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Introduction

In today’s big data age, a lot of data is generated everywhere

e.g., tweets, video surveillance camera feeds, Netflix movie ratings’
data, social network connectivity patterns across time, etc
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video surveillance Netflix movie ratings’ data Reality Mining dataset

A lot of it is streaming big data that is not stored or not for too long

and often needs to be analyzed on-the-fly.

Acquired data is often an undersampled, outlier-corrupted, or nonlinear
function of the “clean data”.

nonlinear: e.g., phaseless

“Clean data” usually has structure, e.g., sparsity or low-rank.

in a long sequence, structure properties are dynamic (change with time)
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This Talk

Three Dynamic Structured Big (high-dimensional) Data Recovery Problems

Dynamic Compressive Sensing (CS) - older work

clean data is (approx) sparse in a known transform domain
measurements: undersampled linear projections
useful when data acquisition is slow, e.g., in dynamic MRI or CT

Dynamic Robust Principal Components Analysis (RPCA) - focus of this talk

clean data lies in a fixed or slowly changing low-dimensional subspace
measurements: outlier-corrupted
useful for outlier removal and dimension reduction

Low Rank Phase Retrieval - recently started work

clean data lies in a low-dimensional subspace (is low rank)
measurements: phaseless (magnitude-only) linear-projections
useful when phase is hard or impossible to obtain, e.g., astronomy,
sub-diffraction imaging, Fourier ptychography, ...
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Outline

1 Dynamic CS: brief overview

2 Dynamic Robust PCA
Background and Problem Formulation
Recursive Projected CS (ReProCS) solution
ReProCS guarantees
Experiments - simulation and real-data (video analytics)

3 Low Rank Phase Retrieval: brief overview

4 Open Questions and Future Plans

5 Other Work (Extra Slides)
Correlated-PCA: PCA in data-dependent noise
Dynamic Compressive Sensing (CS)
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Dynamic CS: brief overview

Dynamic Compressed Sensing (CS): older work

Recursively recover a time sequence of (approximately) sparse signals from highly
undersampled linear measurements; using two assumptions

slow support change over time – introduced in [Vaswani, KF-CS, ICIP’08], and

slow signal value change over time – commonly used assumption
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Dynamic CS: brief overview

Dynamic Compressed Sensing (CS): key contributions

Kalman Filtered Compressed Sensing and LS-CS [Vaswani, ICIP’08], [Vaswani, T-SP, 2010]

1 First recursive solutions to the dynamic CS problem

Modified-CS [Vaswani, Lu, T-SP, Sept. 2010]
1 (IEEE Signal Proc. Soc. Best Paper Award)

1 First approach that achieved provably exact recovery using fewer
measurements than solutions for static CS need

2 Reformulated dynamic CS = CS with partial support knowledge

Much more general problem

3 Noisy measurements: errors provably stable over time [Zhan, Vaswani, T-IT’15]

using fewer measurements than solutions for static CS need

4 Promising experimental results for fast dynamic & functional MRI

Much later work on the topic, both theoretical and experimental

1
Wei Lu was my first graduate student
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Dynamic Robust PCA

Dynamic Robust PCA: our main message

In dynamic CS, we used dynamics to reduce sample complexity (number of
measurements needed), w/o increasing time complexity

In robust PCA, we will show how we can use dynamics to significantly
improve robustness to outliers while getting a faster & online algorithm

both theoretically (order-wise) and in practice
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Dynamic Robust PCA Background and Problem Formulation

Many datasets = low-rank + sparse

Clean Netflix users’ data lies close to a low-dimensional subspace (users’
preferences governed by only a few factors) [Candes et al,2009],

but is corrupted by data from lazy or malicious users (sparse outliers)

Slow changing videos (e.g., video of moving waters) lie close to a
low-dimensional subspace [Candes et al,2009],

but are often corrupted by foreground moving objects (occlusions)

Foreground image sequence is usually sparse,

but the background image sequence may not be sparse or easily
sparsifiable;

Social media users’ connectivity patterns often well-approximated by a
low-dimensional tensor,

but those of anomalous / outlier / suspicious users may not
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Dynamic Robust PCA Background and Problem Formulation

Principal Components Analysis (PCA) and Robust PCA (RPCA)

PCA: find low-dimensional subspace that best approximates a given dataset

first step before most data analytics’ tasks
PCA is easy to solve: SVD on data matrix
but, the SVD solution is very sensitive to outliers

Robust PCA: problem of PCA in presence of outliers; classical problem,
many heuristics exist for solving it

best old solution: Robust Subspace Learning (RSL) [de la Torre, Black,’03]

Recent work [Candes, Wright, Li, Ma, 2009] defined Robust PCA as the problem of
separating a low-rank L and a sparse matrix X from

Y := L + X

idea: outliers occur occasionally and usually on only a few data indices;
their magnitude can be large - model as sparse corruptions

Henceforth, RPCA = Sparse + Low-Rank Matrix Recovery
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Dynamic Robust PCA Background and Problem Formulation

Applications [Candes, Wright, Li, Ma, 2009]

Sparse+Low-rank Recovery: separate low-rank L and sparse X from

Y := X + L

or from a subset of entries of (X + L)

if L or span(L) is the quantity of interest: robust PCA
if X is quantity of interest: robust sparse recovery

