What is Probability?

- Measured relative frequency of occurrence of an event.
 Example: toss a coin 100 times, measure frequency of heads or compute probability of raining on a particular day and month (using past years' data)
- Or subjective belief about how "likely" an event is (when do not have data to estimate frequency).

Example: any one-time event in history or "how likely is it that a new experimental drug will work?"

This may either be a subjective belief or derived from the physics, for e.g. if I flip a symmetric coin (equal weight on both sides), I will get a head with probability 1/2.

• For probabilistic reasoning, **two** types of problems need to be solved

- 1. Specify the probability "model" or learn it (covered in a statistics class).
- 2. Use the "model" to compute probability of different events (covered here).
- We will assume the model is given and will focus on problem 2. in this course.

Set Theory Basics

- Set: any collection of objects (elements of a set).
- Discrete sets
 - Finite number of elements, e.g. numbers of a die
 - Or infinite but countable number of elements, e.g. set of integers
- Continuous sets
 - Cannot count the number of elements, e.g. all real numbers between 0 and 1.
- "Universe" (denoted Ω): consists of all possible elements that could be of interest. In case of random experiments, it is the set of all possible outcomes. Example: for coin tosses, Ω = {H,T}.
- Empty set (denoted ϕ): a set with no elements

- Subset: $A \subseteq B$: if every element of A also belongs to B.
- Strict subset: A ⊂ B: if every element of A also belongs to B and B has more elements than A.
- Belongs: \in , Does not belong: \notin
- Complement: A' or A^c , Union: $A \cup B$, Intersection: $A \cap B$

$$-A' \triangleq \{x \in \Omega | x \notin A\}$$

- $-A \cup B \triangleq \{x | x \in A, \text{ or } x \in B\}, x \in \Omega \text{ is assumed.}$
- $-A \cap B \triangleq \{x | x \in A, and x \in B\}$
- Visualize using Venn diagrams (see book)
- Disjoint sets: A and B are disjoint if A ∩ B = φ (empty), i.e. they have no common elements.

• DeMorgan's Laws

$$(A \cup B)' = A' \cap B' \tag{1}$$

$$(A \cap B)' = A' \cup B' \tag{2}$$

- Proofs: Need to show that every element of LHS (left hand side) is also an element of RHS (right hand side), i.e. LHS \subseteq RHS and show vice versa, i.e. RHS \subseteq LHS.
- We show the proof of the first property
 - * If $x \in (A \cup B)'$, it means that x does not belong to A or B. In other words x does not belong to A and x does not B either. This means x belongs to the complement of A and to the complement of B, i.e. $x \in A' \cap B'$.
 - * Just showing this much does not complete the proof, need to show the other side also.
 - * If $x \in A' \cap B'$, it means that x does not belong to A and it does not

belong to B, i.e. it belongs to neither A nor B, i.e. $x \in (A \cup B)'$

- * This completes the argument
- Please read the section on Algebra of Sets, pg 5

Probabilistic models

- There is an underlying process called **experiment** that produces exactly ONE **outcome**.
- A probabilistic model: consists of a sample space and a probability law
 - Sample space (denoted Ω): set of all possible outcomes of an experiment
 - Event: any subset of the sample space
 - Probability Law: assigns a probability to every set A of possible outcomes (event)
 - Choice of sample space (or universe): every element should be distinct and mutually exclusive (disjoint); and the space should be "collectively exhaustive" (every possible outcome of an experiment should be included).

- Probability Axioms:
 - 1. Nonnegativity. $P(A) \ge 0$ for every event A.
 - 2. Additivity. If A and B are two disjoint events, then $P(A \cup B) = P(A) + P(B)$

(also extends to any countable number of disjoint events).

- 3. Normalization. Probability of the entire sample space, $P(\Omega) = 1$.
- Probability of the empty set, $P(\phi) = 0$ (follows from Axioms 2 & 3).
- Sequential models, e.g. three coin tosses or two sequential rolls of a die. Tree-based description: see Fig. 1.3
- Discrete probability law: sample space consists of a finite number of possible outcomes, law specified by probability of single element events.
 - Example: for a fair coin toss, $\Omega = \{H, T\}$, P(H) = P(T) = 1/2
 - Discrete uniform law for any event A:

 $P(A) = \frac{\text{number of elements in A}}{n}$

Continuous probability law: e.g. Ω = [0, 1]: probability of any single element event is zero, need to talk of probability of a subinterval, [a, b] of [0, 1].

See Example 1.4, 1.5 (This is slightly more difficult. We will cover continuous probability and examples later).

- Properties of probability laws
 - 1. If $A \subseteq B$, then $P(A) \leq P(B)$
 - 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 3. $P(A \cup B) \le P(A) + P(B)$
 - 4. $P(A \cup B \cup C) = P(A) + P(A' \cap B) + P(A' \cap B' \cap C)$
 - 5. Note: book uses A^c for A' (complement of set A).
 - 6. Proofs: Will be covered in next class. Visualize: Venn diagrams.

Conditional Probability

- Given that we know that an event B has occurred, what is the probability that event A occurred? Denoted by P(A|B). Example: Roll of a 6-sided die. Given that the outcome is even, what is the probability of a 6? Answer: 1/3
- When number of outcomes is finite and all are equally likely,

$$P(A|B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}$$
(3)

• In general,

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)} \tag{4}$$

• P(A|B) is a probability law (satisfies axioms) on the universe B. Exercise: show this.

