
1

Cost-Effective Kernel Ridge Regression
Implementation for Keystroke-Based Active

Authentication System
Pei-Yuan Wu, Chi-Chen Fang, J. Morris Chang, and S. Y. Kung

Abstract—In this work, a fast kernel ridge regression (KRR)1

learning algorithm is adopted with O(N) training cost for large-2

scale active authentication system. A truncated Gaussian radial3

basis function (TRBF) kernel is also implemented to provide4

better cost-performance trade-off. The fast-KRR algorithm along5

with the TRBF kernel offers computational advantages over the6

traditional support vector machine (SVM) with Gaussian-RBF7

kernel while preserving the error rate performance. Experimental8

results validate the cost-effectiveness of the developed authentica-9

tion system. In numbers, the fast-KRR learning model achieves10

an equal error rate (EER) of 1.39% with O(N) training time,11

while SVM with the RBF kernel shows an EER of 1.41% with12

O(N2) training time.13

I. INTRODUCTION14

The present user name and password authentication system15

has many potential weaknesses [1], [2] such as password16

disclosure, easy-to-crack passwords, dictionary attacks, etc.17

The one-time log-in authentication system is also vulnerable18

to session hijacking, where an impostor may gain access to19

system resources by obtaining authenticated open sessions that20

are not properly monitored. Active authentication provides21

constant non-intrusive authentication by continuously moni-22

toring user-specific physiological [3]–[5] and behavioral [6],23

[7] biometrics. The physiological features include face [8],24

[9], retinal or iris patterns [10], [11], fingerprints [12], palm25

topology [13], gait [14], [15], hand geometry, wrist veins and26

thermal images, etc. The behavioral features include voice-27

prints, handwritten signatures, keystroke dynamics, etc.28

Physiological features in general have lower error rates than29

behavioral features, since physiological features do not vary30

along time as behavioral features do. However, special tools31

such as iris scanner or video cameras are required to extract32

such physiological features. This limits the applicability of33

such techniques due to the increased-cost as well as the lack of34

current infrastructure. Keystroke dynamics, on the other hand,35

can be unobtrusively collected using a standard keyboard.36

Keystroke dynamics is a behavioral biometric, by which37

users can be distinguished by analyzing their typing38

rhythms on a keyboard. Scientists have noticed that neuron-39

physiological factors involved in handwritten signatures also40

produce unique keystroke patterns [16], [17]. However,41

keystroke timing information shows strong variability which42

depends on the environment as well as the human physiolog-43

ical and psychological conditions.44

The study of monitoring keystroke dynamics as an addi-45

tional layer of protection to the traditional password system46

has remained active since 1980’s [2]. In the earlier work, re- 47

searchers focused on predefined and structured typing samples, 48

also referred to as fixed-text analysis. Fixed-text analysis is 49

mainly used for static authentication during the login stage as 50

password hardening. However, it is not suitable for continuous 51

authentication, since it is unrealistic and intrusive to enforce 52

users to type-in the predefined strings repeatedly throughout 53

the session. 54

Since the late 1990’s, free-text analysis has drawn many 55

researchers’ attention, which aims to recognize users by the 56

text they freely typed in their daily interaction with the 57

computer. The free-text analysis is suitable for continuous 58

authentication since the data can be collected continuously 59

and unobtrusively throughout the session. Furthermore, free- 60

text analysis allows the user profile to be adaptively refined 61

by continuously collecting the keystroke patterns from users’ 62

daily task. However, the unstructured and sparse nature of the 63

information conveyed by keystroke timing data is always a 64

challenge in free-text analysis. 65

In this paper, we introduce kernel methods into large- 66

scale free-text active authentication system. The learning and 67

prediction system is developed based on a free-text keystroke 68

dataset collected from approximately 2000 participants, which 69

is the largest to the best of our knowledge. Kernel methods 70

are well established in various supervised and unsupervised 71

learning problems [18]–[22]. The basic idea behind the kernel 72

learning approach is to nonlinearly transform the training 73

vectors in the original space onto a high-dimensional intrinsic 74

space [23], characterized by its dimension J , named as the 75

intrinsic degree. Thereafter, various existing linear learning 76

and prediction models can be directly applied to the intrinsic 77

training vectors. If the learning algorithm meets the Mercer’s 78

condition [24], or the so-called learning subspace property 79

[23], then the algorithm can be elegantly mapped to the 80

empirical space [23]. This is known as the ”kernel trick”. 81

