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Downlink LTE-A for Heterogeneous Networks

Chan-Ching Hsu and J. Morris Chang, Senior Member, IEEE

Abstract—Heterogeneous networks have been pointed out to be one of the key network architectures that help increase system
capacity and reduce power consumption for efficient communications. Although conceivably, high operational efficiency brings a
high profit for mobile service providers, it is noteworthy that the potential for maximizing the profit has not been explored for the
heterogeneous environment. This paper investigates profitability for network operators with the spectrum-energy efficiency metric
on the downlink of LTE Advanced communication systems. We pursue optimal policies by employing the techniques of cell size
zooming, user migration and sleep mode in the deployment of different base station types. The problem is formulated as a quasiconvex
optimization problem and it is transformed into an equivalent form of the MILP problem; the former is solved with a bisection algorithm
and the latter is approached by an off-the-shelf software package. Since the formulated optimization problem is NP hard, a sub-optimal
approach with a lower computational complexity is also proposed. Numerical analysis through case studies are presented to evaluate
the efficiency improvements, and demonstrate the performance of the near-optimal solution.

Index Terms—Network optimization, energy-efficient, spectrum efficiency, heterogeneous network.
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1 INTRODUCTION

TOTAL mobile traffics of the whole mobile world are
growing fast; the increasing demand over the last

mile access networks has motivated the network oper-
ators to extend and upgrade infrastructure in order to
provide guaranteed coverage and data services. Fourth
generation technologies such as LTE cellular systems
have been developed and are expected to be important
technologies to improve end-user throughput and net-
work capacity. With such technological capability to im-
prove information services, mobile operators have been
experiencing annual increases in data traffic volumes
and so in revenues. Meanwhile, [1] points out that the
operational expenditure accounts for more than 18% of
the energy bill, and that 60% of the power consumption
in the network equipment is from base stations (BSs).
The increasing data amount raises the profit at the
expense of energy consumption increased.

From the mobile operator perspective, it is of interest
to operate wireless networks in an economically efficient
fashion. It was analyzed in [2] that deploying different
types of BSs is able to help on expenditure reduction
and increase revenues. Thus, a hybrid of cellular deploy-
ments provides great leeway to the network operators
to attain financial improvements [3]. Nevertheless, one
of the concerns with HetNets is the growing num-
ber of small cell sites. The total energy consumption
of all femtocells will amount more than 3.784 × 109

kWh/annum according to [4]. This raises important
questions about the energy efficiency implications of
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HetNet deployment. Hence, energy efficient operation
in a heterogeneous setting becomes a pressing issue in
order to reduce the energy expenditure.

On the other hand, when evaluating the energy saving
mechanisms, the impact on spectrum efficiency should
also be taken into account. The authors in [5] analyzed
the tradeoff between the two metrics. The derived an-
alytical expression shows that the increase in energy
efficiency will inevitably bring down the spectrum ef-
ficiency. Schemes aimed at joint optimization of energy
efficiency and spectral efficiency should be well studied.
However, these two network efficiency improvement
problems are focused and studied disjointedly in the
literature. Therefore, in this paper, a spectrum-energy ef-
ficiency optimization model is developed for the hetero-
geneous network environments. We define maximizing
network spectrum-energy efficiency as optimizing the
spectrum allocation while minimizing the total energy
consumption.

There is a long-term economic objective of spectrum-
energy efficiency optimization. The spectrum-energy ef-
ficiency can be considered as a metric to quantify the
revenue-per-cost capacity, serving as an indicator of op-
erators profitability. It is a generalized objective function
that maximizes the ratio of spectrum efficiency over
energy consumed for the service operation. The goal
is to attain a network design which is cost-effective,
improving the data rate per resources managed (resource
blocks and energy). As an efficient network is capable of
growing in data volume conveyed successfully, within
given cost in terms of energy consumption, the revenue
then increases, coming from expanded data services
offered. With the optimal service rate per resource, the
most profitable network design can be realized.

In this research, the spectrum-energy efficiency in
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cellular communication systems is defined as the bits/s-
per-RB-per-Joule capacity, which depends on the served
data rate, allocated transmit power, resource blocks (RBs)
and static BS energy consumption. We propose to mi-
grate user equipment (UE) (i.e., mobile devices), switch
OFF and zoom in/out BSs. To obtain the optimal opera-
tion, a quasiconvex programming problem is developed,
and is transformed into a Mixed Integer Linear Program-
ming problem (MILP), where considered are association,
spatial, resource, operation and service constraints. The
decision space contains BS-UE-Modulation association
assignments and BS operation mode.

The contributions are summarized as follows: (i) We
present an analytical framework for optimal BS opera-
tion, user association and modulation scheme selection
in HetNets. Our objective is to maximize spectrum-
energy efficiency, i.e., maximizing profitability of net-
work service providers. We stress on techniques to en-
hance the utilization of resource blocks and thus to better
amortize the license costs of frequency bands for Het-
Nets. (ii) Two heuristic approaches are proposed to find
near-optimal solutions. The bisection method produces a
solution different from the optimal within a predefined
tolerable value; the devised heuristic algorithm reaches
a sub-optimal solution with computational tractability.
We run extensive simulations based on non-uniform BS
topologies and traffic distribution scenarios to verify per-
formance of the optimization framework, and heuristics.

The remainder of this paper is organized as follows.
We review related work in the next section; in Section
3, a system model is presented which portrays the stud-
ied heterogeneous network environment. The spectrum-
energy efficiency optimization scheme is then proposed
in Section 4. The heuristic approaches in Section 5 are
proposed to enhance the computation efficiency, fol-
lowed by the numerical experiments in Section 6. Finally,
Section 7 concludes this paper.

2 RELATED WORK

Several approaches have been pursued to reduce energy
consumption. Dynamic BS operation has been investi-
gated, allowing a significant amount of energy to be
saved, motivated by the traffic load fluctuation [6]–
[9]. Large savings, depending on temporal-spatial traf-
fic dynamics, are shown to be possible. [10] proposes
centralized and distributed algorithms to verify the re-
duction of power consumption of a cellular network
with cell zooming, and to avoid coverage hole when BSs
are turned off. Some work only count transmit power,
and the load-independent components of the energy
consumption, i.e., power for active/sleep mode, is not
considered. [11] finds the minimal transmission power
that ensures coverage and capacity, but is not sufficient
to reduce the energy consumption. [12] switches between
two radii that minimize consumption depending on the
hourly traffic, which is a simple case. [13] compares cell
sizes and concludes that smaller cells are more favorable

TABLE 1
List of Key Mathematical Notations

BA set of macro cells, am
BO set of femto cells, of
BS set of BSs, {bs} = {a1, . . . , aM , o1, . . . , oF }
QK set of modulation techniques, qk
UL set of users, {ul} = {x1, . . . , xN , w1, . . . , wE}
C BS-UE connectivity matrix, csl = {0, 1}, ∀s ∈ BS, l ∈ UL
I traffic demand matrix, il, ∀l ∈ UL
P transmit power matrix, pslk,∀s ∈ BS, l ∈ UL, k ∈ QK
D resource block number matrix, rlk, ∀l ∈ UL, k ∈ QK
V set of transmit power parameters, vsl , ∀s ∈ BS, l ∈ UL
dsl distance between BS s and user l
L total number of users, |UX|+ |UW|
Rb network blocking ratio
S total number of BSs, |BA|+ |BO|

Hm set of femto cells in the macro cell, hmg = f, ∀m ∈ BA
Pactive basic active energy consumption vector, psactive, ∀s
Psleep sleep mode energy consumption vector, pssleep,∀s ∈ BS
Pmax maximum total transmit power vector, psmax,∀s ∈ BS
R maximum number of RB vector, Rm,∀m ∈ BA
Y BS-UE-Modulation association matrix, (yslk)S×L×K

Z BS operation mode vector, (zs)1×S

for high energy efficiency. In our design, cell size does
not alternate between fixed radii, and no predefined
traffic threshold or fixed traffic volume is based on so
that responding to dynamics more effectively.