Video analytics, e.g. for surveillance, tracking, mobile video chat, occlusion
removal [Candes et al,2009]

X = [x1, x2 . . . , xt , . . . xtmax ], L = [`1, `2, . . . `t , . . . `tmax ]

`t : background - usually slow changing,
xt : foreground - sparse, consists of one or more moving objects (technically

xt : (fg-bg) on fg support)
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Dynamic Robust PCA Background and Problem Formulation

original background foreground
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Dynamic Robust PCA Background and Problem Formulation

Applications – 2

Recommendation systems design (Netflix problem) [Candes et al’2009]

(robust PCA with missing entries / robust matrix completion)
`t : ratings of movies by user t
the matrix L is low-rank: user preferences governed by only a few
factors
xt : some users may enter completely incorrect ratings due to laziness or
malicious intent or just typos: outliers
goal: recover the matrix L in order to recommend movies

Detecting anomalous connectivity patterns in social networks or in computer
networks [Mateos et al.,2011]

`t : vector of n/w link “strengths” at time t when no anomalous
behavior
xt : outliers or anomalies on a few links

Functional MRI based brain activity detection or other dynamic MRI based
region-of-interest detection problems [Otazo, Candes, et al. 2014]

only a sparse brain region activated in response to stimuli, everything
else: very slow changes
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Dynamic Robust PCA Background and Problem Formulation

Practical and Provably Correct Solutions to RPCA

[Candes et al,2009] introduced and studied a convex opt program called Principal
Components Pursuit (PCP):

min
X̃ ,L̃
‖L̃‖∗ + λ‖X̃‖1 s.t. Y = X̃ + L̃

showed: PCP indeed “works” for real videos; and has a provable
guarantee - first guarantee for any practical robust PCA approach

Parallel and later work on provably correct static RPCA:

PCP guarantee by [Chandrasekharan et al,2009] – deterministic guarantee
Improved guarantee for PCP by [Hsu et al,2011]

AltProj: provably correct Alternating Min [Netrapalli et al, NIPS’14]

RPCA-GD: provably correct Gradient Descent [Yi et al, NIPS’16]

Our work on Dynamic Robust PCA [Qiu, Vaswani,Allerton,2010] (algorithm),
[Lois,Vaswani,ISIT’15] (guarantee)

Namrata Vaswani (Iowa State Univ) Dynamic Structured (Big) Data Recovery 14 / 60
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Dynamic Robust PCA Background and Problem Formulation

Motivation for solving Dynamic RPCA

Limitations of static RPCA solutions:

1 slower and memory intensive
2 need tight bounds on fraction of outliers per row or column of X

so that X does not become rank deficient: needed to separate it from
low rank L

The outlier fraction bound is often violated, e.g.,

in video analytics: often have occasionally static or slow moving
foreground (fg) objects: large outlier fractions per row

can also have large-sized fg objects: large outlier fractions per column

in network anomaly detection: anomalous behavior continues on most
of the same edges for a period of time after begins

By exploiting dynamics (slow subspace change), above limitations can be
removed.
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Dynamic Robust PCA Background and Problem Formulation

original ReProCS PCP
(proposed)

(a) Background recovery

original ReProCS PCP
(proposed)

(b) Foreground recovery

Figure: Slow moving person ⇒ sparse matrix X is also low rank ⇒ PCP confuses
person for background. Proposed method (ReProCS) works because exploits dynamics
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Dynamic Robust PCA Background and Problem Formulation

Some definitions for rest of the talk

P ′ denotes transpose of matrix P

P is a basis matrix: P is a tall matrix with mutually orthonormal columns

Estimate P: estimate span(P): subspace spanned by col’s of P

P̂ is an accurate estimate of P: span(P̂) is an accurate estimate of the
span(P)

Subspace Error (SE):

SE(P̂,P) := ‖(I − P̂P̂ ′)P‖2

measures the principal angle b/w subspaces spanned by P̂ and P

Namrata Vaswani (Iowa State Univ) Dynamic Structured (Big) Data Recovery 17 / 60



Dynamic Robust PCA Background and Problem Formulation

Dynamic Robust PCA [Qiu,Vaswani,Allerton’10,’11] [Guo,Qiu,Vaswani,T-SP’14] 2

Given sequentially arriving length n data vectors yt satisfying

yt := `t + xt , t = 1, 2, . . . , d

`t lies in a fixed or slowly-changing low-dimensional subspace of Rn;

`t = P(t)at , P(t): n × r matrix with r � n, changes at most a “little”
every so often,
columns of P(t) are dense vectors

xt : sparse outlier vector with support set Tt ;

Goal: recursively estimate xt , `t , and span(P(t)), starting with initial
estimate of span(P(0))

initial subspace estimate: either assume outlier-free data available, or
apply PCP or AltProj on Yinit := [y1, y2, . . . , yttrain ]

2
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
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Dynamic Robust PCA Background and Problem Formulation