- Examples/applications
 - Example 1.7, 1.8, 1.11
 - Construct sequential models: $P(A \cap B) = P(B)P(A|B)$. Example: Radar detection (Example 1.9). What is the probability of the aircraft not present and radar registers it (false alarm)?
 - See Fig. 1.9: Tree based sequential description

Total Probability and Bayes Rule

• Total Probability Theorem: Let $A_1, \ldots A_n$ be disjoint events which form a partition of the sample space $(\bigcup_{i=1}^n A_i = \Omega)$. Then for any event B,

$$P(B) = P(A_1 \cap B) + \dots P(A_n \cap B)$$

=
$$P(A_1)P(B|A_1) + \dots P(A_n)P(B|A_n)$$
(5)

Visualization and proof: see Fig. 1.13

- Example 1.13, 1.15
- Bayes rule: Let $A_1, \ldots A_n$ be disjoint events which form a partition of the sample space. Then for any event B, s.t. P(B) > 0, we have

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + \dots P(A_n)P(B|A_n)}$$
(6)

- Inference using Bayes rule
 - There are multiple "causes" A₁, A₂, ...A_n that result in a certain "effect" B. Given that we observe the effect B, what is the probability that the cause was A_i? Answer: use Bayes rule. See Fig. 1.14
 - Radar detection: what is the probability of the aircraft being present given that the radar registers it? Example 1.16
 - False positive puzzle, Example 1.18: very interesting!

Independence

- P(A|B) = P(A) and so P(A ∩ B) = P(B)P(A): the fact that B has occurred gives no information about the probability of occurrence of A. Example: A= head in first coin toss, B = head in second coin toss.
- "Independence": DIFFERENT from "mutually exclusive" (disjoint)
 - Events A and B are disjoint if $P(A \cap B) = 0$: cannot be independent if P(A) > 0 and P(B) > 0.
 - Example: A = head in a coin toss, B = tail in a coin toss
 - Independence: a concept for events in a sequence. Independent events with P(A) > 0, P(B) > 0 cannot be disjoint
- Conditional independence **
- Independence of a collection of events

- $P(\bigcap_{i \in S} A_i) = \prod_{i \in S} P(A_i)$ for every subset S of $\{1, 2, ... n\}$
- Reliability analysis of complex systems: independence assumption often simplifies calculations
 - Analyze Fig. 1.15: what is P(system fails) of the system $A \rightarrow B$?
 - * Let p_i = probability of success of component i.
 - * *m* components in series: $P(\text{system fails}) = 1 p_1 p_2 \dots p_m$ (succeeds if all components succeed).
 - * m components in parallel:

 $P(\text{system fails}) = (1 - p_1) \dots (1 - p_m)$ (fails if all the components fail).

- Independent Bernoulli trials and Binomial probabilities
 - A Bernoulli trial: a coin toss (or any experiment with two possible outcomes, e.g. it rains or does not rain, bit values)
 - Independent Bernoulli trials: sequence of independent coin tosses

- Binomial: Given n independent coin tosses, what is the probability of k heads (denoted p(k))?
 - * probability of any one sequence with k heads is $p^k(1-p)^{n-k}$
 - * number of such sequences (from counting arguments): $\begin{pmatrix} n \\ k \end{pmatrix}$

*
$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
, where $\binom{n}{k} \triangleq \frac{n!}{(n-k)!k!}$

 Application: what is the probability that more than c customers need an internet connection at a given time? We know that at a given time, the probability that any one customer needs connection is p.

Answer:
$$\sum_{k=c+1}^{n} p(k)$$

Counting

- Needed in many situations. Two examples are:
 - 1. Sample space has a finite number of equally likely outcomes (discrete uniform), compute probability of any event A.
 - Or compute the probability of an event A which consists of a finite number of equally likely outcomes each with probability p, e.g. probability of k heads in n coin tosses.
- Counting principle (See Fig. 1.17): Consider a process consisting of r stages. If at stage 1, there are n₁ possibilities, at stage 2, n₂ possibilities and so on, then the total number of possibilities = n₁n₂...n_r.
 - Example 1.26 (number of possible telephone numbers)
 - Counting principle applies even when second stage depends on the first stage and so on, Ex. 1.28 (no. of words with 4 distinct letters)

- Applications: *k*-permutations.
 - n distinct objects, how many different ways can we pick k objects and arrange them in a sequence?
 - * Use counting principle: choose first object in n possible ways, second one in n 1 ways and so on. Total no. of ways:

$$n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

- * If k = n, then total no. of ways = n!
- * Example 1.28, 1.29
- Applications: *k*-combinations.
 - Choice of k elements out of an n-element set without regard to order.
 - Most common example: There are *n* people, how many different ways can we form a committee of *k* people? Here order of choosing the *k* members is not important. Denote answer by $\binom{n}{k}$
 - Note that selecting a k-permutation is the same as first selecting a

k-combination and then ordering the elements (in *k*!) different ways, i.e. $\frac{n!}{(n-k)!} = \binom{n}{k} k!$ - Thus $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

– How will you relate this to the binomial coefficient (number of ways to get k heads out of n tosses)?