A well-deployed HetNet will not only bring better
performance on coverage and capacity but also higher
energy-efficiency [14]–[16]. However, network planning
is primarily an off-line activity and is not necessarily
fine in handling dynamic scenarios. Cloud radio ac-
cess network (C-RAN), on the other hand, is proposed,
utilizing centralized processing, separated from the ra-
dio access units and dynamical network switching, to
address the efficiency issues [17]. Yet a C-RAN with
large-scale centralization may incur enormous fronthaul
expenditure. In contrast, our approach is proposed as an
enhancement to the existing LTE RAN. Our prior work
[18] studies the spectrum-energy efficiency in only the
homogeneous setting; in this work, beside the heteroge-
neous environment, the differences can be presented as
follows: (i) considering the effects of modulation scheme,
association and spatial constraints to formulate a more
sophisticated model, (ii) modifying the model for a dif-
ferent spectrum partitioning model enabling enhanced
Inter-Cell Interference Coordination [19], and (iii) further
proposing algorithms for dynamic BS operation and user
association as well as presenting analysis.

3 NETWORK MODELS

In our work, the broadband wireless communication sys-
tem is considered which consists of different kinds of BSs
and manages multiple users. Spectrum-energy efficiency
is used to assess network capacity and defined as served
traffic over allocated resource block per energy con-
sumed. The goals are to (i) maximize spectrum-energy
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Fig. 1. BS operations, cell zooming in/out, sleep mode and user migration, to enhance network performance

efficiency, (ii) obtain the optimal BS operation mode,
and (iii) assign serving BSs to users with designated
modulation techniques that satisfy rate requirements of
associated users. A list of the key mathematical notations
is shown in Table 1.

Cell zooming and sleep mode operations as shown
in Fig. 1 are of benefit to enhancing spectrum-energy
efficiency. Fig. 1(a) shows a wireless access network
formed with five macro (green circles) plus six femto
cells (pink circles), where the central macro cell is sur-
rounded by four macros and works with 4 femto cells.1

BSs are located at the respective center of the cells,
designated with numbers; users are distributed among
BSs, denoted by red points. In Fig. 1(b) macro BS-2 and
other femto cells work in sleep mode, together reducing
energy consumption. An example is provided from Fig.
1(c) to illustrate cell zooming and user migration. Macro
BS-0 and femto BS-5, BS-6 zoom out to associate with the
users migrating from macro BS-2 or BS-3; consequently,
macro BS-2 and BS-3 are allowed to reduce the coverage
with decreased power. With the network blocking ratio,
macro BS-4 chooses to sleep, disconnecting with the
tolerable number of users. Moreover, connection through
different modulation technique selections results in dif-
ferent levels of spectrum-energy efficiency.

In this work, when switched to sleep mode, BSs are
not totally shut down and still have the ability to broad-
cast standard messages. BSs in sleep mode periodically
broadcast beacon messages, and any user able to receive
the messages can synchronize with BSs. When users
are synchronized, necessary information is obtained and
estimated. Based on the captured information, users
are associated with BSs. In other words, the coverage
shown in the figure is the BS association range instead
of the broadcast range. Hence, blocked users are always
allowed to request for service.

3.1 Overview

We present the optimization model for the BS spectrum-
energy efficiency problem as follows. Let UL =
{u1, . . . , uL} be the set of UEs, and each UE device has

1. In our research, we consider femto-cells to represent small cells
which are installed outdoor and managed by mobile operators. The
result can be extended into HetNets consisting of other types of smaller
sites such as micro BSs.

a set of modulation schemes, QK, for data transmission.
Let BA = {a1, . . . , aM} be the set of macro base stations
and BO = {o1, . . . , oF } the set of femto base stations,
respectively; BA is combined with BO, introducing a
new set comprising both types of base stations, BS =
{a1, . . . , aM , o1, . . . , oF } with cardinality |BS| = S.

Problem Statement: Given (i) transmission power, pslk,
between L users and a finite number of S stations with K
modulation techniques, (ii) user rate requirements, il, re-
quired number of resource blocks, rlk, (iii) blocking ratio,
Rb, and (iv) maximum power, P smax, available resource
blocks, Rm, basic active and sleep mode power usage of
BSs, P sactive and P ssleep, the problem is to maximize the
system spectrum-energy efficiency, by associating users
and BSs through designated modulation techniques. The
decision space consisting of association matrix (Y) and
operation mode vector (Z) is defined as follows:
• Y = {yslk}. Equals 1 if user l is assigned to base

station s through modulation k, ∀s ∈ BS, l ∈ UL, k ∈
QK, and 0 otherwise.

• Z = {zs}. Equals 1 if base station s is in the active
state,∀s ∈ BS, and 0 otherwise.

With information on power and carrier requirements,
when yslk is asserted, the traffic demand is satisfied for ul
via modulation technique k, and os has to be the value
of one correspondingly. The BS cell size is the equivalent
of the area within which BSs are able to serve users
by tuning up transmission power (pslk). Cell zooming
is present by comparison of the service areas of two
statues at consecutive operation times. In other words, as
the service area varies with the adjusted transmit power
level, the BS is undertaking cell zooming.

3.2 Association and Spatial Constraints

Eq. (1) realizes the traffic request from an associated user
is satisfied through a direct link with a BS. Each user
can be served by up to one BS through one modula-
tion technique. For an individual BS s, if the result of∑
l∈UL,k∈QK

yslk is equal to 0, it means s operates in sleep
mode. Furthermore, the idea of user migration is put
into action if an user is associated with a BS which is
different from the one it formerly connected.∑

s∈BS,k∈QK

yslk ≤ 1,∀l ∈ UL, (1)
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Continuity Constraint: To prevent intermittent data
transmission on the users, we distinguish existing users
from new coming ones. The existing users are inclined to
complete the ongoing sessions with continuous associa-
tion sessions; the new coming users arrive at the network
and seek for being associated with no data transmission
yet. In this context, the set of users is partitioned into
two, UL = {UX,UW} with cardinality L = N + E. The
first part presents the set of new arrival users with
UX = {x1, . . . , xN}; the second part represents the set
of existing users with UW = {w1, . . . , wE}. To allow
active users to be not service-discontinued, the following
constraint is imposed. Note that when UL = UX, the
association continuity is not taken into account.∑

s∈BS,k∈QK

ysek = 1,∀e ∈ UW, (2)

Topology Constraint: The scheme of frequency reuse
help BSs prevent interfering with the neighboring; as the
cell size is adjustable, nevertheless, BSs could overex-
pand the transmission range, seriously interfering others
sharing the same spectrum. Considering such impact,
limiting individual transmit power is effective; therefore,
whether user l is attainable for BS s can be determined in
terms of the transmit power with modulation K, which
requires the highest sensitivity and SNR among QK.