Dynamic Robust PCA [Qiu,Vaswani,Allerton’10,’11] [Guo,Qiu,Vaswani,T-SP’14] 3

Initial outlier-free sequence: easy to obtain in certain applications, e.g.,

in video surveillance, easy to get a short background-only training
sequence before foreground objects start appearing

for fMRI, this corresponds to acquiring a short sequence without any
activation

When above not possible: use a batch method (e.g., PCP or AltProj) for
first ttrain frames

works if assumptions needed by PCP or AltProj hold for
Yinit := [y1, y2, . . . , yttrain ]

3
C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010

H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their
Sum”, IEEE Trans.SP, Aug 2014
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Dynamic Robust PCA Recursive Projected CS (ReProCS) solution

Recursive Projected CS (ReProCS) [Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14]

Recall: yt := xt + `t , `t = P(t)at , P(t): tall n × r basis matrix

Given P̂0. For t > ttrain, do

1 Projection: compute ỹt := Φyt , where Φ := I − P̂(t−1)P̂(t−1)
′

then ỹt = Φxt + βt , βt := Φ`t is small “noise” because of slow
subspace change

2 Noisy Compressive Sensing (CS): CoSaMP + support estimate + LS: get x̂t

denseness of columns of P(t) ⇒ sparse xt recoverable from ỹt

3 Recover `t : compute ˆ̀
t = yt − x̂t

4 Subspace update: use ˆ̀
t ’s to update P̂(t) every α frames
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1 Projection: compute ỹt := Φyt , where Φ := I − P̂(t−1)P̂(t−1)
′
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then ỹt = Φxt + βt , βt := Φ`t is small “noise” because of slow
subspace change

2 Noisy Compressive Sensing (CS): CoSaMP + support estimate + LS: get x̂t

denseness of columns of P(t) ⇒ sparse xt recoverable from ỹt
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Dynamic Robust PCA Recursive Projected CS (ReProCS) solution

Why ReProCS works - intuition [Qiu,Vaswani,Lois,Hogben,T-IT,2014] 4

Slow subspace change ⇒ noise βt := Φ`t seen by CS step small

Denseness of columns of P(t) and slow subspace change ⇒ RIP constant of

Φ := I − P̂(t−1)P̂(t−1)
′ small. Reason:

δ2s(I − PP ′) = max
|T |≤2s

‖IT ′P‖2
2 [Qiu, Lois, Vaswani, Hogben, T-IT’14]

Above facts + CoSaMP guarantee ⇒ xt is accurately recovered; and hence
`t = yt − xt is accurately recovered

Most of the work: show accurate subspace recovery P̂(t) ≈ P(t)

standard PCA results not applicable: et := ˆ̀
t − `t correlated with `t

reason: et = xt − x̂t and this depends on βt := Φ`t

all existing guarantees for PCA assume data, noise uncorrelated;
except [Vaswani,Guo,Correlated-PCA,NIPS’16]

4
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured

Noise, IEEE Trans. IT, 2014
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Dynamic Robust PCA Recursive Projected CS (ReProCS) solution

ReProCS block diagram

Perpendicular Projection
ỹt = (I − P̂t−1P̂t−1

′)yt
CoSaMP Support

estimate and LS
ˆ̀t = yt − x̂t

Delay

Subspace update

yt ỹt x̂t,cs T̂t , x̂t T̂t ,P̂t

x̂t , ˆ̀t

ˆ̀t

P̂t

P̂t−1

P̂t−1

Projected Sparse Recovery

Figure: A visualization of the ReProCS algorithm
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Dynamic Robust PCA Recursive Projected CS (ReProCS) solution

Subspace update

Toggles between “detect” phase and “estimate” phase

In “detect” phase: detect change every α frames; suppose detected at t̂j

Let P̂∗ denote the subspace estimate from the last “estimate” phase

“Estimate” phase: estimate changed subspace - “projection-SVD” repeated
K times

1st projection-SVD at t̂j + α: let t∗ ← t̂j + α

P̂ch,1 ← top singular vector(s) of (I − P̂∗P̂∗
′)[ ˆ̀

t∗−α, ˆ̀
t∗−α+1, . . . , ˆ̀

t∗ ]

P̂(t) ← [P̂∗, P̂ch,1]; use for projected-CS in next interval

2nd projection-SVD at t̂j + 2α: let t∗ ← t̂j + 2α;

P̂ch,2 ← top singular vector(s) of (I − P̂∗P̂∗
′)[ ˆ̀

t∗−α, ˆ̀
t∗−α+1, . . . , ˆ̀

t∗ ]

P̂(t) ← [P̂∗, P̂ch,2]; use this for projected-CS in next interval

continue for K steps; update P̂∗ ← [P̂∗, P̂ch,K ]

Simple SVD at t = t̂j + Kα + α; Enter “detect” phase
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Dynamic Robust PCA Recursive Projected CS (ReProCS) solution
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Figure: Subspace Error log SE(P̂t ,Pt) versus time - plotted at t = tj , and at
projection-SVD times, t = tj + kα.

With each proj-SVD step, the subspace error decreases approx exponentially

better estimate of P(t) ⇒ smaller noise βt seen by CS step in next α-frame

interval ⇒ smaller CS step error et := xt − x̂t = ˆ̀
t − `t ⇒ smaller

perturbation seen at next proj-SVD step ⇒ improved next estimate of P(t)
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Dynamic Robust PCA ReProCS guarantees

Subspace change model

`t = Pjat for all t ∈ [tj , tj+1) and Pj changes by
adding a new direction, Pnew, from span(Pj,⊥),
and rotating it in with angle θj , i.e.