In large-scale authentication system, the data size N tends 82

to become enormously large, rendering it extremely costly to 83

perform kernel-based learning and prediction algorithms in the 84

empirical space. For example, the complexity of conducting 85

machine learning in the empirical space will be respectively 86

in the order of Ω(N2) for support vector machine (SVM) 87

[19], [21], [23] and of O(N3) for the kernel ridge regression 88

(KRR) [25], [26] learning models. This implies a very heavy 89

computational burden to retain the adoption of the (default) 90

Gaussian radial basis function (RBF) kernel. In contrast, if 91

the intrinsic degree may be tuned to a reasonable level such 92

2

that J � N , then it will become much more cost effective to1

perform kernel learning in the intrinsic space, as opposed to2

the empirical space [27].3

In this manuscript we apply the efficient kernel learning4

algorithm proposed by Kung and Wu [27] to large-scale active5

authentication system. By approximating the well known RBF6

kernel with truncated-RBF (TRBF) kernel, the original KRR7

problem is approximated by a linear least-squares regression8

problem in the finite-dimensional kernel-induced feature space9

of TRBF kernel to speed up both training and prediction times.10

The remainder of this paper is organized as follows: Sec-11

tion II is devoted to literature survey. In Section III we12

describe the features collected that serve as the cognitive13

factors in keystroke dynamics, as well as the authentication14

system architecture. In Section IV we describe the kernel-15

based learning algorithms applied in the authentication system,16

namely the SVM and KRR algorithms. In Section V we17

introduce the concept of TRBF kernel as an approximation of18

the Gaussian-RBF kernel, as well as a fast-KRR learning and19

prediction algorithm. In Section VI a classifier fusion method20

is described to augment votes from multiple classifiers into21

final decision. The experimental results based on a large-scale22

free-text keystroke dataset is provided in Section VII. The23

discussions and conclusions are summarized in Section VIII.24

II. RELATED WORK25

A. Fixed-Text Analysis26

In Obaidat and Sadoun’s work [28], they compared the27

performance of various pattern recognition algorithms for28

login string keystroke detection, including fuzzy ARTMAP,29

radial basis function networks, learning vector quantization,30

neural network paradigms, back-propagation with sigmoid31

transfer function, hybrid sum-of-products, potential function,32

Bayes’ rule, etc. Though a best misclassification error of 0%33

is reported using certain pattern recognition paradigms, it34

is questionable regarding the statistical significance of their35

results in large-scale authentication systems, since their study36

only involves 15 participants.37

In Bergadano et. al.’s work [29], 4% false reject rate (FRR)38

and 0.01% false alarm rate (FAR) was reported based on the39

keystroke patterns from 154 individuals, each typing a fixed-40

text of 683 characters for five times. For each typing string41

sample, the trigraphs within are ordered according to their42

time durations. They then define a distance measure between43

two typing samples based on the degree of disorder between44

their trigraph orderings. A new string sample is classified as45

belonging to the legitimate user whose known samples have46

the smallest average distance.47

In Sheng et al’s work [30], a 9.62% FRR and 0.88% FAR48

was reported based on a dataset of 43 users, each typing a49

fixed string of 37 characters for nine times. To attain suffi-50

cient training samples, they apply Monte Carlo approach to51

synthesize training samples by perturbing the existing training52

samples with Gaussian distribution. They then split the raw53

and synthetic training samples into multiple subsets, where54

the monograph and digraph features are extracted to train eight55

parallel decision trees for each legitimate user. The decision56

is then based on majority vote.57

In Hosseinzadeh and Krishnan’s work [31], they combined 58

the keystroke latency feature with Gaussian mixture model 59

(GMM)-based verification system. In their work, each of the 60

41 participants uses his own full name as the authentication 61

string, and an equal error rate (EER) of 4.4% was reported. 62

In Killourhy and Maxion’s work [32], they collected 63

keystroke data from 51 participants typing 400 passwords 64

each, and then implemented and evaluated 14 detectors from 65

the past keystroke-dynamics and pattern-recognition literature. 66

The three top-performing detectors in their work achieve EER 67

between 9.6% and 10.2%. Their results constitute an excellent 68

benchmark for comparing detectors and measuring process in 69

fixed-text analysis literature. 70

B. Free-Text Analysis 71

An excellent literature survey on free-text analysis literature 72

can be found in Alsultan and Warwick’s article [33]. Monrose 73

and Rubin’s work [34] was among the earliest on the free- 74