C(pslK , p
s)→ csl =

{
1, if pslK < ps,∀s ∈ BS, l ∈ UL;
0, otherwise,

where ps is a maximal individual transmit power, which
can be estimated considering BSs were deployed at fixed
locations. csl = 1 means cell s can reach l in terms of
transmit power. Then it is expressed as follows that BSs
should only consider users within the reachable range
as a feasible set.∑

k∈QK

yslk ≤ csl ,∀s ∈ BS, l ∈ UL, (3)

3.3 Power and Carrier Constraints

Two parameters are tied to modulation selection, trans-
mit power and resource block. Given the traffic rate re-
quired at the user, the power and resource block number
are obtained that are necessary for modulation schemes
at the BS. Each modulation and coding scheme (MCS)
is able to support a data rate; the transmission time is
captured by the resource block number. Through mod-
ulations, a traffic requirement can be met by different
numbers of resource blocks in given time duration, i.e.
more resource blocks are allocated to achieve same data
rate for lower MCS. We consider a quasi-static network
scenario, where il,∀i ∈ UL, remains unchanged within
every operation period, while changing across periods.
Individual rate requirements, il, are randomly chosen
from the set of supported rates by the physical layer
(Table 2). rlk indicates the number of resource block for
user l through modulation technique k.

TABLE 2
Parameters per Modulation Scheme

Modulation Sensitivity Data bit Data rate
(dBm) per symbol (Mbps)

QPSK1/2 -96 1.0 2.2
16QAM1/2 -90 2.0 4.4
16QAM3/4 -87 3.0 6.6
64QAM3/4 -80 4.5 9.9

Resource Block Constraint: The total number of re-
source blocks a BS serves should not be greater than
the available number (Rm,∀m ∈ BA) on the channel
bandwidth in a specified symbol time. This constraint
is ensured by the following equation.∑

hm
g ∈Hm,l∈UL,k∈QK

[(ymlk + y
hm
g

lk ) · rlk] ≤ Rm,∀m, (4)

As the available spectrum span is finite, the number of
resource blocks to transmit data over the span is limited.
We assume that non-overlapping spectrum bands are
used, and hence there is no co-channel interference. In
other words, orthogonal radio resources are allocated to
macrocell and small cell users; the cross-tier and co-tier
interference are completely eliminated. We further as-
sume that small cells use orthogonal channels. Therefore,
the different subsets of mobile users assigned to each
small cell do not interfere with each other.

When operating within a macro cell’s coverage, a
femto cell allocates a portion of m’s available frequency
for transmissions. Hm = {hm1 , . . . , hmGm

},∀m ∈ BA de-
notes the set of femtos f sharing spectrum with the
macro m. To calculate the number of resource blocks
for individual data transmissions with modulation tech-
nique k, the equation for the resource block number, rlk,
given the rate requirement, il, is considered as [20]:

R(il, k)→ rlk,∀l ∈ UL, k ∈ QK,

Transmission Power Constraints: Receiver sensitivity
is regarded as the minimum power at the receiver side
for the guaranteed signal strength, from which the nec-
essary transmission power level, pslk, can be calculated
as according to [21]:

P (il,v
s
l , k)→ pslk,∀s ∈ BS, l ∈ UL, k ∈ QK,

where vs
l represents the propagation gains and atten-

uation by miscellaneous losses between s and l. It is
shown the linear model can offer approximation for the
transmission power with respect to the carried traffic
load, and has been adopted in [12]. In this work, the
model is applied to capture the dependency of traffic
volume and resource blocks. BSs are considered to scale
their power consumption to traffic load; a higher user
population implies higher transmit power from the base
station generally. The constraints on total transmission
power constraints are as follows:
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∑
l∈UL,k∈QK

(ymlk · pmlk) ≤ Pmmax,∀m ∈ BA, (5)∑
l∈UL,k∈QK

(yflk · p
f
lk) ≤ P fmax,∀f ∈ BO, (6)

Receiver sensitivity is listed in Table 2 [22]. As BS
antennas are assumed to transmit ideally, feeder losses,
connector losses and jumper losses are not considered.
We consider fast fading margin and building penetration
loss, whose values are assumed in simulation [23]. The
COST-231 Hata and COST-Walfisch-Ikegami models are
considered for path loss. We assumed the BS antenna
height is 30(m) and the users’ antenna height is 1(m).

We consider a scenario where for each cell, the input
data for optimization are reported periodically, which
is common in many real network deployments [24].
Besides, the timescales of changing parameters for all
practical purposes are in the order of a few minutes (typ-
ically, 5-15 mins). Thus, reconfiguration ought to happen
whenever: 1) input information changes significantly in
some cells, or 2) when a maximum duration elapses since
the last reconfiguration. In addition, if the estimated
improvement upon new reconfiguration is small, then
the previous configuration can be retained.

3.4 Operation and Service Constraints
If it is an BS operating in active mode, bs is equal to one
for s. Eq. (7) and (8) together ensure that a BS switches
into active mode as long as delivering services; otherwise
the BS switch to sleep mode without serving users.

zs ≤
∑

l∈UL,k∈QK

yslk,∀s ∈ BS, (7)

yslk ≤ zs,∀s ∈ BS, l ∈ UL, k ∈ QK, (8)

The total number of connected users must be higher
than the required number of active users as follows:∑

s∈BS,l∈UL,k∈QK

yslk ≥ δ, (9)

where δ = S(1 − Rb) and Rb denotes the blocking
ratio, the ratio of users not associated among total users
demanding services. No single user is considered to be
blocked if the rate is set to zero. Note that there could
be no feasible solutions due to insufficient resources to
serve users. In this case, operators can consider two
alternatives: (i) increase the blocking ratio, (ii) treat ex-
isting users as new coming in the model. Having a high
blocking ratio can lead to the situation where many new
coming users have difficulty in getting mobile services;
seeing existing users as new arrival can result in the situ-
ation where the service continuity is not guaranteed. On
user side, they may experience a data rate drop overall,
which commonly occurs when the network is congested.
However, when available recourses are sufficient for data
transmission, none of the alternatives is needed to be
taken.