Pj+1 = [ Pj,fix︸︷︷︸
n×(r−1)

, Pj,ch cos θj − Pnew sin θj︸ ︷︷ ︸
Pj,rot : n×1

]

Pj,fixPj,ch

Pnew

span (Pj)

span (Pj+1)

θj

at ’s mutually independent, zero mean, bounded, with diagonal cov,

Λ =

[
Λfix 0

0 λch

]
.

Namrata Vaswani (Iowa State Univ) Dynamic Structured (Big) Data Recovery 25 / 60



Dynamic Robust PCA ReProCS guarantees

Subspace change model

`t = Pjat for all t ∈ [tj , tj+1) and Pj changes by
adding a new direction, Pnew, from span(Pj,⊥),
and rotating it in with angle θj , i.e.

Pj+1 = [ Pj,fix︸︷︷︸
n×(r−1)

, Pj,ch cos θj − Pnew sin θj︸ ︷︷ ︸
Pj,rot : n×1

]

Pj,fixPj,ch

Pnew

span (Pj)

span (Pj+1)

θj

at ’s mutually independent, zero mean, bounded, with diagonal cov,

Λ =

[
Λfix 0

0 λch

]
.

Namrata Vaswani (Iowa State Univ) Dynamic Structured (Big) Data Recovery 25 / 60



ReProCS Performance Guarantee [Lois,Vaswani,ISIT,2015],[Zhan,Lois,Guo,Vaswani,AISTATS,2016]

Theorem

Let θ− := minj θj , θ
+ := maxj θj ; κ: cond. #; r : subspace dim; n: data dim; If

1 initial subspace estimate is accurate enough: ζ0 := SE(P̂0,P0) satisfies

ζ0κ ≤ 0.01 sin θ+, ζ0

√
rκ ≤ 0.1 sin θ+

2 subspace changes slowly enough:

tj+1 − tj ≥ C (r log n)(− log ε)
and θ+ small enough: 33| sin θ+|

√
λch ≤ xmin − 0.02xmax

(xmin, xmax: min, max nonzero outlier magnitude; λch: eigenvalue along changed direc)

3 fraction of outliers in any column and in any row is bounded:

outlier-fraction-col ≤ 0.09

µr
and outlier-fraction-row ≤ 0.01

4 algorithm parameters appropriately set

then, w.h.p., SE(P̂(t),P(t)) ≤ ε within at most C(r log n)(− log ε) frames;
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Dynamic Robust PCA ReProCS guarantees

Detailed conclusions

Under theorem’s assumptions, with probability at least 1− 22dn−10,

1 outlier support is exactly recovered (T̂t = Tt) at all times t;

2 change gets detected within at most 2α = C (r log n) frames;

3 ‖xt − x̂t‖2 = ‖`t − ˆ̀
t‖2 ≤ 0.25| sin θ+|

√
λch at all times;

4 offline: ‖xt − x̂t‖2 = ‖`t − ˆ̀
t‖2 ≤ 2.4ε‖`t‖2;

5 SE(P̂,P) and ‖xt − x̂t‖2 = ‖`t − ˆ̀
t‖2 decay roughly exponentially with each

proj-SVD step

for t ∈ [tj , t̂j + α), SE(P̂t ,Pt) ≤ 2ζ0 + sin θ+,
for t ∈ [t̂j + (k − 1)α, t̂j + kα),

SE(P̂t ,Pt) ≤ 1.9ζ0 + (0.3)k−1 · 0.006 sin θ+, for k = 1, 2, . . . ,K
for t ∈ [t̂j + Kα, t̂j + Kα + αdel), SE(P̂t ,Pt) ≤ 2ζ0

for t ∈ [t̂j + Kα + αdel, tj+1), SE(P̂t ,Pt) ≤ ζ0
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Dynamic Robust PCA ReProCS guarantees

ReProCS Performance Guarantee [Lois,Vaswani,ISIT,2015],[Zhan,Lois,Guo,Vaswani,AISTATS,2016]

Above result is new; is a significant smplification of the results from
AISTATS’16 or ISIT’15

taps into the simplifications introduced in [Vaswani, Guo, Correlated-PCA, NIPS’16]

while studying the general correlated-PCA problem

Proof uses

Davis-Kahan sin θ theorem (1970)

bounds subspace error b/w space of top r eigenvectors of a given
symmetric matrix and that of its perturbed version

Matrix Bernstein inequality
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Dynamic Robust PCA ReProCS guarantees

Comparison with guarantees for static RPCA: assumptions

PCP AltProj GD ReProCS

outlier-fraction-row ≤ c
rmat

c
rmat

1

µ
√

r3
mat

c

outlier-fraction-col ≤ c
rmat

c
rmat

1

µ
√

r3
mat

c
r

slow subspace change No No No Yes

initial data Yinit assumptions of AltProj: incoherence,
outlier-fraction ≤ c/r

algo parameters 1 2 5 5

Table: An n × d data matrix Y := L + X ; rank of L is rmat = r + J. r is the subspace
dimension at any time, r ≤ rmat. Above: κ is assumed constant, ignored