text keystroke detection. They collected typing samples from 75

42 users over a period of seven weeks in various computing 76

environments. For each user, the means of various digraphs are 77

computed to form a user profile. The identity of an unknown 78

user is then classified as the legal user whose profile, as 79

represented by a vector of digraph means, has the smallest 80

Euclidean distance. To reduce the search time in the recog- 81

nition process, they clustered the legal users’ profiles using a 82

maxi-mini-distance algorithm, with their typing speed as the 83

clustering criteria. This however poses an obvious limitation 84

that re-clustering is needed whenever new legal user profile is 85

added or modified. An accuracy of 90% is reported for fixed- 86

text detection, but only 23% for free-text detection. 87

In Ahmed and Traore’s work [35], each legitimate user has 88

a profile of two neural networks that store the monograph 89

and digraph time duration information. In recognition phase, a 90

new user’s monograph and digraph time intervals are extracted, 91

which are then compared to the corresponding values predicted 92

by the neural networks of the claimed identity’s profile. They 93

collected typing samples from 53 users over a period of five 94

months, and reported an EER of 2.46%. 95

Gunetti and Picardi [6] extended Bergadano et. al.’s work 96

[29] into free-text keystroke authentication. Based on a free- 97

text keystroke dataset of 205 participants, an EER of 1% was 98

reported. Despite the very low error rates, the computational 99

costs for identifying users were expensive since the test sample 100

is compared to all typing samples from all users in the 101

database. In their experiment, it takes about 140 seconds to 102

compare a new sample against 40 user profiles each containing 103

14 typing samples on a Pentium IV at 2.5 GHz. Furthermore, 104

the authentication depends not only on the legal user in query, 105

but also on other legal users. These limit its scalability in large 106

networks. 107

Villani et. al. [36] investigated the case of using different 108

keyboards (desktop and laptop) as well as different context 109

modes (fixed-text and free-text). There were a total of 118 110

participants. For fixed-text mode each participant copied a 111

predefined text of approximately 650 keystrokes for at least 112

five times; for free-text mode each participant typed five 113

3

arbitrary emails of at least 650 keystrokes. The extracted1

features include the averages and standard deviations of key2

press duration times as well as digraph latencies. They also3

consider percentages of key presses of special keys. Those4

features are concatenated into a vector, by which a Euclidean5

distance criteria is used to compare the extracted features6

between participants for identification purposes. They acquired7

99.5% identification accuracy among 36 users, and 93.3% on8

a larger population of 93 users, as long as the users stick to the9

same keyboard and context mode. It was found in their study10

that the identification accuracy decreases drastically when the11

users use different context modes or keyboards in the training12

and testing phases. Furthermore, they found free-text context13

results in a decreased accuracy as compared to the fixed-text14

context.15

C. Discussion16

It appears that except the work by Gunetti and Picardi [6]17

and Villani et. al. [36], most of the previous text analysis18

schemes proposed in literature are based on datasets with19

limited scales, mainly less than 60 participants [37]–[45].20

From an algorithmic and system architecture design point of21

view, a data set collected from several tens of participants22

may be sufficient. In real world applications, however, an23

authentication system can easily grow beyond thousands of24

users, with keystroke dynamics constantly collected during25

the users’ daily work. In this work, an active authentication26

learning and prediction system is developed based on a free-27

text keystroke dataset collected from approximately 200028

participants, which is much larger than the datasets reported29

in the works by Gunetti and Picardi (with 205 participants)30

and Villani et. al. (with 118 participants). To the best of our31

knowledge, the free-text keystroke dataset studied in this paper32

is the largest in literature.33

Some researchers may attempt to use the same keyboard34

throughout the data collecting process. As pointed out by35

Villani et. al.’s work [36], the identification accuracy is prone36

to keyboard selection. In real world applications, it may be37

unrealistic to assume the keystroke dynamics to be collected38

from keyboards with the same keyboard model. In this study,39

the keystroke dynamics are collected through browser app,40

where no assumptions are made on the keyboard from which41

the keystroke dynamics are collected.42

III. SYSTEM OVERVIEW43

A. Cognitive Factors in Keystroke Dynamics44

By measuring the time stamps at each key press and key45

release events, various features can be extracted from the46