In LTE, BSs in sleep mode periodically wake up and
broadcast beacon messages. The instantaneous channel-
quality in time domain at the terminals is estimated and
fed back to the BS for power level adjustment (pslk); the
information about the number of RBs for user require-
ments can be collected during the resource allocation
procedure (rlk). When users are able to synchronize with
BSs, the information concerning transmit power can be
used as input to our model without knowing the user
locations. Once users have been associated, they will
periodically send information to maintain communica-
tion. We assume no rapid channel-quality variations in
frequency domain.

4 SPECTRUM-ENERGY EFFICIENCY PROBLEM

We define the spectrum efficiency as a summation of
the individual served traffic divided by the allocated
resource block number of associated users since the
resources are distributed separately. The next expression
presents the spectrum efficiency achieved:

S(Y, I,D) =
∑

s∈BS,l∈UL,k∈QK

(
il
rlk
· yslk).

A BS operates in either sleep mode, taking a low
energy level, or in active mode, consuming a basic
running energy plus the energy for transmission. The
energy a sleeping BS consume is P ssleep; the energy
consumed by an active BS comes from the basic active
mode energy P sactive plus the energy used to serve its
users,

∑
l∈UL,k∈QK

(pslk · yslk),∀s ∈ BA. The overall energy
consumption is expressed as:

E(Y,Z,P,Pactive,Psleep) =
∑
m∈BA

(Pmactive · zm)

+
∑
f∈BO

[P fsleep · (1− zf )] +
∑

s∈BS,l∈UL,k∈QK

(pslk · yslk)

+
∑
f∈BO

(P factive · zf ) +
∑
m∈BA

[Pmsleep · (1− zm)].

To fulfill the requirement, BSs chooses MCS, deliver-
ing data at a necessary level of transmit power over
a sufficient number of resource blocks. The model is
designed for finding the optimal operation policy for BSs
by deciding yslk and zs. When yslk in the solution is equal
to 1, user l is associated with BS s through modulation
technique k, which corresponds to rlk resource blocks
and pslk to satisfy the requirement il.

The formulation for the BS operation and user associ-
ation assignment problem can be expressed as follows:

max
S(Y, I,D)

E(Y,Z,P,Pactive,Psleep)

s.t. Constraints (1)− (9),
yslk, zs ∈ {0, 1},∀s ∈ BS, l ∈ UL, k ∈ QK.

(10)

The problem (10) has the objective function to maxi-
mize the spectrum-energy efficiency. Note that due to the
energy required for sleep mode, the energy consumption
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function E(·) has a lower bound even though no asso-
ciations is formed by BSs. The case, therefore, will not
arise that total energy consumption is very small (e.g.,
goes to zero). However, the problem involves a fractional
objective function which we reformulate into a MILP
problem to obtain the optimal solution.

4.1 Problem Transformation
In (10), although the constraints are linear, the objective
function is a ratio of two linear terms, hence making
the model nonlinear. To eliminate the nonlinearity, the
objective function must be transformed to be pure linear;
also when there exists a solution to the transformed
model, a solution can also be found to the original
model. The objective function can be transformed to a
linear function as follows. Since in the original problem,
the denominator is always positive over the feasible sets
of Y and Z , variables µslk, νs and τ are introduced, which
hold µslk = τ · yslk and νs = τ · zs, and τ = 1

E(·) . The
transformed problem is presented below:

max
∑

s∈BS,l∈UL,k∈QK

(
il
rlk
· µslk)

s.t.
∑
m∈BA

[(Pmactive − Pmsleep) · νm] + τ ·M · Pmsleep

+
∑
f∈BO

[(P factive − P
f
sleep) · νf ] + τ · F · P fsleep

+
∑

s∈BS,l∈UL,k∈QK

(pslk · µslk) = 1,∑
s∈BS,k∈QK

µslk ≤ τ,∀l ∈ UL∑
s∈BS,k∈QK

µsek = τ,∀e ∈ UW∑
k∈QK

µslk ≤ τ · csl ,∀s ∈ BS, l ∈ UL,∑
l∈UL,k∈QK

(pmlk · µmlk) ≤ τ · Pmmax,∀m ∈ BA∑
l∈UL,k∈QK

(pflk · µ
f
lk) ≤ τ · P fmax,∀f ∈ BO∑

hm
g ∈Hm,

l∈UL,k∈QK

[rlk · (µmlk + µ
hm
g

lk ]) ≤ τ ·Rm,∀m

∑
l∈UL,k∈QK

µslk ≥ νs,∀s ∈ BS

µslk ≤ νs,∀s ∈ BS, l ∈ UL, k ∈ QK∑
s∈BS,l∈UL,k∈QK

µslk ≥ τ · δ,

µslk, νs, τ ≥ 0,∀s ∈ BS, l ∈ UL, k ∈ QK

(11)

Provided τ > 0 at the optimal solution, this LP
problem is equivalent to the fractional objective problem
except the binary condition of decision variables. The
values of the variables yslk and zs in the optimal solution
to the fractional objective problem are obtained from

dividing optimal µslk and νs by τ . As decision variables in
the fractional objective model are binary, it is necessary
to impose on the transformed model the constraints
which reflect the binary property. We know if yslk is zero,
then µslk must be zero; otherwise, µslk = τ if yslk = 1. In the
following constraints, binary variables are introduced,
αslk and βs, as well as a constant value Q holding a value
greater than µslk, νs and τ .

µslk − τ −Q · αslk ≥ −Q,∀s, l, k
νs − τ −Q · βs ≥ −Q,∀s, l, k
µslk − τ +Q · αslk ≤ Q,∀s, l, k
νs − τ +Q · βs ≤ Q,∀s, l, k

µslk ≤ Q · αslk,∀s, l, k
νs ≤ Q · βs,∀s, l, k

αslk, βs ∈ {0, 1},∀s, l, k

Problem (10) is equivalent to (11) given the fact that
yslk =

µs
lk

τ , zs = νs
τ , ∀s ∈ BS, l ∈ UL, k ∈ QK and τ = 1

E(·) .
The MILP problem considers transmission power, as E(·)
is one of the transformed constraints. Since the the value
of τ has the impact on both µslk and νs, not only rlk but
also pslk influences the objective value.

5 APPROACHES TO SOLVE THE PROBLEM

Software packages, CPLEX for instance, are able to
solve MILP problems; however, a major disadvantage
of MILP is its computational complexity. Because MILP
is NP-hard in general, computational requirements can
grow significantly as the number of binary variables
increases. Motivated to generate less computationally
intensive methods, we develop two techniques solving
the formulated problem by finding suboptimal solutions,
which are discussed in the following.

Remark 1. The formulated problem is NP-hard by reduction
from the set-packing problem.

Proof. In set packing problems, given a universal set V
and a set F which consists of some subsets of V , a
packing is a subset G ⊂ F of sets such that all sets in
G are pairwise disjoint. To obtain the reduction from the
set-packing problem, we consider a simplified version
of the formulated problem where a HetNet consists of
a single macro, a single small cell, and N UEs. We
first set the overall energy consumption as a constant
so that the objective function is linear. Suppose there is
only one modulation scheme, and resource blocks and
transmit power are always sufficient. Both BSs are active,
and all users are associated with either of them. For
UEs, the transmit power is identical from BSs. In this
case, the overall energy consumption is constant, and we
maximize spectrum efficiency as optimizing spectrum-
energy efficiency.