Streaming RPCA [Niranjan, Shi, ArXiv, Dec’16]: only works for rmat = r = 1
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Dynamic Robust PCA ReProCS guarantees

Comparison with guarantees for static RPCA: time, storage complexity

PCP AltProj GD ReProCS S-RPCA

Time O(nd2 1
ε ) O(ndr2

mat log 1
ε ) O(ndrmat log 1

ε ) O(ndr log 1
ε ) O(ndr log 1

ε )

Storage O(nd) O(nd) O(nd) O(nr(log n)) O(nrmat)

Table: Time and storage complexity comparison for an n × d data matrix
Y := L + X ; rank of L is rmat. Above: κ is assumed constant, ignored

Observe

ReProCS has the best time complexity: it is r
rmat

times that of GD

Its storage complexity is only (log n) times worse than the optimal - O(nr) -
achieved by streaming RPCA, but streaming RPCA only works for r = 1
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Dynamic Robust PCA ReProCS guarantees

Discussion - Pros and Cons of ReProCS

Pros

Allows video objects that move every so often or move very slowly

tolerates outlier-fraction-row ≤ c ; others need ≤ c/rmat (rmat = rank(L))

Typically, also allows larger-sized foreground objects than other methods

tolerates outlier-fraction-col ≤ c/r ; others need c/rmat

e.g., if r = O(log n), but J = O(n), then rmat = r + J = O(n):
ReProCS works, others fail

ReProCS is the fastest; has nearly optimal storage complexity; and is online

Cons:

Needs the slow subspace change assumption

Needs to know a few (5) model parameters to set algorithm parameters
(so does RPCA-GD)

rmat := rank(L) = r + J, r := rank(L[tj ,tj+1]), typical: κ� r � rmat, e.g., κ = O(1), r = O(log n), rmat = O(n)
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Dynamic Robust PCA ReProCS guarantees

Discussion – 2

First set of complete guarantees for any online / dynamic / streaming RPCA
solution.

partial results (req. assumptions on intermediate algo. estimates):
ReProCS [Qiu,Vaswani,Lois,Hogben,ISIT’13,T-IT’14] and ORPCA [Feng et a;.,NIPS’13]

complete guarantee:
ReProCS [Lois,Vaswani,ICASSP’15, ISIT’15], [Zhan,Lois,Guo,Vaswani, AISTATS’16]:

complete guarantee for a streaming algorithm for static RPCA:
[Niranjan, Shi, ArXiv, Dec’16] holds only for r = 1 case

New proof techniques needed to be developed

useful for various other problems, e.g., correlated-PCA [Vaswani,Guo,NIPS’16]
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Simulation Experiments

Compare

ReProCS - [Qiu,Vaswani, Allerton 2010], [Qiu et al.,T-IT’14],

GRASTA - [He, Balzano, et al, CVPR 2012] – online algorithm

ORPCA - [Feng, Xu, et al, NIPS 2013] – online algorithm to solve PCP

offline-ReProCS (allowed to go back and improve previous estimates) -
[Zhan,Lois,Guo,Vaswani,AISTATS’16]

PCP (IALM) – batch algo. for static RPCA - convex opt.; provably correct

AltProj – batch algo. for static RPCA - Alt-Min; provably correct

RPCA-GD – batch algo. for static RPCA - Grad. Desc.; provably correct
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

1000 1500 2000

-5

-4

-3

-2

-1

0

1

Figure: Comparisons for a simulated slow moving foreground object case (large
outlier fraction per row): outlier frac per col (s/n): 0.09, outlier frac per row (b0): 0.1
for first ttrain frames, 0.7 after that; n = 500, r = 25, κ = 25, J = 2:
t1 = 1000, t2 = 2000, θ1 = θ2 = 30o . Offline ReProCS: improved ReProCS estimates by
offline processing. ReProCS initialized using AltProj for ttrain = 500; used α = 200
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

n ReProCS (Offline) GRASTA ORPCA AltProj GD PCP
500 0.0005 (0.0008) 0.0003 0.0009 0.0116 0.0226 0.0051

8000 0.24 (0.31) – 0.16 – – –

Table: Time comparisons (in seconds). Time per frame. When n = 8000, PCP,
AltProj, GD: out of memory

Conclusion:

By exploiting dynamics (slow subspace change)

ReProCS can tolerate much larger outlier fractions per row, and
it is also much faster & memory-efficient than all batch methods

Online methods (ORPCA, GRASTA) do not work for large outlier fractions;
do not have provably guarantees
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Applications being explored

Video Analytics

Video foreground tracking – video surveillance application

Background recovery and subspace tracking – needed to simulate
realistic video textures [Dynamic Textures, Soatto et al, ICCV 2001]

Video denoising

with Rockwell Collins

Video enhancement “seeing in the dark”

with Rockwell Collins

Detecting anomalous connectivity patterns in social networks data on-the-fly
using Tensor-ReProCS

work of Selin Aviyente et al. at Michigan State (inspired by ReProCS);
ongoing discussion about joint work
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Practical ReProCS for the video experiments

Used heuristics to estimate model paramters on-the-fly (to set algorithm
parameters)

Also exploited slow support change of the foreground object(s) when
possible

Most of the results shown here (except the video denoising ones) used an
initial background-only sequence to initialize

same sequence also provided to GRASTA
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Video surveillance application - foreground recovery

original ReProCS PCP RSL GRASTA

Figure: Foreground recovery (t = ttrain + 35, 500, 1300)
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Background recovery and subspace tracking - useful for simulating video textures

original ReProCS PCP RSL GRASTA

Figure: Background recovery for modeling (t = ttrain + 30, 80, 140).
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Video denoising of very noisy videos

Idea: large variance noise can always be split as frequently occurring small
noise and occasionally occurring large outliers.