Toss number j = person j, a head in a toss = the person (toss number) is in committee

- Applications: *k*-partitions. **
 - A combination is a partition of a set into two parts
 - Partition: given an *n*-element set, consider its partition into *r* subsets of size n_1, n_2, \ldots, n_r where $n_1 + n_2 + \ldots n_r = n$.
 - * Use counting principle and k-combinations result.
 - * Form the first subset. Choose n_1 elements out of n: $\begin{pmatrix} n \\ n_1 \end{pmatrix}$ ways.
 - * Form second subset. Choose n_2 elements out of $n n_1$ available

elements:
$$\binom{n-n_1}{n_2}$$
 and so on.
* Total number of ways to form the partition:
 $\binom{n}{n_1}\binom{n-n_1}{n_2}\dots\binom{(n-n_1-n_2\dots n_{r-1})}{n_r} = \frac{n!}{n_1!n_2!\dots n_r!}$

Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 What is a random variable (r.v.)?

- A real valued function of the outcome of an experiment
- Example: Coin tosses. r.v. X = 1 if heads and X = 0 if tails (Bernoulli r.v.).
- A function of a r.v. defines another r.v.
- Discrete r.v.: X takes values from the set of integers

2 Discrete Random Variables & Probability Mass Function (PMF)

• Probability Mass Function (PMF): Probability that the r.v. X takes a value x is PMF of X computed at X = x. Denoted by $p_X(x)$. Thus

 $p_X(x) = P(\{X = x\}) = P(\text{all possible outcomes that result in the event } \{X = x\})$ (1)

- Everything that we learnt in Chap 1 for events applies. Let Ω is the sample space (space of all possible values of X in an experiment). Applying the axioms,
 - $-p_X(x) \ge 0$ - $P(\{X \in S\}) = \sum_{x \in S} p_X(x)$ (follows from Additivity since different events $\{X = x\}$ are disjoint) $\sum_{x \in S} p_X(x) = 1$ (follows from Additivity or d Neuroplication)
 - $-\sum_{x\in\Omega} p_X(x) = 1$ (follows from Additivity and Normalization).

- Example: X = number of heads in 2 fair coin tosses (p = 1/2). $P(X > 0) = \sum_{x=1}^{2} p_X(x) = 0.75$.

- Can also define a binary r.v. for any event A as: X = 1 if A occurs and X = 0 otherwise. Then X is a Bernoulli r.v. with p = P(A).
- Bernoulli (X = 1 (heads) or X = 0 (tails)) r.v. with probability of heads p

Bernoulli(p):
$$p_X(x) = p^x (1-p)^{1-x}, \ x = 0, \ or \ x = 1$$
 (2)

• Binomial (X = x heads out of n independent tosses, probability of heads p)

Binomial(n,p):
$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots n$$
 (3)

• Geometric r.v., X, with probability of heads p (X= number of coin tosses needed for a head to come up for the first time or number of independent trials needed to achieve the first "success").

- Example: I keep taking a test until I pass it. Probability of passing the test in the x^{th} try is $p_X(x)$.
- Easy to see that

Geometric(p):
$$p_X(x) = (1-p)^{x-1}p, \quad x = 0, 1, 2, \dots \infty$$
 (4)

• Poisson r.v. X with expected number of arrivals Λ (e.g. if X = number of arrivals in time τ with arrival rate λ , then $\Lambda = \lambda \tau$)

$$Poisson(\Lambda): \ p_X(x) = \frac{e^{-\Lambda}(\Lambda)^x}{x!}, \ x = 0, 1, \dots \infty$$
(5)

• Uniform(a,b):

$$p_X(x) = \begin{cases} 1/(b-a+1), & \text{if } x = a, a+1, \dots b \\ 0, & \text{otherwise} \end{cases}$$
(6)

• pmf of Y = g(X)

$$- p_Y(y) = P(\{Y = y\}) = \sum_{\substack{x \mid g(x) = y \\ x \mid g(x) = y}} p_X(x)$$

Example $Y = |X|$. Then $p_Y(y) = p_X(y) + p_X(-y)$, if $y > 0$ and $p_Y(0) = p_X(0)$.
Exercise: $X \sim Uniform(-4, 4)$ and $Y = |X|$, find $p_Y(y)$.

- Expectation, mean, variance
 - Motivating example: Read pg 81
 - Expected value of X (or mean of X): $E[X] \triangleq \sum_{x \in \Omega} x p_X(x)$
 - Interpret mean as center of gravity of a bar with weights $p_X(x)$ placed at location x (Fig. 2.7)
 - Expected value of Y = g(X): $E[Y] = E[g(X)] = \sum_{x \in \Omega} g(x)p_X(x)$. Exercise: show this.
 - $-n^{th}$ moment of X: $E[X^n]$. n^{th} central moment: $E[(X E[X])^n]$.
 - Variance of X: $var[X] \triangleq E[(X E[X])^2]$ (2nd central moment)
 - -Y = aX + b (linear fn): E[Y] = aE[X] + b, $var[Y] = a^2 var[X]$
 - Poisson: $E[X] = \Lambda$, $var[X] = \Lambda$ (show this)
 - Bernoulli: E[X] = p, var[X] = p(1-p) (show this)
 - Uniform(a,b): E[X] = (a+b)/2, $var[X] = \frac{(b-a+1)^2-1}{12}$ (show this)
- Application: Computing average time. Example 2.4
- Application: Decision making using expected values. Example 2.8 (Quiz game, compute expected reward with two different strategies to decide which is a better strategy).
- Binomial(n, p) becomes Poisson(np) if time interval between two coin tosses becomes very small (so that n becomes very large and p becomes very small, but $\Lambda = np$ is finite). **

3 Multiple Discrete Random Variables: Topics

- Joint PMF, Marginal PMF of 2 and or more than 2 r.v.'s
- PMF of a function of 2 r.v.'s
- Expected value of functions of 2 r.v's
- Expectation is a linear operator. Expectation of sums of n r.v.'s
- Conditioning on an event and on another r.v.
- Bayes rule
- Independence

4 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

- For everything in this handout, you can think in terms of events $\{X = x\}$ and $\{Y = y\}$ and apply what you have learnt in Chapter 1.
- The joint PMF of two random variables X and Y is defined as

$$p_{X,Y}(x,y) \triangleq P(X=x,Y=y)$$

where P(X = x, Y = y) is the same as $P(\{X = x\} \cap \{Y = y\})$.