keystroke dynamics such as the dwell time of a monograph47

(the time length of a key-press); the time interval between two48

consecutive keystrokes in a digraph; the time duration between49

the first and last keystrokes in a trigraph or n-graph, etc.50

Conventional keystroke dynamics usually do not distinguish51

the timing difference between different words, but only con-52

sider a collection of digraph latencies. Fig.1(a) illustrates a53

collection of digraph latencies (“re”) observed from the same54

user, but are collected from four different words: “really”,55

“were”, “parents”, and “store”. It shows that a user’s typing 56

behavior is not only dependent on digraphs, but also highly 57

dependent on words. On the other hand, Fig.1(b) illustrates 58

the typing pattern of two users on the same word “really”. It 59

shows that the keystroke pattern of a word as a whole is user 60

dependent. 61

In the work by Chang et. al. [46] and Wu et. al. [47], instead 62

of breaking words into digraphs whose statistics are analyzed 63

individually, they consider the correlation information between 64

multiple keystroke intervals within a word, that is not revealed 65

by digraph features. However, one serious concern is the 66

lack of samples for each word, as the massive amount of 67

English vocabulary dilutes the number of samples available 68

for one particular word. Except for several frequently-used 69

vocabulary such as “and”, “are”, “the”, “to”, etc, the lack of 70

samples renders any pattern recognition technique to yield 71

statistically sound decision rules. In order to preserve the 72

correlation information between keystroke intervals within a 73

word, while still retain sufficient amount of training samples, 74

in this study we consider the correlation between the three 75

consecutive keystroke time intervals in each trigraph. 76

More elaborately, in contrast to previous literature [6] which
usually considered the total time duration of a trigraph, in our
study a trigraph is represented by a three-dimensional vector,
where each element in the vector is a time interval between
two consecutive keystrokes. For instance, the word “really”
which contains six consecutive time intervals

r
t1
− e

t2
− a

t3
− l

t4
− l

t5
− y

t6
− (space)

will be separated into four trigraphs each represented by a 77

three dimensional vector, namely “rea”(t1t2t3), “eal”(t2t3t4), 78

“all”(t3t4t5), and “lly”(t4t5t6). 79

B. System Architecture 80

The authentication system is user-specific, where for each 81

legitimate user a profile is trained to recognize him as the only 82

legal user. The authentication process only involves comparing 83

the received sample to the user profile of the claimed identity, 84

and is independent of other users’ profiles in the system. The 85

separated user profiles make it easier to update the system 86

if the individual typing patterns change over time, and the 87

entire system does not need to be retrained to add new users. 88

Furthermore, the prediction time does not depend on the 89

number of user profiles in the system. 90

As illustrated in Fig.2, the user profile of a legitimate user 91

A contains a collection of most frequent trigraphs TA, where 92

each trigraph w ∈ TA accompanies a classifier hAw that 93

evaluates user A’s keystroke typing pattern of trigraph w. In 94

continuous authentication process where an user B claims the 95

identity of user A and types a word of M ≥ 3 characters 96

c1c2 · · · cM , a total of M − 2 trigraphs wi = cici+1ci+2, 97

i = 1, · · · ,M − 2 will be collected. If a trigraph wi is one 98

of the most frequent trigraphs by user A, namely wi ∈ TA, 99

the trigraph classifier hAwi will give a vote on whether or not 100

user B should be authenticated as user A. The votes from all 101

the trigraphs in TA that user B types are then collected and 102

weighted summed to arrive at the final decision. The details 103

for determining the weights are discussed in Sec.VI. 104

4For Review
 O

nly

2

Searching for cognitive fingerprints

Physical biometrics rely on physical characteristics such as fingerprints or retinal patterns. The

behavioral biometric of keystroke dynamics must incorporate cognitive fingerprints to advance

the field, but the cognitive fingerprint does not have a specific definition. We hypothesize that

natural pauses (delays between typing characters in words) are caused by cognitive factors (e.g.,

spelling an unfamiliar word or after certain syllables) [7, 8, 9, 10, 11], which are unique among

individuals. Thus, a cognitive factor can affect the typing rhythm of a specific word. In this

research, each feature is represented by a unique cognitive typing rhythm (CTR) which contains

the sequence of digraphs from a specific word. Such features include natural pauses among its

timing information (e.g., digraphs) and could be used as a cognitive fingerprint. Conventional

keystroke dynamics does not distinguish timing information between different words and only

considers a collection of digraphs (e.g., tri-graphs or N-graphs). Cognitive factors, thus, have

been ignored.