Approach:

use ReProCS to get x̂t and ˆ̀
t for each frame t

apply a state-of-art denoiser, VBM-3D, to each layer separately
use denoised ˆ̀

t in most cases; sometimes use denoised image (add up
denoised layers)

σ ReProCS-LD PCP-LD AltProj-LD GRASTA-LD VBM3D MLP

25 32.78 (73) 32.84 (198) 31.98 (101) 28.11 (59) 32.02 (24) 28.26 (477)

50 32.27 (73) 31.65 (195) 30.09 (128) 23.97 (58) 27.99 (24) 18.87 (477)

70 31.79 (69) 30.67 (197) 29.63 (133) 21.81 (55) 24.42 (21) 15.03 (478)

Table: Comparison of denoising performance on waterfall dataset (n = 108× 192,
d = 650) corrupted by Gaussian N (0, σ2) noise. Displaying PSNR (run time in
seconds). VBM-3D: best denoising algorithm; MLP: multi-layer perceptron (neural
network based method). ReProCS-LD is fast-enough & achieves a 1dB improvement
over other approaches in case of large variance noise.



σ
Dataset: fountain Dataset: escalator

ReLD VBM3D MLP SLMA ReLD VBM3D MLP SLMA

25 32.67(16.70) 31.18(5.44) 26.86(105.64) 22.93(3.05× 104) 31.01(16.64) 30.32(5.34) 25.53(107.51) 21.17(3.09× 104)

30 32.25(15.84) 30.26(5.17) 25.67(107.41) 21.85(3.06× 104) 30.27(16.45) 29.29(5.38) 24.54(108.65) 20.49(3.15× 104)

50 30.53(15.82) 26.55(5.24) 18.53(109.79) 18.55(3.13× 104) 27.84(16.03) 25.10(5.27) 18.83 (109.40) 17.98(3.21× 104)

70 27.53(15.03) 22.08(4.69) 14.85(107.52) 16.25(3.19× 104) 25.15(15.28) 20.20(4.72) 15.20(108.78) 15.90(3.18× 104)

σ
Dataset: curtain Dataset: lobby

ReProCS-LD VBM3D MLP SLMA ReLD VBM3D MLP SLMA

25 35.47(16.78) 34.60(4.15) 31.14(189.14) 23.28(7.75× 104) 39.78(57.96) 35.00(19.57) 29.22(384.11) 23.43(3.75× 105)

30 34.58(17.35) 33.59(4.37) 28.90(191.14) 22.74(9.05× 104) 38.76(57.99) 33.64(19.09) 27.72(395.67) 21.15(3.82× 105)

50 31.91(17.17) 30.29(4.42) 18.58(188.30) 19.12(7.86× 104) 35.15(58.41) 29.23(19.35) 18.66(403.59 ) 18.21(3.99× 105)

70 28.10(16.50) 26.15(3.85) 14.73(192.00) 16.68(8.30× 104) 29.68(56.51) 24.90(17.00) 14.85(401.29) 16.82(4.09× 105)

Table: PSNR (run time in seconds) for 4 different datasets. VBM-3D: best
denoising algorithm; MLP: multi-layer perceptron (neural network based method).
SLMA: another sparse + low-rank method for denoising



Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Low-light video enhancement: “seeing in the dark”

Figure: Original, V-BM-3D, K-SVD, ReProCS. In the video, a person is walking
through a hallway. ReProCS successfully “sees” the person.
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Dynamic Robust PCA Experiments - simulation and real-data (video analytics)

Related Work

Batch RPCA:

RSL [de la Torre et al,IJCV’03], PCP (Candès et al., 2011; Hsu et al., 2011), AltProj (Netrapalli

et al., 2014), GD (Yi et al., 2016), ...
Dynamic, Online or Streaming RPCA or Robust Subspace Tracking

iRSL (Skocaj & Leonardis, 2003): does not work
Recursive Projected Compressive Sensing (ReProCS): (Qiu & Vaswani, 2010)

GRASTA (He et al., 2012)

robust subspace tracking: (Chouvardas et al., 2015, 2014), (Mansour & Jiang, 2015)

online RPCA via stoch. opt. (Feng et al., 2013)

(Mardani et al., 2013): batch and online; online: not enough info, no code
streaming RPCA (Niranjan & Shi, 2016)

Guarantees

ReProCS partial guarantee [Qiu,Vaswani,Lois,Hogben, ICASSP’13, ISIT’13, T-IT’14] (Qiu

et al., 2014)

Online RPCA via stoch. opt. partial guarantee [Feng et al,NIPS’13]

ReProCS complete guarantee [Zhan,Lois,Guo,Vaswani,AISTATS’16,

Lois,Vaswani,ISIT’15,ICASSP’15]

streaming RPCA complete guarantee for r = 1 case (Niranjan & Shi, 2016) -
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Low Rank Phase Retrieval: brief overview

Low Rank Phase Retrieval (LRPR) [Vaswani, Nayer, Eldar, T-SP, 2017, to appear]

Problem:

Recover a low rank matrix X from magnitude-only measurements of linear
projections of each of its columns

X is an n × q matrix with rank r � min(n, q); have m measurements of
each column of X

Useful for PR of a sequence of images that change gradually over time, e.g.,
for dynamic solar imaging in astronomy, dynamic sub-diffraction imaging,...