- Let A be the set of all values of x, y that satisfy a certain property, then $P((X,Y) \in A) = \sum_{(x,y) \in A} p_{X,Y}(x,y)$
- e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes of the two tosses is even.
- Marginal PMF is another term for the PMF of a single r.v. obtained by "marginalizing" the joint PMF over the other r.v., i.e. the marginal PMF of X, $p_X(x)$ can be computed as follows:

Apply Total Probability Theorem to $p_{X,Y}(x, y)$, i.e. sum over $\{Y = y\}$ for different values y (these are a set of disjoint events whose union is the sample space):

$$p_X(x) = \sum_y p_{X,Y}(x,y)$$

Similarly the marginal PMF of Y, $p_Y(y)$ can be computed by "marginalizing" over X

$$p_Y(y) = \sum_x p_{X,Y}(x,y)$$

• **PMF** of a function of r.v.'s: If Z = g(X, Y),

$$p_Z(z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$$

- Read the above as $p_Z(z) = P(Z = z) = P(\text{all values of } (X, Y) \text{ for which } g(X, Y) = z)$

• Expected value of functions of multiple r.v.'s If Z = g(X, Y),

$$E[Z] = \sum_{(x,y)} g(x,y) p_{X,Y}(x,y)$$

- See Example 2.9
- More than 2 r.v.s.
 - Joint PMF of n r.v.'s: $p_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n)$
 - We can **marginalize** over one or more than one r.v.,
 - e.g. $p_{X_1,X_2,...,X_{n-1}}(x_1,x_2,...,x_{n-1}) = \sum_{x_n} p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$ e.g. $p_{X_1,X_2}(x_1,x_2) = \sum_{x_3,x_4,...,x_n} p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$ e.g. $p_{X_1}(x_1) = \sum_{x_2,x_3,...,x_n} p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$ See book, Page 96, for special case of 3 r.v.'s
- Expectation is a linear operator. *Exercise: show this*

$$E[a_1X_1 + a_2X_2 + \dots + a_nX_n] = a_1E[X_1] + a_2E[X_2] + \dots + a_nE[X_n]$$

- Application: Binomial(n, p) is the sum of n Bernoulli r.v.'s. with success probability p, so its expected value is np (See Example 2.10)
- See Example 2.11

5 Conditioning and Bayes rule

• PMF of r.v. X conditioned on an event A with P(A) > 0

$$p_{X|A}(x) \triangleq P(\{X = x\}|A) = \frac{P(\{X = x\} \cap A)}{P(A)}$$

 $-p_{X|A}(x)$ is a legitimate PMF, i.e. $\sum_{x} p_{X|A}(x) = 1$. Exercise: Show this

- Example 2.12, 2.13
- **PMF of r.v.** X conditioned on r.v. Y. Replace A by $\{Y = y\}$

$$p_{X|Y}(x|y) \triangleq P(\{X=x\}|\{Y=y\}) = \frac{P(\{X=x\} \cap \{Y=y\})}{P(\{Y=y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The above holds for all y for which $p_y(y) > 0$. The above is equivalent to

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$
$$p_{X,Y}(x,y) = p_{Y|X}(y|x)p_X(x)$$

- $p_{X|Y}(x|y)$ (with $p_Y(y) > 0$) is a legitimate PMF, i.e. $\sum_x p_{X|Y}(x|y) = 1$.
- Similarly, $p_{Y|X}(y|x)$ is also a legitimate PMF, i.e. $\sum_{y} p_{Y|X}(y|x) = 1$. Show this.
- Example 2.14 (I did a modification in class), 2.15

• Bayes rule. How to compute $p_{X|Y}(x|y)$ using $p_X(x)$ and $p_{Y|X}(y|x)$,

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$
$$= \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{x'} p_{Y|X}(y|x')p_X(x')}$$

• Conditional Expectation given event A

$$E[X|A] = \sum_{x} x p_{X|A}(x)$$
$$E[g(X)|A] = \sum_{x} g(x) p_{X|A}(x)$$

• Conditional Expectation given r.v. Y = y. Replace A by $\{Y = y\}$

$$E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$$

Note this is a function of Y = y.

• Total Expectation Theorem

$$E[X] = \sum_{y} p_Y(y) E[X|Y=y]$$

Proof on page 105.