Let UL = V , and F can be constructed based on the
topological relation constraint. For Fs ⊂ F , Fs consists
of all sets formed by possible coverage of BS s. The user
composition, based on possible coverage, varies from set
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Algorithm 1: maxxf(x).

Given l ≤ f∗ ≤ h and the tolerance ε > 0;
while (h− l) > ε do

α = (h+ l)/2;
Solve the feasibility problem (12);
if feasible then l = α;
else h = α;

end

to set in Fs. Given all possible UE and BS combinations,
the problem becomes finding the pack of BS subsets
where UEs are not overlapping such that spectrum
efficiency is maximized. The set-packing problem has a
solution if and only if the constructed problem has a
solution. 2

5.1 Quasiconvex Optimization Problem
A quasiconvex problem takes the form:

min f(x)

s.t. fk(x) ≤ 0, k = 1, . . . ,m,

Ax = b.

where f : Rn → R is quasiconvex, f1, . . . , fm are convex,
and ak ∈ Rn and bk ∈ R for k = 1, . . . , p, are affine.
The objective function in (10) is quasiconvex according
to Definition 1:

Definition 1. A function f : Rn → R is quasiconvex if its
domain dom(f) and all its sublevel sets Sα are convex,

Sα = {x ∈ dom(f)|f(x) ≤ α},∀α ∈ R.

Proof. Let the function

S(Y, I,D)

E(Y,Z,P, Pmactive, P
f
sleep)

= f(x) =
aTx+ b

cTx+ d
.

As dom(f) = {x|cTx+ d > 0} and its α-sublevel set is

Sα = {x|cTx+ d > 0, (aTx+ b)/(cTx+ d) ≤ α}
= {x|cTx+ d > 0, (aTx+ b) ≤ α(cTx+ d)},

which is convex. Therefore, f(x) is quasiconvex.

The inequality constraints are convex because they
are linear and the equality constraint is affine since
the solution set of a linear equation is an affine set.
Hence (ObjectiveFunction) is a quasiconvex optimization
problem, whose global optimum can be computed via a

2. Hardness can also be shown by reduction from the budgeted
welfare maximization problem. An instance of can be created as
follows, following the same assumption and example, but the resource
blocks are limited to each BS and same number of RBs are required for
UEs. In this case, maximizing spectrum-energy efficiency is equivalent
to maximizing total traffic, and the constraint is the RB constraint, in
other words, the budget. Corresponding to each item, we create a UE.
There are two BSs (bidders), each of which has same traffic demand
from same user. Note if the BSs are constrained with same resource
block number, it can be reduced from a partition problem.

Algorithm 2: Spectrum-Energy Efficiency Maximiza-
tion

Input: S,L,K,M,F,N,E,Rb,BS,UL,QK,BA,BO,UX,
UW,C, I,D,P,Hm,R,Pactive,Psleep and Pmax.

Output: Y and Z .
1: Compute gslk ∈ Ω,∀s, l, k;
2: for l = N + 1 to L do
3: Find s and k combination that gives best gslk;
4: yslk ← 1 and zs ← 1;
5: for s = 1 to M do
6: Macro-Femto();
7: Sleeping();
8: while there exists an s that can cover more users do
9: Zooming();

10: for l having no service and s active do
11: if exists s, l, k combination to improve C then
12: yslk ← 1 and zs ← 1;
13: while constraint (9) is not satisfied do
14: Find s,∀zs = 0 covering the most non-served

users;
15: for csl = 1 do
16: if yslk ← 1 satisfies constraints (4)-(6) then
17: yslk ← 1 and zs ← 1;
18: for l having association do
19: if there exists a k that can improve C then
20: yslk ← 1 and zs ← 1;
21: return Y and Z .

sequence of convex feasibility problems. Let f∗ denote
the optimal value of the quasiconvex object function.
Given γ ∈ R, if the convex feasibility problem of (12)
is feasible, then we have f∗ ≥ γ.

find x

s.t. f(x) ≥ γ,
fk(x) ≤ 0, k = 1, . . . ,m,

Ax = b.

(12)

Conversely, if the above problem is infeasible, then we
can conclude f∗ < γ. Thus we can check whether the
optimal value f∗ is less or more than a given value
γ. Algorithm 1 shows the procedure of the bisection
method for solving the problem. It starts with a range
[l, h] that is known to contain f∗. Then we solve the fea-
sibility problem at its mid-point α = (l + h)/2. Depend-
ing on whether it is feasible, the algorithm continues
on the identified half of the interval. The algorithm is
guaranteed to converge in dlog2((h − l)/ε)e iterations.
The bisection algorithm is less expensive in terms of
computation complexity.

5.2 Heuristic Algorithm

In the wireless communication environment the num-
ber of users changes and the requirements fluctuate
frequently; hence, heuristic algorithms are favored to
solve the proposed optimization model in real time. The
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approach is shown in Algorithm 2, which accepts same
input. While the determination of operation and associa-
tion depends on information that changes in each frame,
thereby tackling the maximization problem within the
per-frame optimized decision, the algorithm can perform
maximization at coarse time scales if per-frame efficiency
maximization is infeasible due to practical constraints.
Since the ongoing connections are guaranteed to be
maintained, the situation is prevented where BSs are
switched on and off between solutions. BSs report dy-
namic parameters to facilitate the solution: (i) UX, UW, I
(D, P are then estimated with each MCS through the
screening procedure), and (ii) C through the ranging
process. Other input of Algorithm 2 is static and deter-
mined with the network deployment by operators. Al-
though capable of reducing computation time, when the
heuristic approach is applied to an extremely large-size
network, the solution might not be able to obtained in
the time of a frame. In this regard, tuning the algorithm
by further reducing its complexity can be a fix.

A preliminary solution is initialized by, for each
existing user, selecting the cell and modulation tech-
nique which in combination allow the best single link
spectrum-energy efficiency. The solution is firstly up-
dated in the manner of migrating active users from
macro cells to femto ones, looking for the opportunity
of sleeping macro BSs. Then, the heuristics seeks for
favorable possibilities under which users can be reas-
sociated with the active cells other than current ones.
If all users are swept into its neighboring BSs, the cell
can be switched to sleep mode. Subsequently, there may
exist users who are not served. Without activating BSs
in a sleep state, assigning these users to awake BSs
could benefit improving system spectrum-energy effi-
ciency. On the other hand, the constraint on the served
user number might not be presently fulfilled, which is
responded to as inactive BSs encompassing the most
non-served users will be turned on, accommodating the
users with no association. Lastly, a better solution can be
achieved through changing modulation technique to live
links for improving system spectrum-energy efficiency.
Overall, the computation complexity of the algorithm is
O(SL3K).