Figure 1. (a) Digraph “re” from the same user (b) Two users typed the same word “really”

As we can see from Figure 1(a), there is a collection of digraphs (“re”) observed from the same

user. One might think the collection of digraphs represent part of a keystroke rhythm. However,

as we more closely examine each collection of digraphs, these digraphs are clustered around

different words that contain the digraphs. For example, for the collection of digraphs “re”, we

can separate these digraphs according to four different words (i.e., really, were, parents, and

store). This shows that examining digraphs in isolation might result in missing some important

information related to specific words. This observation confirms our hypothesis: a cognitive

factor can affect the typing rhythm of a specific word. Thus, we extract CPR from keystroke

dynamics and use them as features (cognitive fingerprints) for active authentication. Each feature

is a sequence of digraphs of a specific word (instead of a collection of digraphs). For each

legitimate user, we collect samples of each feature and, then, build a classifier for that feature

during the training phase of machine learning.

Building authentication system with machine learning techniques

Page 2 of 8IT Professional

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(a)For Review
 O

nly

2

Searching for cognitive fingerprints

Physical biometrics rely on physical characteristics such as fingerprints or retinal patterns. The

behavioral biometric of keystroke dynamics must incorporate cognitive fingerprints to advance

the field, but the cognitive fingerprint does not have a specific definition. We hypothesize that

natural pauses (delays between typing characters in words) are caused by cognitive factors (e.g.,

spelling an unfamiliar word or after certain syllables) [7, 8, 9, 10, 11], which are unique among

individuals. Thus, a cognitive factor can affect the typing rhythm of a specific word. In this

research, each feature is represented by a unique cognitive typing rhythm (CTR) which contains

the sequence of digraphs from a specific word. Such features include natural pauses among its

timing information (e.g., digraphs) and could be used as a cognitive fingerprint. Conventional

keystroke dynamics does not distinguish timing information between different words and only

considers a collection of digraphs (e.g., tri-graphs or N-graphs). Cognitive factors, thus, have

been ignored.

Figure 1. (a) Digraph “re” from the same user (b) Two users typed the same word “really”

As we can see from Figure 1(a), there is a collection of digraphs (“re”) observed from the same

user. One might think the collection of digraphs represent part of a keystroke rhythm. However,

as we more closely examine each collection of digraphs, these digraphs are clustered around

different words that contain the digraphs. For example, for the collection of digraphs “re”, we

can separate these digraphs according to four different words (i.e., really, were, parents, and

store). This shows that examining digraphs in isolation might result in missing some important

information related to specific words. This observation confirms our hypothesis: a cognitive

factor can affect the typing rhythm of a specific word. Thus, we extract CPR from keystroke

dynamics and use them as features (cognitive fingerprints) for active authentication. Each feature

is a sequence of digraphs of a specific word (instead of a collection of digraphs). For each

legitimate user, we collect samples of each feature and, then, build a classifier for that feature

during the training phase of machine learning.

Building authentication system with machine learning techniques

Page 2 of 8IT Professional

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(b)

Fig. 1. (a) Digraph “re” from the same user in different words. (b) Two users
typing the same word “really”.System Architecture

Trigraph
matching

Trigraph
classifier
“the”

Trigraph
classifier
“are”

Trigraph
classifier
“ing”

Trigraph
classifier
“ory”

Σ

Past
record

Confidence score
𝑠(𝑇)

𝑠(𝑇 − 1)

𝑠 𝑇 > threshold ?

Yes No

Accept Reject

Record
keystroke

Weighted
votes

Fig. 2. The authentication system architecture.

IV. LEARNING MODEL FORMULATION1

To train the decision boundary of a trigraph classifier hAw2

which summarizes user A’s typing behavior on trigraph w,3

we formulate a binary classification problem by partitioning4

all training samples of trigraph w into two classes. The positive5

(legitimate) class comprises of samples collected from user A,6

while the negative (impostor) class is composed of samples7

from all users other than A.8

Suppose there are N samples of trigraph w available for9

training, the training data set can be represented as D =10

{(xi, yi)}Ni=1, where xi ∈ R3 is the feature vector and11

yi ∈ {±1} is the label, indicating the sample either belongs12

to the positive class (yi = +1) or negative class (yi = −1).13

A. Kernel Methods 14

The basic insight behind kernel trick is to nonlinearly 15

transform patterns into some high-dimensional feature space, 16

where various linear pattern recognition methods apply. The 17

high dimensional feature space as well as the nonlinear 18

mapping is determined by a kernel function that describes 19

the similarity between pairwise samples, which should satisfy 20

Mercer condition [24]. By Mercer’s Theorem [24], a kernel 21

function that satisfies Mercer’s condition can be represented 22

as the inner product in a kernel-induced feature space H, 23

namely k(x,x′) = 〈φ(x),φ(x′)〉H, where φ(x) is some fixed 24

mapping to H. Common examples include the Gaussian RBF 25

kernel 26

kRBF (x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(1)

and the polynomial kernel 27

kPoly p(x,x
′) =

(
1 +

xTx′

σ2

)p
. (2)

