c.f. of a std G Z is $C_Z(u) = e^{||u||^2/2}$).
- **1** The random vector X is j G if and only if it can be written as an affine function of jointly Gaussian r.v's.
 - ▶ Proof: Suppose X is an affine function of a j G r.v. Y, i.e. X = BY + b. Since Y is j G, by 3, it can be written as Y = AZ + a where $Z \sim \mathcal{N}(0, I)$ (i.i.d. standard Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and thus, by 3, X is j G.
 - ▶ Proof (other side): X is j G. So by 3, it can be written as X = BZ + b. But $Z \sim \mathcal{N}(0, I)$ i.e. Z is a j G r.v.

Gaussian r.v.s IV

lacktriangle The random vector X is jointly Gaussian if and only if its joint pdf can be written as

$$f_X(x) = \frac{1}{(\sqrt{2\pi})^n \det(\Sigma)} e^{-(X-\mu)^T \Sigma^{-1} (X-\mu)/2}$$
 (1)

Proof: follows by computing the characteristic function from the pdf and vice versa. Suppose X has above PDF. Then $C_X(u) = \mathbb{E}[\exp(iu'X)] = \int_x \exp(i\sum_j u_j x_j) f_X(x) dx$, here x is a vector. Change of variables: let $z = \Sigma^{-1/2}(x-\mu)$ and substitute into the integral. Integral will decouple into a product with term in the product being c.f. of a scalar Gaussian. Use formula, to finally get the vector Gaussian c.f. expression. Thus X is j G. Suppose X is j G. Then it has the given c.f. By uniqueness of Fourier transform, its density is given by (1).

Properties

- lacktriangle If X_1, X_2 are j G, then the conditional distribution of X_1 given X_2 is also j G
- [2] If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.
- Any subset of X is also j G.

Integral identity and its use, Gaussian tail bound I

Integral identity

For a scalar r.v. Z that is non-negative, i.e., $Z \ge 0$ w.p. 1,

$$\mathbb{E}[Z] = \int_{ au=0}^{\infty} \mathsf{Pr}(Z > au) d au$$

Proof: Use $x = \int_{t=0}^{x} \mathbb{1}(t \le x) dt$ followed by moving expectation inside integral sign (allowed since indicator func is bounded).

② Use integral identity to convert w.h.p. bound to bound on expectation: Given a non-negative r.v. Z that satisfies $\Pr(Z > u_0 + t) \le e^{-t^2}$ for all $t \ge 0$ ($Z \le 1.1u_0$ w.h.p.) for a $u_0 \gg 2$ (u_0 is more than order 1). This implies

$$\mathbb{E}[Z] \leq u_0 + 2 \leq 1.1u_0$$
 the second bound assumes $u_0 \gg 2$

- ▶ To use this second bound of $1.1u_0$, scale Z so that $u_0 \gg 2$.
- ▶ Similarly, if we are told that $\Pr(Z < u_0 t) \le e^{-t^2}$ for all $t \ge 0$ ($Z \ge 0.9u_0$ w.h.p.), assuming $2 \ll u_0$, we can show that

$$\mathbb{E}[Z] \geq u_0 - 2 \geq 0.9u_0$$

Integral identity and its use, Gaussian tail bound II

▶ Proof idea: apply integral identity, split integral into 0 to u_0 and then u_0 to ∞ . In the first one, bound the probability by 1, in the second one, use the assumption, to get $\mathbb{E}[Z] \leq u_0 + \int_{t=0}^{\infty} \mathrm{e}^{-t^2} dt \leq u_0 + \sqrt{2\pi}/2 < u_0 + 2$. Proof idea for lower bound:

$$\mathbb{E}[Z] \ge \int_{\tau=0}^{u_0} \Pr(Z > \tau) d\tau = \int_{t=0}^{u_0} \Pr(Z > u_0 - t) dt \ge \int_{t=0}^{u_0} (1 - e^{-t^2}) dt$$

3 Gaussian tail bounds: $X \sim \mathcal{N}(0,1)$:

$$(\frac{1}{t} - \frac{1}{t^3}) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \Pr(X \ge t) \le \frac{1}{\sqrt{2\pi}} \frac{1}{t} e^{-t^2/2}$$

Proof idea:

- ▶ Upper bound: use $\int_{x=t}^{\infty} e^{-x^2/2} dx \le \int_{x=t}^{\infty} (x/t) e^{-x^2/2} dx$ and then use change of variables to solve the integral.
- ► Lower bound: see page 12 of Vershynin book