Contributions so far

Two novel iterative algorithms: LRP1 and LRPR2

each column of X belongs to same r dimensional subspace;
have (nearly) mq measurements to recover this subspace
if subspace known, recovering each coefficient vector: easy PR problem

Exciting preliminary experimental results

on real videos with simulated coded diffraction pattern measurements

High probability sample complexity bounds for their initialization step.
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Low Rank Phase Retrieval: brief overview

Low Rank Phase Retrieval

Phase Retrieval (PR): recover a signal/vector x from magnitude-only
(phaseless) measurements of its random linear projections, i.e., from
yi := |ai ′x |2, i = 1, 2, . . . ,m.

Low rank PR: recover a low-rank matrix, X , from phaseless measurements
of random linear projections of its columns

we have a set of q vectors, x1, x2, . . . , xq which are such that the n × q
matrix

X := [x1, x2, . . . , xq]

has rank r � min(n, q);

for each xk , there are a set of m measurements of the form

yi,k := |ai,k ′xk |2, i = 1, 2, . . .m, k = 1, 2, . . . , q
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Low Rank Phase Retrieval: brief overview

Key idea of proposed algorithms: LRPR1 and LRPR2

Use the fact that a low rank matrix X can be factored as X = UB: U:
n × r , r � n

each vector xk = Ubk , k = 1, 2, . . . , q: all vectors share the same
subspace
thus, for recovering span(U), we have “nearly” mq measurements

yi,k := |ai,k ′xk |2, i = 1, 2, . . .m, k = 1, 2, . . . , q

can show that

E

[
1

mq

∑
k

∑
i

yi,kai,kai,k
′

]
= 2UΛU ′ + cI , Λ is diagonal

We show that U recovered using above idea satisfies SE(Û,U) ≤ ε if

mq ≥ nr2 1

ε2

Once U recovered, recovering each bk is a r -dimensional regular PR
problem: easy since r � n
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Low Rank Phase Retrieval: brief overview

Original LRPR2 LRPR1 TWFproj TWF

Figure: Recovering a real video from coded diffraction pattern (CDP)
measurements. First column: frames 1, 50 and 104, of the original plane video.
Next three columns: frames recovered using the various methods from m = 3n
CDP measurements. TWF: Truncated Wirtinger Flow [Chen, Candes, NIPS’15], TWFproj:
projected TWF output at initialization and each iteration to space of rank r
matrices. LRPR1 and LRPR2: proposed algo’s.
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Low Rank Phase Retrieval: brief overview

Original LRPR2 LRPR1 TWFproj TWF

Figure: This figure shows the power of LRPR2 for recovering a real video from
coded diffraction pattern (CDP) measurements. First column: frames 2, 53 and
102, of the original bacteria video. Next three columns: frames recovered using
the various methods from m = 3n CDP measurements. TWF: Truncated
Wirtinger Flow [Chen, Candes, NIPS’15], TWFproj: projected TWF output at initialization
and each iteration to space of rank r matrices. LRPR1 and LRPR2: proposed
algo’s.
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Open Questions

Open Questions

Dynamic Robust PCA:

1 more general subspace change models

2 extensions to dynamic robust matrix completion, undersampled RPCA
3 applications in

functional MRI based brain activity pattern tracking;
tracking user preferences over time

4 dynamic subspace clustering?

Low Rank Phase Retrieval (LRPR) and Dynamic LRPR

1 performance guarantee for the complete LRPR algorithm
2 speed-up & applications
3 dynamic LRPR: use dynamics (slow subspace change) to

further reduce sample complexity, or deal with outliers or both

Correlated-PCA: PCA when data and noise are correlated [Vaswani, Guo, NIPS, 2016]

ongoing
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Other Work (Extra Slides) Correlated-PCA: PCA in data-dependent noise

PCA w/ Correlated Data and Noise [Vaswani,Guo,NIPS’16, Correlated-PCA],

[Vaswani,Narayanamurthy,arXiv’17]

For t = 1, 2, . . . , α, we are given n-length data vectors,

yt := `t + wt + vt , where `t = Pat , wt = Mt`t ,

where

P is an n × r matrix with orthonormal columns and r � n;
`t is the true data vector that lies in span(P);
wt is the data-dependent (correlated) noise component; and
vt is the uncorrelated noise, i.e., E[`tvt

′] = 0.

The matrices Mt are unknown and such that E[`tw
′
t ] 6= 0

Observe: in general, wt ’s do not lie in a lower dim subspace of <n.