B. Kernel Ridge Regression 28

Denote kernel-based regression function 29

h(x) = 〈u,φ(x)〉H (3)

The design objective for kernel ridge regression [48]–[51] is 30

to find a decision vector u ∈ H that minimizes the regularized 31

empirical risk [26]: 32

min
u∈H

N∑
i=1

L(h(xi), yi) + ρ‖u‖2H (4)

In dual variables [52], the regularized empirical risk (cf. (4)) 33

can be rewritten as 34

min
a∈RN

N∑
i=1

L(h(xi), yi) + ρaTKa (5)

where [K]ij = k(xi,xj) is the kernel matrix, a = 35

[a1 · · · aN]T , and 36

h(x) =

N∑
i=1

aik(xi,x) (6)

C. Class Dependent Costs for Imbalanced data set 37

Consider the weighted squared error empirical risk in the 38

following form 39

L(h(x), y) = c(y)(h(x)− y)2 (7)

where c(y) ∈ R+ is a class-dependent weight. The regularized 40

empirical risk becomes 41

min
a∈RN

N∑
i=1

c(yi)

 N∑
j=1

ajk(xj ,xi)− yi

2

+ ρaTKa

= min
a∈RN

‖Ka− y‖2C + ρaTKa

(8)

where ‖r‖2C = rTCr is the Mahalanobis norm, C is a 42

diagonal matrix with Cii = c(yi), and y = [y1 · · · yN]T . 43

5

Since (8) is convex and differentiable, it can be minimized by1

setting its derivative w.r.t. a equal to zero, giving the optimal2

solution3

a = (K + ρC−1)−1y (9)

Since the positive class contains only the legitimate user4

while the negative class contains all other users as impostors,5

the binary training data set is highly imbalanced in nature,6

where the positive class is outnumbered by the negative7

class. To avoid tendency for classifiers originally designed for8

balanced data sets to overlook the minorities and give poor9

results, we impose class-dependent costs and assign higher10

costs for misclassifying a positively-labeled sample. The class-11

dependent costs could be also based on the false-positive12

and false-negative costs, or on the prior probability of an13

impostor in practice for a more decision-theoretic approach. In14

this manuscript, the costs for misclassifying positive/negative15

samples are set to be inversely proportional to their population.16

More precisely, let N+, N− be the number of samples in17

positive/negative classes, respectively, we take18

c(+1) =
N

2N+
, c(−1) =

N

2N−
(10)

D. Class Dependent Costs for SVM19

To impose class dependent costs on SVM, we consider
weighted hinge loss as empirical risk

L(h(x), yi) = c(y) [1− y(h(x)− y)]+

The regularized empirical risk function (cf. (4)) becomes20

minimize ρ
2‖u‖

2
H +

∑N
i=1 c(yi)ξi

subject to yi(〈u, φ(xi)〉H + b) ≥ 1− ξi
variables u ∈ H, b ∈ R, ξi ≥ 0, i = 1, ..., N

(11)

which can be solved by LIB-SVM [53] with class-dependent21

cost parameters c(yi)
ρ , more explicitly,22

minimize 1
2α

TKα− eTα
subject to yTα = 0

variables 0 ≤ αi ≤ c(yi)
ρ , i = 1, ..., N.