• Total Expectation Theorem for disjoint events A_1, A_2, \ldots, A_n which form a partition of sample space.

$$E[X] = \sum_{i=1}^{n} P(A_i) E[X|A_i]$$

Note A_i 's are disjoint and $\cup_{i=1}^n A_i = \Omega$

- Application: Expectation of a geometric r.v., Example 2.16, 2.17

6 Independence

• Independence of a r.v. & an event A. r.v. X is independent of A with P(A) > 0, iff

$$p_{X|A}(x) = p_X(x)$$
, for all x

- This also implies: $P({X = x} \cap A) = p_X(x)P(A)$.
- See Example 2.19

• Independence of 2 r.v.'s. R.v.'s X and Y are independent iff

 $p_{X|Y}(x|y) = p_X(x)$, for all x and for all y for which $p_Y(y) > 0$

This is equivalent to the following two things(*show this*)

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

 $p_{Y|X}(y|x) = p_Y(y)$, for all y and for all x for which $p_X(x) > 0$

- Conditional Independence of r.v.s X and Y given event A with P(A) > 0 **
 p_{X|Y,A}(x|y) = p_{X|A}(x) for all x and for all y for which p_{Y|A}(y) > 0 or that
 p_{X,Y|A}(x,y) = p_{X|A}(x)p_{Y|A}(y)
- Expectation of product of independent r.v.s.
 - If X and Y are independent, E[XY] = E[X]E[Y].

$$E[XY] = \sum_{y} \sum_{x} xyp_{X,Y}(x,y)$$
$$= \sum_{y} \sum_{x} xyp_{X}(x)p_{Y}(y)$$
$$= \sum_{y} yp_{Y}(y) \sum_{x} xp_{X}(x)$$
$$= E[X]E[Y]$$

- If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (Show).

• If X_1, X_2, \ldots, X_n are independent,

$$p_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = p_{X_1}(x_1)p_{X_2}(x_2)\ldots p_{X_n}(x_n)$$

• Variance of sum of 2 independent r.v.'s.

Let X, Y are independent, then Var[X + Y] = Var[X] + Var[Y]. See book page 112 for the proof

• Variance of sum of n independent r.v.'s.

If $X_1, X_2, \ldots X_n$ are independent,

$$Var[X_1 + X_2 + \dots X_n] = Var[X_1] + Var[X_2] + \dots Var[X_n]$$

- Application: Variance of a Binomial, See Example 2.20

Binomial r.v. is a sum of n independent Bernoulli r.v.'s. So its variance is np(1-p)

- Application: Mean and Variance of Sample Mean, Example 2.21 Let $X_1, X_2, \ldots X_n$ be independent and *identically distributed*, i.e. $p_{X_i}(x) = p_{X_1}(x)$ for all *i*. Thus all have the same mean (denote by *a*) and same variance (denote by *v*). Sample mean is defined as $S_n = \frac{X_1 + X_2 + \ldots X_n}{n}$. Since E[.] is a linear operator, $E[S_n] = \sum_{i=1}^n \frac{1}{n} E[X_i] = \frac{na}{n} = a$. Since the X_i 's are independent, $Var[S_n] = \sum_{i=1}^n \frac{1}{n^2} Var[X_i] = \frac{nv}{n^2} = \frac{v}{n}$
- Application: Estimating Probabilities by Simulation, See Example 2.22

Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics.

For exams/quizzes, you are not expected to know items with ** (these are provided as extra information).

1 Continuous R.V. & Probability Density Function (PDF)

- Example: velocity of a car
- A r.v. X is called **continuous** if there is a function $f_X(x)$ with $f_X(x) \ge 0$, called **probability** density function (PDF), s.t. $P(X \in B) = \int_B f_X(x) dx$ for all subsets B of the real line.
- Specifically, for B = [a, b],

$$P(a \le X \le b) = \int_{x=a}^{b} f_X(x) dx \tag{1}$$

and can be interpreted as the area under the graph of the PDF $f_X(x)$.

- For any single value a, $P({X = a}) = \int_{x=a}^{a} f_X(x) dx = 0.$
- Thus $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$
- Sample space $\Omega = (-\infty, \infty)$
- Normalization: $P(\Omega) = P(-\infty < X < \infty) = 1$. Thus $\int_{x=-\infty}^{\infty} f_X(x) dx = 1$
- Interpreting the PDF: For an interval $[x, x + \delta]$ with very small δ ,

$$P([x, x+\delta]) = \int_{t=x}^{x+\delta} f_X(t)dt \approx f_X(x)\delta$$
(2)

Thus $f_X(x)$ = probability mass per unit length near x. See Fig. 3.2.

- Continuous uniform PDF, Example 3.1
- Piecewise constant PDF, Example 3.2
- Connection with a PMF (explained after CDF is explained) **
- Expected value: $E[X] = \int_{x=-\infty}^{\infty} x f_X(x) dx$. Similarly define E[g(X)] and var[X]
- Mean and variance of uniform, Example 3.4
- Exponential r.v.

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & if \ x \ge 0\\ 0, & otherwise \end{cases}$$
(3)

- Show it is a legitimate PDF.
- $E[X] = 1/\lambda, var[X] = 1/\lambda^2$ (show).
- Example: X = amount of time until an equipment breaks down or a bulb burns out.
- Example 3.5 (Note: you need to use the correct time unit in the problem, here days).