5.3 Algorithm Description
The spectrum-energy efficiency of a single link (gslk =
il
rlk

pslk
) is computed for each combination of BS, user and

modulation technique. An initial solution is suggested
with existing users to choose best gslk,∀s ∈ BS, k ∈ QK.
Macro-Femto() looks into active macro BSs in order for
examining the possibility of user migration to femto cells
facilitating sleeping macro cells. During Macro-Femto(),
associated users with the macro cell are considered for
being migrated to femto cells. Two conditions are neces-
sary for getting into a sleep state: all the users are able
to be migrated and energy consumption can be reduced.
Running many femto cells may consume energy more

TABLE 3
System Parameters

Parameter Value

Channel bandwidth 10 MHz, frequency reuse 3
Sleep mode power Pm

sleep = 8, P f
sleep = 0.028 (W)

Active mode power Pm
active = 500, P f

active = 5 (W)
Maximum transmission power Pm

max = 40, P f
max = 0.14 (W)

Required data rate Random (0-9.9 Mbps per user)
User arrival rate λ =30 per macrocell

Resource block number 600 per DL subframe

than that what can be reduced from sleep macro BSs,
which is not beneficial to spectrum-energy efficiency im-
provement. Therefore, starting from the macro cell that
could have the highest migrated user number, Sleeping()
chooses femto cells that require less amount of energy to
sleep. During the procedure, if the total transmist power
of a femto BS is higher than P fmax,∀f ∈ BO, modulation
technique will be adjusted to reduce the imposed energy,
from users who need the highest transmitting power.

Moreover, it is with the intention of economizing on
energy consumption by engaging fewer BSs in active
mode. Starting from the one showing most active users
in coverage, active BSs connect users who were served
by others as many as they can, providing constraints (4)-
(6) are not violated, which essentially is what Zooming()
for. In the case of the insufficient resource block number
or total power to deploy, appropriate modulation ad-
justment is considered. Specifically, depending on which
resource is not sufficient, for users taking high transmit
power or large resource blocks, modulation is tuned till
no more adjustments can or is needed to be made. For
no-service users, two active BSs are chosen to bring two
highest gslk. From the user giving best gslk, if efficiency can
be improved, users pick first choices in the first iteration;
if the total served user number cannot be accepted, sec-
ond choices come to play for the rest with no association.
Until the blocking ratio constraint is met, BSs are turned
on and provide the users services via best modulation
method. Then the solution is updated if spectrum-energy
efficiency can be enhanced by modulation adjustment.

6 NUMERICAL RESULTS

This section presents case studies where the wireless
wide area network (WWAN) is assumed such as LTE
Advanced using OFDMA interface for the downlink.
The case studies are conducted to evaluate the effec-
tiveness of the formulated mathematical model and pro-
posed heuristic algorithm in terms of produced solu-
tions, and the computational efficiencies in multi-cell-
multi-users scenarios. We firstly evaluate performance
improvements of the proposed solution, and then com-
pare our scheme with others to show the effectiveness.
The computation cost and solution obtained by the
heuristic algorithm are studied as well. The main system
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Fig. 2. Illustration of node distribution setup.
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Fig. 3. Performance comparisons among four schemes.

parameters taken into account in the simulations are
tabulated in Table 3 unless stated otherwise.

As WWAN spans a relatively large area, we separate
areas of coverage into three geographic areas, urban
(central), rural (peripheral) and suburban (in-between)

regions. The building penetration loss correction values
vary in these areas, which are 12, 18 and 15 dB, re-
spectively [23]; the area percentages are 65%, 15% and
20%, respectively. Three types of user distribution are
considered across the entire area. Fig. 2(a) shows the
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illustrative Type 1 network layout, in which 80% of the
users are in the urban area, 12.5% suburban and 7.5%
rural, respectively; Type 2 distribution is plotted in Fig.
2(b), where the peripheral region has a larger population.
The other type of user distribution is uniform, for which
user numbers are basically the same in the three areas.
In our study, the frequency reuse 3 scheme is adopted on
macro BSs and the resource block constraint is expressed
as Eq. (4); for each macrocellular BS, it shares the reused
radio resource with its small cells. The constraint can
be modified in order to work with any given spectrum
allocation policy where frequency bands are allocated
individually. For instance, in split spectrum macrocell-
femtocell, certain portion of the available spectrum re-
sources are dedicated to each tier to avoid interference
problems among the tiers.

6.1 Solving the Model

Fig. 3 shows the results obtained from four schemes
for cases with user numbers from 800 to 2600 and
Type 1 distribution. There are 15 macro and 10 femto
BSs, and the blocking ratio is 6%. The four schemes
includes homogeneous macrocellular network, heteroge-
neous network consisting of both macrocell and femto
cell sites, proposed framework that optimizes spectrum-
energy efficiency of HetNets, and heuristic approach
that solves the formulated problem (Algorithm 2), re-
spectively. In Fig. 3(a) first two schemes serve all users,
and therefore fulfils more data requirements, whereas
the proposed solution is allowed to block users; hence
in the cases with numbers from 800 to 1400, it serves
less. For other cases, since serving more users improves
spectrum-energy efficiency, all users are served. In Fig.
3(b), with optimal modulation selection, the proposed
scheme obtains the highest spectrum efficiency for all
cases, which is on average improved by 92% from Het-
Net scenarios, while HetNets outperform homogeneous
macrocellular networks slightly. Note that the improve-
ment in spectrum efficiency correlates with small cell
user number. We run additional simulations and the
results show as more small cells are introduced, the
improvement in spectrum efficiency increases. Since the
possibility of being associated with small cells increases,
we can expect the increase in the percentage of users
associated through better MCS.

Fig. 3(c) shows the total energy consumed by different
schemes in different cases. For the homogeneous net-
work scheme, without turning off BSs, all BSs stay active
even in unsaturated networks (i.e. L < 1200), resulting in
heavy overall energy consumption, whereas the HetNet
scheme consumes more energy than because femtos
account for the additional energy use for transmission
and being active. For our scheme, when 800 users are in
the network, almost half of the BSs are switch off, saving
more than 45% energy in comparison with that of the
HetNet scheme. But the difference becomes to around
7% when the user number grows to 1000 and 1200; all
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macro cells stay active to serve more than 1400 users.As
the number of users increases, the energy consumption
difference decreases between the HetNet scheme and the
proposed scheme due to the decreased number of BSs
that can operate in sleep mode. For example, while 1200
users are considered, 6 more macro BSs remain active
compared with the case of 800 users. In the solution,
the BSs differ in service range based on the distribution
of users and their traffic service requirements through
adjusting the modulation scheme and transmit power,
carrying out cell zooming in/out. The BSs with no users
to serve can be turned off, applying BS sleep mode; the
users may connect with another BSs, realizing migration.

Fig. 3(d) depicts the performance improvement
on spectrum-energy efficiency. It is shown that the
spectrum-energy efficiency is increased slightly in the
HetNet scheme from the homogeneous scheme, whereas
the efficiency capacity improves substantially in the pro-
posed scheme with an average improvement of 114%.
When the user number is 800, because a significant num-
ber of BSs are in sleep mode, the efficiency is enhanced
by almost 250%. Spectrum-energy efficiency takes into
account energy efficiency and spectrum efficiency to-
gether. By maximizing this efficiency capacity, both met-
rics can be improved. Note that optimizing either metric
does not necessarily achieve optimal spectrum-energy
efficiency due to the trade-off.