Markov inequality and applications I

For a non-negative r.v. Z,

$$\Pr(Z > s) \leq \frac{\mathbb{E}[Z]}{s}$$

Proof: easy application of integral identity

$$\mathbb{E}[Z] \ge \int_0^s \Pr(Z > \tau) d\tau \ge \Pr(Z > s) (\int_0^s d\tau) = \Pr(Z > s) s$$

Applications: basic ideas

- **1** Apply this to $Z = |X \mu|$ with $\mu = \mathbb{E}[X]$, to get Chebyshev's inequality.
- ② Apply this to $Z = e^{tX}$ for any $t \ge 0$. notice e^{tX} is always non-negative.

$$\Pr(X > s) = \Pr(e^{tX} > e^{ts}) \le e^{-ts} \mathbb{E}[e^{tX}] = e^{-ts} M_X(t)$$

Since this bound holds for all $t \ge 0$, we can take a $\min_{t \ge 0}$ of the RHS or we can substitute in any convenient value of t.

3 To get a bound for Pr(X < -s), use $Z = e^{-tX}$ for $t \ge 0$.

Markov inequality and applications II

① Useful for sums of independent r.v.s: if $S = \sum_i X_i$ with X_i 's independent, then $M_X(t) = \prod_i M_{X_i}(t)$. So then we get

$$\Pr(\sum_{i} X_{i} > \mathfrak{s}) \leq \min_{t \geq 0} \mathrm{e}^{-t\mathfrak{s}} M_{\sum_{i} X_{i}}(t) = \min_{t \geq 0} \mathrm{e}^{-t\mathfrak{s}} \prod_{i} \mathbb{E}[\mathrm{e}^{tX_{i}}]$$

- Use exact expression for MGF or a bound on MGFs (e.g. Hoeffding's lemma bounds the MGF of any bounded r.v.)
- **6** Followed by often using $1 + x \le e^x$ to simplify things
- **②** Final step: either minimizer over $t \ge 0$ by differentiating the expression or a pick a convenient value of t to substitute.
- **1** disregard this in first read: Final final step that is used sometimes: suppose get a bound g(s) but want to show $g(s) \le f(s)$ for some simpler expression f(s): try to show that g(s) f(s) is a decreasing function for the desired range of s values with g(0) f(0) = 0 or something similar: this is used in Chernoff inequality for $Bern(p_i)$ r.v.s. for small s setting.

Old recap document I

Quick test of concepts: Given random variables (r.v.) $X_1, X_2, \dots X_n$.

- **1** Compute distribution of $Z = |X_1 + 1|$
- ② Compute distribution of $Z = X_1 mod 5$ (remainder when X_1 is divided by 5.
- **3** Compute the distribution of $Z = X_1 + X_2$. First
- **4** Compute the distribution of the smallest r.v., $Z = \min(X_1, X_2, ... X_n)$.
- 6 Compute the distribution of the second smallest r.v. (2nd order statistic).

Some Topics

① Chain Rule: extension of $P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$

$$P(A_1, A_2, \ldots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2) \ldots P(A_n|A_1, A_2, \ldots, A_{n-1})$$

② Total probability: if $B_1, B_2, \dots B_n$ form a partition of the sample space, then

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Partition: The events are mutually disjoint and their union is equal to the sample space.

3 Union bound: suppose $P(A_i) \ge 1 - p_i$ for small probabilities p_i , then

$$P(\cap_i A_i) = 1 - P(\cup_i A_i^c) \geq 1 - \sum_i P(A_i^c) \geq 1 - \sum_i p_i$$

Old recap document II

- Independence and Conditional Independence
 - events A, B are independent iff

$$P(A,B) = P(A)P(B)$$

▶ events $A_1, A_2, ... A_n$ are mutually independent iff for any subset $S \subseteq \{1, 2, ..., n\}$,

$$P(\cap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

- analogous definition for random variables: for mutually independent r.v.'s the joint pdf of any subset of r.v.'s is equal to the product of the marginal pdf's.
- events A, B are conditionally independent given an event C iff

$$P(A,B|C) = P(A|C)P(B|C)$$

- extend to a set of events as above
- extend to r.v.'s as above
- **5** Aside: Given X is independent of $\{Y, Z\}$. Then,
 - X is independent of Y; X is independent of Z