(12)

V. IMPROVING CLASSIFICATION COMPLEXITY OF23

KERNEL-BASED CLASSIFIERS24

Based on our previous work [27] on cost-efficient KRR25

algorithms, our system enables trade-off between classifica-26

tion/learning complexity and accuracy performance by means27

of selecting appropriate finite decomposable kernel function.28

A. Decision Function in Kernel Induced Feature Space29

For finite decomposable kernel function, whose kernel-30

induced feature space H ⊆ RJ has finite dimensions and31

Euclidean inner product32

k(x,x′) =

J∑
j=1

φ(j)(x)φ(j)(x′) = φ(x)Tφ(x′) (13)

The regression function can be rewritten as33

h(x) =

N∑
i=1

aiφ(xi)
Tφ(x) = uTφ(x) (14)

where the decision vector u =
∑N
i=1 aiφ(xi) can be pre- 34

computed in the learning phase. 35

Given a test pattern x, it requires O(J) operations to 36

produce all elements of φ(x), and another O(J) operations 37

to compute the inner product uTφ(x). Therefore the total 38

classification complexity is O(J), which is independent of N . 39

In this paper, one important kernel in consideration is the 40

p-th order polynomial kernel (cf. (2)), abbreviated as POLY p, 41

whose basis functions take the following form 42

φ(j)(x) =

√
p!

(p− `)!

M∏
m=1

1√
dm!

(
x(m)

σ

)dm
(15)

0 ≤ ` ≤ p, ` = d1 + · · ·+ dM

There are J = J (p) = (M+p)!
M !p! different combinations. 43

The flexibility in classification schemes results in a classifi- 44

cation complexity of O(min(NM,J)). More elaborately, for 45

small datasets with less number of training samples N , (6) is 46

adopted with a classification cost of O(NM). On the contrary, 47

for large datasets, one may adopt (14) instead of (6) to achieve 48

a O(J) classification cost, which is constant and independent 49

of the size of the training dataset. 50

B. Finite p-Degree Approximation of RBF Kernel 51

The TRBF kernel [27] is defined as 52

kTRBF (x,x′) = exp
(
−
‖x‖2

2σ2

)(p∑
`=1

1

`!

(
xTx′

σ2

)`
)

exp
(
−
‖x′‖2

2σ2

)
= φ(x)Tφ(x′)

(16)
where each basis function takes the following form 53

φ(j)(x) = exp
(
−‖x‖

2

2σ2

) M∏
m=1

1√
dm!

(
x(m)

σ

)dm
(17)

0 ≤ d1 + · · ·+ dM ≤ p

The trade-off between accuracy performance and computa- 54

tion efficiency highly depends on order p and its intrinsic 55

dimension J = J (p), which is identical to that of polynomial 56

kernels. In this paper we refer to TRBF kernels with order 57

p as TRBF p. Note that TRBF is simply a Taylor expansion 58

approximation of RBF. For a more sophisticated RBF approx- 59

imation, see [54]. 60

C. Comparison Between POLY and TRBF Kernels 61

Despite the similar appearance between POLY and TRBF 62

kernel (cf. (15),(17)), they have the following distinctions: 63

• POLY p has an additional multiplication factor
√

p!
(p−`)! , 64

which increases with the monomial order ` and hence 65

amplifies the high-order terms. That is to say, TRBF 66

kernel imposes less weights on high order terms than 67

polynomial kernels. 68

• TRBF p has an additional multiplication factor 69

exp
(
−‖x‖

2

2σ2

)
, which forces its basis functions (cf. (17)) 70

to converge to zero as the magnitude of x grows to 71

infinity, making it more suitable for forming closed, local 72

decision boundaries. On the contrary, the basis functions 73

6

deduced by POLY p (cf. (15)) will grow unbounded1

as ‖x‖ grows to infinity, making it more sensitive to2

outliers.3

• TRBF p converges to the commonly adopted RBF kernel4

as degree p increases towards infinity. On the contrary,5

POLY p diverges as degree p increases towards infinity.6

We refer to Kung’s book [23] for more details on the properties7

of TRBF kernel.8

D. Fast Learning Kernel Methods9

For finite decomposable kernel function (cf. (13)), the kernel10

matrix is tightly linked to the training inputs in H:11

K = ΦTΦ (18)