6.2 Comparative Schemes

We next compare the suggested scheme against six dif-
ferent configurations. They are (i) no optimization is re-
alized upon the HetNet, (ii) the change of MCS selection
is not considered (µslk′ = 0,∀s ∈ BS, l ∈ UL, k

′ ∈ QK \{k},
where k is the original MCS selection for users), (iii)
optimization does not migrate users (µs

′

lk = 0,∀s′ ∈
BS \ {s}, l ∈ UL, k ∈ QK, where s is the original BS
user l is associated with), (iv) BSs do not zoom out
to cover neighboring users; hence, coverage will not be
extended (effecting Eq. (3)), (v) the BSs with no users
to serve originally are not considered to associate with
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TABLE 4
Spectrum-energy Efficiency Improvement in Scenarios

Number of Nodes User
Distribution

Spectrum-Energy
Efficiency ImprovedMacroBS FemtoBS User

15 25 4000
Type 1 95.39%
Type 2 99.43%

Uniform 95.48%

18 30 5000
Type 1 93.30%
Type 2 96.54%

Uniform 94.03%

18 35 6000
Type 1 94.07%
Type 2 96.81%

Uniform 94.99%

20 40 7000
Type 1 91.51%
Type 2 97.54%

Uniform 95.06%

20 45 8000
Type 1 92.84%
Type 2 97.62%

Uniform 95.71%

any in optimal solutions (ν′s = 0,∀s′ ∈ BS, where s′ is
BS has no users within its original coverage), and (vi)
the proposed maximization scheme is applied. Except
the first configuration, the spectrum-energy capacity is
optimized for all others.

Fig. 4 shows our results. Without optimizing MCS,
the spectrum-energy capacity drops by on average 33%,
which means the most sensitive dependence is on MCS
selection, compared with the other three key configura-
tions. The reason is optimizing the MCS selection picks
better MCS values than the default MCS in the sense
of balancing overall energy consumption and resources
(e.g. higher power but less RBs). We did the experiment
to verify that the capacity difference becomes greater
with more UEs, due to more MCS selection improvement
opportunities. Furthermore, in Fig. 4, since migration op-
eration is excluded, the existing mobile users cannot be
re-associated with other BSs, resulting in more BSs that
are needed to be activated; therefore 5.5% decrease from
the proposed configuration. Similarly, the differential
between default cell zooming and the proposed solution
averages out 5%, for which the main reason is without
the ability to expand coverage areas, the chances are
reduced that the serving users are taken over by other
BSs and the BS is allowed to be in sleep mode. Lastly,
the performance of the default cell on/off configuration
depends on the distribution of UEs. When no UEs are in
the coverage of femtos, they are switched off; when more
UEs appear in the area of femtos, they cannot sleep.

Table 4 presents improvements in spectrum-energy
efficiency for various numbers of nodes with different
user distribution considerations. It is manifested that the
optimization model is capable of being scaled, as the
spectrum-energy efficiency can be improved by more
than 91% for a variety of network settings regardless
of the number of nodes and user distribution. For oper-
ators, it is economically essential to be concerned about

how efficiently resource blocks are utilized and energy is
consumed. The formulated model looks for assignments
(BSs, users and modulation/coding schemes) which to-
gether contribute the best spectrum-energy efficiency.

6.3 Solution with Other Spectrum Partitioning Model

To show that our formulation can adopt other spectrum
sharing model between macro and femto cells, we also
evaluate our algorithms considering small cells resources
are allocated using frequency reuse of 1. In this sub-
section we incorporate our model with Almost Blank
Sub-frames (ABS periods), which are a recently proposed
and discussed technique by the 3GPP project [25]. ABS
periods are certain periods designated for each macro to
remain silent, over which the femto can use for down-
link transmissions, improving performance to users close
to the femto. We modify the proposed formulation to
jointly optimize ABS parameters for each cell. The goal
of our evaluation is to compare our proposed solution
with other alternative schemes.

We follow the operational LTE network setup in [26]
to evaluate our algorithms in the context where ABS
is used. An area of around 8.9 km2 is selected which
has 28 macro BSs and 10 femto BSs. The user locations
are uniformly chosen, and we chose a user density of
around 190 users/sq-km (urban). In addition, we create
user hotspots around 4 femtos which have doubled user
density, and one other femto has 50% more traffic. We
also perform evaluation by varying the user density
around the macro cells to 95 users/sq-km (sub-urban)
and 50 users/sq-km (rural) without altering the hot-spot
user densities around the selected femtos.

6.3.1 Optimal ABS parameters

For fair comparison, along with ABS patterns, we con-
sider as well the concept of cell selection bias (CSB),
allowing users to bias its association towards small
cells by a margin; therefore extending cell range [19].
We compare our algorithm to the schemes with the
following two (ABS, CSB) combinations: (1/8, 0 dBm)
and (2/8, 5 dBm). We also compare with the scheme
where based on the user association from fixed ABS
and CSB pattern, the modulation scheme selection is
optimized to improve efficiency. Furthermore, a 2-step
local optimal based scheme is implemented. This scheme
works as follows. First, each femto maximizes the total
improvement of efficiency with serving all users within
the coverage range through best modulation schemes
from users. This step readily provides the solution on
users that associate with femtos. In the next step, each
macro m obtains the fraction (for example, xm) of RBs
occupied by femtos within its coverage range and then
macro offers dRmxme as ABS-sub-frames. Each femto can
only use minimum number of ABS-sub-frames offered
by its macros. Then, with the decision on femtos, the
decision is made by optimization on the remaining users
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that associate with macros. We consider serving all UEs
with a blocking ratio of 0.

Fig. 5 compares our algorithm to different network
wide fixed ABS settings. The fixed (ABS, CSB) setting of
(2/8, 5 dBm) performs the worst due to more activated
stations. With CSB, the problem of under-utilization of
femto cells may be eased, since more users are expected
to be offloaded from macros. While the resource block
constraint accounts for QoS requirements of the UEs,
however, we need to carefully deal with the situation
where small cells are under-utilized. It is likely that
the increase in utilization at the small cell is limited
with the CSB technique due to low user association,
resulting in stations remain in operation. This underlines
the importance of the problem being addressed.

On the other hand, with optimal modulation scheme
selection, efficiency can be improved from fixed con-
figuration as shown from the optimal fixed schemes
in the figure. However, the optimal fixed schemes fail
to account for the overall active BS number as they
only optimize modulation selection, whereas the local
optimal scheme and the proposed algorithm do not
necessarily activate all BSs. Our scheme outperforms the
local optimal one since it further reduces the number
of active femtos in the network; although it is small
for the considered network deployment, the margin can
increase substantially in the case of dense deployment of
small cells, which is a typical development in practice.
On the other hand, the local optimal scheme is easy
to implement and could be promising with additional
minor changes for a lower-complexity solution.