Old recap document III

- X is conditionally independent of Y given Z
- $\blacktriangleright \ \mathbb{E}[XY|Z] = \mathbb{E}[X|Z]\mathbb{E}[Y|Z]$
- $\blacktriangleright \ \mathbb{E}[XY|Z] = \mathbb{E}[X]\mathbb{E}[Y|Z]$
- 6 Law of Iterated Expectations:

$$\mathbb{E}_{X,Y}[g(X,Y)] = \mathbb{E}_Y[\mathbb{E}_{X|Y}[g(X,Y)|Y]]$$

Conditional Variance Identity:

$$\textit{Var}_{X,Y}[g(X,Y)] = \mathbb{E}_{Y}[\textit{Var}_{X|Y}[g(X,Y)|Y]] + \textit{Var}_{Y}[\mathbb{E}_{X|Y}[g(X,Y)|Y]]$$

- Cauchy-Schwartz Inequality:
 - **1** For vectors $v_1, v_2, (v_1'v_2)^2 \le ||v_1||_2^2 ||v_2||_2^2$
 - 2 For vectors:

$$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}'y_{i}\right)^{2} \leq \left(\frac{1}{n}\sum_{i=1}^{n}\|x_{i}\|_{2}^{2}\right)\left(\frac{1}{n}\sum_{i=1}^{n}\|y_{i}\|_{2}^{2}\right)$$

6 For matrices:

$$\|\frac{1}{n}\sum_{i=1}^n\mathcal{X}_i\mathcal{Y}_i'\|^2\leq \|\frac{1}{n}\sum_{i=1}^n\mathcal{X}_i\mathcal{X}_i'\|_2\|\frac{1}{n}\sum_{i=1}^n\mathcal{Y}\mathcal{Y}'\|_2$$

Old recap document IV

- **4** For scalar r.v.'s $X, Y: (\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$
- \bullet For random vectors X, Y,

$$(\mathbb{E}[X'Y])^2 \le \mathbb{E}[\|X\|_2^2]\mathbb{E}[\|Y\|_2^2]$$

- **o** Proof follows by using the fact that $\mathbb{E}[(X \alpha Y)^2] \ge 0$. Get a quadratic equation in α and use the condition to ensure that this is non-negative
- **7** For random matrices \mathcal{X}, \mathcal{Y} ,

$$\|\mathbb{E}[\mathcal{XY}']\|_2^2 \leq \lambda_{\mathsf{max}}(\mathbb{E}[\mathcal{XX}'])\lambda_{\mathsf{max}}(\mathbb{E}[\mathcal{YY}']) = \|\mathbb{E}[\mathcal{XX}']\|_2 \|\mathbb{E}[\mathcal{YY}']\|_2$$

Recall that for a positive semi-definite matrix M, $||M||_2 = \lambda_{\max}(M)$.

- **3** Proof: use the following definition of $\|M\|_2$: $\|M\|_2 = \max_{x,y:\|x\|_2=1,\|y\|_2=1} |x'My|$, and then apply C-S for random vectors.
- Moeffding's lemma: bounds the MGF of a zero mean and bounded r.v..
 - ▶ Suppose $\mathbb{E}[X] = 0$ and $P(X \in [a, b]) = 1$, then

$$M_X(s) := \mathbb{E}[e^{sX}] \le e^{\frac{s^2(b-a)^2}{8}}$$
 if $s > 0$

Proof: use Jensen's inequality followed by mean value theorem, see http://www.cs.berkeley.edu/~jduchi/projects/probability_bounds.pdf

Old recap document V

10 Convergence in probability. A sequence of random variables, $X_1, X_2, \ldots X_n$ converges to a constant a in probability means that for every $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|X_n-a|>\epsilon)=0$$

1 Convergence in distribution. A sequence of random variables, $X_1, X_2, \ldots X_n$ converges to random variable Z in distribution means that

$$\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$$
, for almost all pointsx

- Convergence in probability implies convergence in distribution
- **3** Consistent Estimator. An estimator for θ based on n random variables, $\hat{\theta}_n(\underline{X})$, is consistent if it converges to θ in probability for large n.
- **Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables,** $X_1, X_2, \ldots X_n$, with finite mean μ . Define

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

For any $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| > \epsilon) = 0$$

Proof: use Chebyshev if σ^2 is finite. Else use characteristic function