2 Cumulative Distribution Function (CDF)

- Cumulative Distribution Function (CDF), $F_X(x) \triangleq P(X \le x)$ (probability of event $\{X \le x\}$).
- Defined for discrete and continuous r.v.'s

Discrete:
$$F_X(x) = \sum_{k \le x} p_X(k)$$
 (4)

Continuous:
$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 (5)

- Note the PDF $f_X(x)$ is NOT a probability of any event, it can be > 1.
- But $F_X(x)$ is the probability of the event $\{X \leq x\}$ for both continuous and discrete r.v.'s.
- Properties
 - $-F_X(x)$ is monotonically nondecreasing in x.
 - $-F_X(x) \to 0$ as $x \to -\infty$ and $F_X(x) \to 1$ as $x \to \infty$
 - $-F_X(x)$ is continuous for continuous r.v.'s and it is piecewise constant for discrete r.v.'s
- Relation to PMF, PDF

Discrete:
$$p_X(k) = F_X(k) - F_X(k-1)$$
 (6)

Continuous:
$$f_X(x) = \frac{dF_X}{dx}(x)$$
 (7)

- Using CDF to compute PMF.
 - Example 3.6: Compute PMF of maximum of 3 r.v.'s: What is the PMF of the maximum score of 3 test scores, when each test score is independent of others and each score takes any value between 1 and 10 with probability 1/10?

Answer: Compute $F_X(k) = P(X \le k) = P(\{X_1 \le k\}, and \{X_2 \le k\}, and \{X_3 \le k\}) = P(\{X_1 \le k\})P(\{X_2 \le k\})P\{X_3 \le k\})$ (follows from independence of the 3 events) and then compute the PMF using (6).

- For continuous r.v.'s, in almost all cases, the correct way to compute the CDF of a function of a continuous r.v. (or of a set of continuous r.v.'s) is to compute the CDF first and then take its derivative to get the PDF. We will learn this later.
- $\bullet\,$ Connection of a PDF with a PMF **
 - You learnt the Dirac delta function in EE 224. We use it to define a PDF for discrete r.v.

- The PDF of a discrete r.v. X,
$$f_X(x) \triangleq \sum_{j=-\infty}^{\infty} p_X(j)\delta(x-j)$$
.

- If I integrate this, I get $F_X(x) = \int_{t \le x} f_X(t) dt = \sum_{j \le x} p_X(j)$ which is the same as the CDF definition given in (4)

- Geometric and exponential CDF **
 - Let $X_{geo,p}$ be the number of trials required for the first success (geometric) with probability of success = p. Then we can show that the probability of $\{X_{geo,p} \leq k\}$ is equal to the probability of an exponential r.v. $\{X_{expo,\lambda} \leq k\delta\}$ with parameter λ , if δ satisfies $1 - p = e^{-\lambda\delta}$ or $\delta = -\ln(1-p)/\lambda$ Proof: Equate $F_{X_{geo,p}}(k) = 1 - (1-p)^k$ to $F_{X_{expo,\lambda}}(k\delta) = 1 - e^{-\lambda k\delta}$
 - Implication: When δ (time interval between two Bernoulli trials (coin tosses)) is small,
 - then $F_{X_{geo,p}}(k) \approx F_{X_{expo,\lambda}}(k\delta)$ with $p = \lambda\delta$ (follows because $e^{-\lambda\delta} \approx 1 \lambda\delta$ for δ small).
- Binomial(n, p) becomes Poisson(np) for small time interval, δ , between coin tosses (Details in Chap 5) **

Proof idea:

- Consider a sequence of n independent coin tosses with probability of heads p in any toss (number of heads $\sim Binomial(n, p)$).
- Assume the time interval between two tosses is δ .
- Then expected value of X in one toss (in time δ) is p.
- When δ small, expected value of X per unit time is $\lambda = p/\delta$.
- The total time duration is $\tau = n\delta$.
- When $\delta \to 0$, but λ and τ are finite, $n \to \infty$ and $p \to 0$.
- When δ small, can show that the PMF of a Binomial(n, p) r.v. is approximately equal to the PMF of $Poisson(\lambda \tau)$ r.v. with $\lambda \tau = np$
- The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

3 Normal (Gaussian) Random Variable

- The most commonly used r.v. in Communications and Signal Processing
- X is normal or Gaussian if it has a PDF of the form

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

where one can show that $\mu = E[X]$ and $\sigma^2 = var[X]$.

- Standard normal: Normal r.v. with $\mu = 0, \sigma^2 = 1$.
- Cdf of a standard normal Y, denoted $\Phi(y)$

$$\Phi(y) \triangleq P(Y \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

It is recorded as a table (See pg 155).

• Let X is a normal r.v. with mean μ , variance σ^2 . Then can show that $Y = \frac{X-\mu}{\sigma}$ is a standard normal r.v.

- Computing CDF of any normal r.v. X using the table for Φ : $F_X(x) = \Phi(\frac{x-\mu}{\sigma})$. See Example 3.7.
- Signal detection example (computing probability of error): Example 3.8. See Fig. 3.11. A binary message is tx as a signal S which is either -1 or +1. The channel corrupts the tx with additive Gaussian noise, N, with mean zero and variance σ^2 . The received signal, Y = S + N. The receiver concludes that a -1 (or +1) was tx'ed if Y < 0 ($Y \ge 0$). What is the probability of error? Answer: It is given by $P(N \ge 1) = 1 \Phi(1/\sigma)$. How we get the answer will be discussed in class.
- Normal r.v. models the additive effect of many independent factors well **
 - This is formally stated as the central limit theorem (see Chap 7) : sum of a large number of independent and identically distributed (not necessarily normal) r.v.'s has an approximately normal CDF.