6.3.2 Base station sleep mode strategies
In this subsection, we compare with other schemes that
minimize the power consumption at each BS. Similar to
[4], [27], we implement polices of random and strategic
sleeping to switch off BS. In random sleeping, we model
the sleeping strategy as a Bernoulli trial such that each
station remains in operation with probability q, indepen-
dently of all the others. Instead of randomly switching
BSs off, we can switch off BSs when their activity levels
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are low. Specifically, we model the strategic sleeping as
a function s(·). If the activity level of the coverage area
associated with the BS has activity level x, then it con-
tinues to operate with probability s(x), independently.
We consider two models of random sleeping: binary
where BSs sleep with probability 0.5, and uniform where
the probability is drawn from a uniform [0, 1] random
variable. We also consider two models of activity levels
for the strategic sleeping: dynamic where if the activity
level in the coverage area associated with the BS is a,
then the BS stays awake with probability a, and static
where if the activity level associated with a BS is greater
than a predefined threshold ( 14 in our study [28]), then
the BS stays awake with probability 1 or it stays awake
with probability 0.5 otherwise. We define the activity
level as, on each BS, the total number of RBs to serve
associated UEs divided by the available RBs for data
transmission.

BSs are randomly picked to be activated based on the
stay-awake probabilities, and the procedure continues
till satisfying the blocking ratio constraint. Then, based
on the active/sleep mode decision, user association and
modulation scheme selection are optimized. Fig. 6 shows
the spectrum-energy efficiency for different schemes,
including the sleeping strategies, local optimal scheme
and proposed algorithm. The blocking ratio is set to
7.5% and the ABS value is fixed at 3

8 . From the figure,
it is shown that at least one of the strategic sleeping
strategies is better than random sleeping ones. Although
the margin is small, different schemes do not necessarily
have a same set of active BSs or same number of active
BSs.

We also see that both of proposed algorithm and local
optimal scheme have bigger margins of improvement
over random and strategic sleeping policies. This is
because the four sleeping strategies do not taken into
account the option of cooperation among BSs to further
minimize energy consumption. Therefore, awake BSs
may serve the same areas, which are opportunities for
further energy savings. Nevertheless, different from our
algorithm, since the local optimal scheme solves the
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Fig. 7. The solving time comparison.

problem in 2 levels (first femto and then macro), a global
optimal solution is difficult to obtain. The figure shows
the proposed algorithm performs better for different
user densities, suggesting the algorithm is adaptive to
fluctuations in traffic activity levels.

6.4 Heuristic Algorithm Results

The formulated model is solvable with CPLEX 12.5,
which is a software package dedicated to finding the
optimal solution to a MILP problem. The optimal results
obtained by CPLEX are taken as the benchmarks to
evaluate the proposed heuristic counterparts; the com-
parisons are measured on a machine equipped with 8
cores. The performance of the devised heuristic approach
is shown in Fig. 3. It is indicated that the proposed
heuristic algorithm can provide solutions which are very
close to the optimum. The proposed algorithm demon-
strates computation efficiency as shown in Fig. 7. The
solving times of the bisection method are also compared
for ε = 0.1 and 0.01, which are the tolerable difference
value between the feasible solution with optimality. The
computation time of the proposed algorithm increases
relatively slightly with the problem size, whereas the
computation time shows an exponential growth. In the
case of 2800 users, finding the optimal solution spends
more than 630 times as the computation time with the
heuristics, and bisection methods takes more than 170
times when ε is 10%.

More scenarios are considered to assess the over-
all effectiveness of the designed algorithm. In Table 5
the problem size grows as numbers of BSs and users
increase. The BS number is the summation of macro
and femto BS numbers; the computation times of find-
ing the optimal and near-optimal solutions are listed,
where solution difference is the difference between the
spectrum-energy efficiency values in percentage. The
difference made is subtle by the heuristic algorithm. In
contrast, the proposed heuristic approach saves 99% of
computation times. In addition, we exam the HetNets
with a constant number of 18 macro and 30 femto BSs

TABLE 5
Average Solution Difference and Computation Time

Number of Nodes Solution
Difference

Solving Time (Second)
BS User CPLEX Heuristics
40 3000 0.0013% 194.98 0.82
40 3500 0.0015% 251.34 1.02
48 4000 0.0015% 437.38 1.26
48 4500 0.0016% 585.58 1.41
53 5000 0.0018% 713.48 1.73
53 5500 0.0021% 841.26 1.92
60 6000 0.0020% 1230.91 2.35
60 6500 0.0020% 1429.50 2.57
65 7000 0.0022% 1679.79 3.03
65 7500 0.0023% 1930.13 3.35

TABLE 6
Gap for Different Topology Types and BS Parameters

Type 1 Type 2 Uniform

Pm
active = 500,
Pm
sleep = 8,

P f
active = 5,

P f
sleep = 0.028,
Pm
max = 40,

P f
max = 0.14

Rb = 0.15 0.002% 0.304% 0.093%

Rb = 0.21 0.959% 1.681% 0.123%

Pm
active = 130,
Pm
sleep = 75,

P f
active = 43,
P f
sleep = 25,
Pm
max = 20,

P f
max = 6.3

Rb = 0.15 0.006% 0.001% 0.004%

Rb = 0.21 0.007% 0.360% 0.004%

with λ = 36 and 24. The user number residing in the
networks varies from 2600 to 4100 with different user
distributions. From Table. 6, the devised heuristics is
able to produce spectrum-energy efficiency whose mean
difference from optimality is less than 2%. This illustrates
that the heuristic algorithm can find effective solutions
for the considered network topologies and BS system
types. We find that the solutions from our proposed
algorithm are fairly close to the optimum for all the
considered cases. As the problem size goes up with
larger numbers of BSs and users, the computation time
rises significantly for obtaining optimal solutions; the
heuristic method solves problems more efficiently. The
computational efficiency demonstrates scalability of the
heuristics in large-scale networks.

7 CONCLUSION

From mobile service providers’ perspectives, saving en-
ergy is able to reduce operating expense, and improving
spectrum efficiency can increase revenue. To achieve
an increase in profitability, it is desired that wireless
access networks follow a spectral and energy efficient
design. In this paper, we conduct a study on the issue
of spectrum-energy efficiency maximization in LTE-A
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HetNets, aiming at gaining energy saving and spectrum
efficiency improvements. The problem is formulated into
the optimization framework that considers the user asso-
ciation, BS operation determination and resources (RBs
and energy) allocation. For computational comparison,
the bisection approach is adapted to solve the quasi-
convex problem, and CPLEX is performed to approach
the transformed MILP problem. The heuristic algorithm
is developed to suggest a computationally tractable
solution to the optimization problem. It is shown in
the simulation results that spectrum-energy efficiency is
able to be improved significantly from the homogeneous
and heterogenous networks in the presented scenarios;
also, the optimization problem can be solved efficiently
by the proposed algorithm. The established framework
lays economic foundation for advanced green wireless
networks, providing a guideline for operators in efforts
of efficiency and profitability improvements.
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