Examples: subspace update step of ReProCS; static robust PCA when
outlier values are data-dependent; interference due to signal leakage

Almost all existing work that studies the SVD solution: assumes data and
noise are either independent or, at least, uncorrelated
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Other Work (Extra Slides) Correlated-PCA: PCA in data-dependent noise

Simplified version of our main result

Theorem (vt = 0)

Assume that yt = `t + wt where

`t = Pat with at ’s zero mean, mutually independent, and bounded r.v.’s,
with diagonal covariance matrix, Λ; and

wt := Mt`t and Mt can be split as Mt = M2,tM1,t s.t. for a q < 1,
‖M1,tP‖ ≤ q, ‖M2,t‖ ≤ 1; and for a b0 < 1,

∥∥ 1
α

∑
t M2,tM2,t

′
∥∥ ≤ b0.

For an εSE < 1, define

α0 := Cη
q2κ2

ε2
SE

(r log n).

For an α ≥ α0, let P̂ be top r left singular vectors of
∑α

t=1 ytyt
′/α. If

3.3
√
b0qκ ≤ 0.49εSE,

then, w.p. at least 1− 6n−10, SE(P̂,P) := ‖(I − P̂P̂ ′)P‖2 ≤ εSE
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Other Work (Extra Slides) Correlated-PCA: PCA in data-dependent noise

Discussion

Nearly optimal sample complexity
to estimate an r -dimensional subspace, one needs at least r samples

if κ is O(1), α ≥ Cκ2(r log n) q2

ε2
SE

is only (log n) times the best

achievable

Correlated noise case is harder
bound on SE(P̂,P) is governed by ‖H‖λ− where
H := 1

α

∑
t ytyt

′ − 1
α

∑
t `t`t

′ is the perturbation matrix

dominant terms in H are 1
α

∑
t `twt

′ and its transpose:

as a result ‖H‖
λ− depends on κ = λ+

λ− and
it is larger than it is in the uncorrelated-noise-only case
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Figure: Correlated vs Uncorrelated Noise: Average SE versus q. Equated noise
powers in both cases
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Other Work (Extra Slides) Dynamic Compressive Sensing (CS)

Dynamic CS: Problem [Vaswani,ICIP’08]5

Given measurements
yt := Axt + wt , ‖wt‖2 ≤ ε, t = 0, 1, 2, . . .

A = HΦ (given): n ×m, n < m
H: measurement matrix, Φ: sparsity basis matrix
e.g., in MRI: H = partial Fourier, Φ = inverse wavelet

yt : measurements (given)
xt : sparsity basis vector
Nt : support set of xt
wt : small noise

Goal: recursively reconstruct xt from y0, y1, . . . yt ,

Use slow support change: |Nt \ Nt−1| ≈ |Nt−1 \ Nt | � |Nt |
also use slow signal value change when valid

Applications - dynamic projection imaging, e.g., dynamic MRI, CT; dynamic
RPCA when outlier support reliably changes slowly over time, e.g., video

5
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
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Dynamic CS: Solutions [KF-CS, ICIP’08], [LS-CS,T-SP,Aug10]

Introduced Kalman filtered CS (KF-CS) and Least Squares CS (LS-CS):

first recursive algorithms that needed fewer measurements for accurate
recovery than simple `1

able to obtain time-invariant error bounds on LS-CS error under weaker
RIP assumptions (fewer meas’s) than simple `1

But these could not achieve exact recovery with fewer meas’s than what
simple `1 needed

Solved by Modified-CS
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Modified-CS: sparse rec. with partial support knowledge [Modified-CS,ISIT’09,T-SP’10,T-IT’15]

Idea: support at t − 1, Nt−1, is a good predictor of Nt

Reformulate: sparse recovery with partial support knowledge T
support(x) = T ∪∆ \∆e : ∆,∆e unknown

Modified-CS: tries to find a vector x̃ that is sparsest outside T among all
vectors satisfying the data constraint

min
x̃
‖x̃T c‖1 subject to ‖y − Ax̃‖2 ≤ ε

Provably exact recovery in noise-free case if δs+|∆|+|∆e | < 0.4 [Vaswani,Lu,

ISIT’09,T-SP’10]

For noisy case: time-invariant error bounds under a realistic signal change
model and δs+ksa < 0.4 [Zhan,Vaswani, ISIT’13, T-IT’15 (to appear)]

Regularized modified-CS & modified-CS-residual: also use slow signal value
change (when valid)
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Application: Dynamic MRI (larynx imaging example)

Original Sequence

ModCS Reconstruction

CS−diff Reconstruction

CS Reconstruction

Recovering a larynx
sequence from only 19%
simulated MRI
measurements

Proposed algorithm:
Modified-CS. Here CS ⇔
`1 min

Modified-CS NRMSE was
3%. Simple `1-min
NRMSE was 10%. It
needed n = 30% meas’s to
get 3% error.
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Application: fMRI based brain activation detection

full sampling Modified-CS (proposed algo)

k-t-FOCUSS simple `1

Activation maps
Used modified-CS for
reconstructing the fMRI
sequence; standard tools
for active region detection

Actual MRI scanner data;
retrospective
undersampling w/
n0 = 100%, n = 30%,

Joint work with Dr. Ian
Atkinson (UIC)
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