4 Multiple Continuous Random Variables: Topics

- Conditioning on an event
- Joint and Marginal PDF
- Expectation, Independence, Joint CDF, Bayes rule
- Derived distributions
 - Function of a Single random variable: Y = g(X) for any function g
 - Function of a Single random variable: Y = g(X) for linear function g
 - Function of a Single random variable: Y = g(X) for strictly monotonic g
 - Function of Two random variables: Z = g(X, Y) for any function g

5 Conditioning on an event.

$$f_{X|A}(x) := \begin{cases} \frac{f_X(x)}{P(A)} & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

Consider the special case when $A := \{X \in R\}$, e.g. the region R can be the interval [a, b]. In this case, we should be writing $f_{X|\{X \in R\}}$. But to keep things simple, we misuse notation to also write

$$f_{X|R}(x) := \begin{cases} \frac{f_X(x)}{P(X \in R)} & \text{if } x \in R\\ 0 & \text{otherwise} \end{cases}$$
$$:= \begin{cases} \frac{f_X(x)}{\int_{t \in R} f_X(t) dt} & \text{if } x \in R\\ 0 & \text{otherwise} \end{cases}$$

6 Joint and Marginal PDF

- Two r.v.s X and Y are jointly continuous iff there is a function $f_{X,Y}(x, y)$ with $f_{X,Y}(x, y) \ge 0$, called the joint PDF, s.t. $P((X, Y) \in B) = \int_B f_{X,Y}(x, y) dx dy$ for all subsets B of the 2D plane.
- Specifically, for $B = [a, b] \times [c, d] \triangleq \{(x, y) : a \le x \le b, c \le y \le d\},\$

$$P(a \le X \le b, c \le Y \le d) = \int_{y=c}^{d} \int_{x=a}^{b} f_{X,Y}(x,y) dx dy$$

• Interpreting the joint PDF: For small positive numbers δ_1, δ_2 ,

$$P(a \le X \le a + \delta_1, c \le Y \le c + \delta_2) = \int_{y=c}^{c+\delta_2} \int_{x=a}^{a+\delta_1} f_{X,Y}(x,y) dx dy \approx f_{X,Y}(a,c) \delta_1 \delta_2$$

Thus $f_{X,Y}(a,c)$ is the probability mass per unit area near (a,c).

• Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of one r.v. (in general, integrating over a set of r.v.'s)

$$P(a \le X \le b) = P(a \le X \le b, -\infty \le Y \le \infty) = \int_{x=a}^{b} \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dy dx$$
$$\implies f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dy$$

• Example 3.12, 3.13

7 Conditional PDF

• Conditional PDF of X given that Y = y is defined as

$$f_{X|Y}(x|y) \triangleq \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- For any y, $f_{X|Y}(x|y)$ is a legitimate PDF: integrates to 1.
- Example 3.15
- Interpretation: For small positive numbers δ_1, δ_2 , consider the probability that X belongs to a small interval $[x, x + \delta_1]$ given that Y belongs to a small interval $[y, y + \delta_2]$

$$P(x \le X \le x + \delta_1 | y \le Y \le y + \delta_2) = \frac{P(x \le X \le x + \delta_1, y \le Y \le y + \delta_2)}{P(y \le Y \le y + \delta_2)}$$
$$\approx \frac{f_{X,Y}(x,y)\delta_1\delta_2}{f_Y(y)\delta_2}$$
$$= f_{X|Y}(x|y)\delta_1$$

• Since $f_{X|Y}(x|y)\delta_1$ does not depend on δ_2 , we can think of the limiting case when $\delta_2 \to 0$ and so we get

$$P(x \le X \le x + \delta_1 | Y = y) = \lim_{\delta_2 \to 0} P(x \le X \le x + \delta_1 | y \le Y \le y + \delta_2) \approx f_{X|Y}(x|y)\delta_1 \quad \delta_1 \text{ small}$$

• In general, for any region A, we have that

$$P(X \in A | Y = y) = \lim_{\delta \to 0} P(X \in A | y \le Y \le y + \delta) = \int_{x \in A} f_{X|Y}(x|y) dx$$

8 Expectation, Independence, Joint & Conditional CDF, Bayes

- Expectation: See page 172 for E[g(X)|Y = y], E[g(X,Y)|Y = y] and total expectation theorem for E[g(X)] and for E[g(X,Y)].
- Independence: X and Y are independent iff $f_{X|Y} = f_X$ (or iff $f_{X,Y} = f_X f_Y$, or iff $f_{Y|X} = f_Y$)
- If X and Y independent, any two events $\{X \in A\}$ and $\{Y \in B\}$ are independent.
- If X and Y independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)] and Var[X+Y] = Var[X]+Var[Y]Exercise: show this.
- Joint CDF:

$$F_{X,Y}(x,y) := P(X \le x, Y \le y) = \int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f_{X,Y}(s,t) ds dt$$

• Obtain joint PDF from joint CDF:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$$

• Conditional CDF:

$$F_{X|Y}(x|y) := P(X \le x|Y = y) = \lim_{\delta \to 0} P(X \le x|y \le Y \le y + \delta) = \int_{t = -\infty}^{x} f_{X|Y}(t|y)dt$$

• Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18. Recall that $f_{X|Y}(x|y)$ is, by definition, such that, for δ small,

$$P(X \in [x, x+\delta]|Y=y) = f_{X|Y}(x|y)\delta$$

Also, for δ , δ_2 small,

$$P(X \in [x, x+\delta], Y \in [y, y+\delta_2]) = f_{X,Y}(x, y)\delta\delta_2$$

Using Bayes rule for events,

$$P(X \in [x, x+\delta] | Y \in [y, y+\delta_2]) = \frac{P(X \in [x, x+\delta], Y \in [y, y+\delta_2])}{P(Y \in [y, y+\delta_2])} = \frac{f_{X,Y}(x, y)\delta\delta_2}{f_Y(y)\delta_2} = \frac{f_{X,Y}(x, y)$$

Notice that the right hand side does not depend on δ_2 . Taking the limit $\delta_2 \to 0$, we get

$$P(X \in [x, x+\delta]|Y=y) = \lim_{\delta_2 \to 0} P(X \in [x, x+\delta]|Y \in [y, y+\delta_2]) = \frac{f_{X,Y}(x, y)\delta}{f_Y(y)}$$

Thus,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• Bayes rule when unobserved phenomenon is discrete. Pg 176 and Example 3.19. For e.g., say discrete r.v. N is the unobserved phenomenon. Then for δ small,

$$\begin{split} P(N=i|X\in[x,x+\delta]) &= P(N=i|X\in[x,x+\delta]) \\ &= \frac{P(N=i)P(X\in[x,x+\delta]|N=i)}{P(X\in[x,x+\delta])} \\ &= \frac{p_N(i)f_{X|N}(x|i)\delta}{\sum_j p_N(j)f_{X|N}(x|j)\delta} \\ &= \frac{p_N(i)f_{X|N}(x|j)}{\sum_j p_N(j)f_{X|N}(x|j)} \end{split}$$

Notice that the right hand side is independent of δ . Thus we can take $\lim_{\delta \to 0}$ on both sides and the right side will not change. Thus we get

$$p_{N|X}(i|x) = P(N=i|X=x) = \lim_{\delta \to 0} P(N=i|X \in [x, x+\delta]) = \frac{p_N(i)f_{X|N=i}(x)}{\sum_j p_N(j)f_{X|N=j}(x)}$$

• Bayes rule with conditioning on events. The derivation is analogous to the above conditioning on discrete r.v.'s case.

Suppose that events $A_1, A_2, \ldots A_n$ form a partition, i.e. they are disjoint and their union is the entire sample space. The simplest example is n = 2, $A_1 = A$, $A_2 = A^c$. Then

$$P(A_i|X = x) = \frac{P(A_i)f_{X|A_i}(x)}{\sum_j P(A_j)f_{X|A_j}(x)}$$

• More than 2 random variables (Pg 178, 179) **

9 Derived distributions: PDF of g(X) and of g(X, Y)

- Obtaining PDF of Y = g(X). ALWAYS use the following 2 step procedure:
 - Compute CDF first. $F_Y(y) = P(g(X) \le y) = \int_{x|g(x) \le y} f_X(x) dx$
 - Obtain PDF by differentiating F_Y , i.e. $f_Y(y) = \frac{\partial F_Y}{\partial y}(y)$
- Example 3.20, 3.21, 3.22
- Special Case 1: Linear Case: Y = aX + b. Can show that

$$f_Y(y) = \frac{1}{|a|} f_X(\frac{y-b}{a})$$

Proof: see Pg 183.

- Example 3.23, 3.24
- Special Case 2: Strictly Monotonic Case.
 - Consider Y = g(X) with g being a strictly monotonic function of X.
 - Thus g is a one to one function.

- Thus there exists a function h s.t. y = g(x) iff x = h(y) (i.e. h is the inverse function of g, often denotes as $h \triangleq g^{-1}$).
- Then can show that

$$f_Y(y) = f_X(h(y)) \left| \frac{dh}{dy}(y) \right|$$

- Proof for strictly monotonically increasing g:

 $F_Y(y) = P(g(X) \le Y) = P(X \le h(Y)) = F_X(h(y)).$

Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

$$f_Y(y) = \frac{dF_Y}{dy}(y) = \frac{dF_X(h(y))}{dy} = f_X(h(y))\frac{dh}{dy}(y)$$

For strictly monotonically decreasing g, using a similar procedure, we get $f_Y(y) = -f_X(h(y))\frac{dh}{dy}(y)$

- See Figure 3.22, 3.23 for intuition
- Example 3.21 (page 186)
- Functions of two random variables. Two possible ways to solve this depending on which is easier. Try the first method first: if easy to find the region to integrate over then just do that. Else use the second method.
 - 1. Do the following
 - (a) Compute CDF of Z = g(X, Y), i.e compute $F_Z(z)$. In general, this computed as: $F_Z(z) = P(g(X, Y) \le z) = \int_{x,y:g(x,y) \le z} f_{X,Y}(x,y) dy dx.$
 - (b) Differentiate w.r.t. z to get the PDF, i.e. compute $f_Z(z) = \frac{\partial F_Z(z)}{\partial z}$.
 - 2. Use a three step procedure
 - (a) Compute conditional CDF, $F_{Z|X}(z|x) := P(Z \le z|X = x)$
 - (b) Differentiate w.r.t. z to get conditional PDF, $f_{Z|X}(z|x) = \frac{\partial F_{Z|X}(z|x)}{\partial z}$
 - (c) Compute $f_Z(z) = \int f_{Z,X}(z,x) dx = \int f_{Z|X}(z|x) f_X(x) dx$
- Example 3.26, 3.27, 3.28: first method works.
- Special case: PDF of Z = X + Y when X, Y are independent: convolution of PDFs of X and Y. Here need to use the second method.