where Φ = [φ(x1) · · · φ(xN)] is the data matrix in kernel-12

induced feature space.13

1) Learning Complexity of SVM: The SVM learning in-14

volves a quadratic programming problem with learning com-15

plexity at least Ω(N2). For RBF kernel, which has infinite16

dimensional kernel induced feature space, the number of17

support vectors usually increases with the number of training18

samples N , which tends to further increase its learning cost.19

2) Learning Complexity for KRR: The KRR learning fo-20

cuses on solving the decision vector a in (9), which involves21

inverting a N×N matrix (K+ρC−1) and therefore demands22

a high complexity of O(N3).23

The quadratic and cubic growth with the number of training24

samples N renders SVM and KRR from being computation-25

ally affordable in large scale learning problems. In numbers, in26

our experiment there are approximately N ≈ 80000 samples27

for the popular word “the” in the dataset, resulting in learning28

cost of the order 800003 ≈ 1015, which is impractical and29

calls for a cost-efficient KRR algorithm. Several methods30

were proposed to relieve computation burden [49], [55], [56].31

In this work we implement a cost-efficient algorithm [27]32

whose learning complexity grows linearly with N in the active33

authentication problem, as described as below.34

3) Fast Algorithm for KRR: Let us rewrite the regularized35

weighted squared error empirical risk as36

N∑
i=1

c(yi)(h(xi)− yi)2 + ρ‖u‖2H = ‖ΦTu− y‖2C + ρ‖u‖2

(19)
and set its partial derivatives to zero, we may solve the decision37

vector in explicit form38

u = (ΦCΦT + ρI)−1ΦCy (20)

The fast-KRR algorithm solves decision vector u instead of39

a, which incurs three costs: (1) The computation of the J ×J40

matrix ΦCΦT requires O(J2N) operations; (2) The inversion41

of (ΦCΦT + ρI) requires O(J3) operations; (3) The matrix-42

vector multiplication requires a negligible O(NJ) operations.43

In summary, the learning complexity is O(J3 + J2N), which44

is linear w.r.t. N .45

VI. FUSION METHODS 46

In Chair et al.’s work [57], a fusion scheme is proposed 47

which combines decisions from multiple independent clas- 48

sifiers by weighted votes. The weights depend not only on 49

the classifier, but also on its outcome. The baseline is that 50

information provided by acceptance or rejection is not equal 51

and is dependent on the classifier’s false rejection rate (FRR) 52

and false acceptance rate (FAR). Intuitively speaking, for 53

a classifier with very low FRR but rather moderate FAR, 54

since false rejection is more unlikely than false acceptance, 55

its rejection votes would have larger weights compared to 56

acceptance votes. On the other hand, for a classifier with 57

moderate FRR but very low FAR, its acceptance votes should 58

be more persuasive than rejection votes. 59

Following their concepts, in this study there are two weights 60

accompanying with each word classifier hAw, namely the 61

acceptance weight β(acc)
Aw and the rejection weight β(rej)

Aw . Both 62

weights are determined by the estimated FAR (denoted as 63

p̂FAR) and FRR (denoted as p̂FRR) as follows 64

β
(acc)
Aw = log

(
1− p̂FRR
p̂FAR

)
, β

(rej)
Aw = log

(
1− p̂FAR
p̂FRR

)
(21)

The authentication process maintains a confidence score
sBA(T) representing how confident the system is to authenti-
cate user B as user A at time stamp T . If user B types a word
which contains trigraph w at time stamp T , the confidence
score is updated as

sBA(T) =

{
sBA(T − 1) + β

(acc)
Aw (accept)

sBA(T − 1)− β(rej)
Aw (reject)

(22)

There is a Bayesian interpretation of (21) [57]. Let p(pre)legi ,
p
(pre)
hack be the prior probabilities of user B being the legitimate

user A or impostor, respectively. By Bayes rule, if word clas-
sifier hAw gives an acceptance vote, the posterior probabilities
p
(post)
legi , p(post)hack are given by

p
(post)
legi =

p
(pre)
legi (1− p̂FRR)

p
(pre)
legi (1− p̂FRR) + p

(pre)
hack p̂FAR

(23a)

p
(post)
hack =

p
(pre)
hack p̂FAR

p
(pre)
legi (1− p̂FRR) + p

(pre)
hack p̂FAR

(23b)

The logarithm of the ratio between plegi and phack is therefore
updated as

log

p
(post)
legi

p
(post)
hack

 = log

p
(pre)
legi

p
(pre)
hack

1− p̂FRR

p̂FAR

 = log

p
(pre)
legi

p
(pre)
hack

+ β
(acc)
Aw

Similarly, if the word classifier gives a rejection vote, the
posterior probabilities are given by

p
(post)
legi =

p
(pre)
legi p̂FRR

p
(pre)
legi p̂FRR + p

(pre)
hack (1− p̂FAR)

(24a)

p
(post)
hack =

p
(pre)
hack (1− p̂FAR)

p
(pre)
legi p̂FRR + p

(pre)
hack (1− p̂FAR)

(24b)

7

Analogously, one has

log

(
p
(post)
legi

p
(post)
hack

)
= log

(
p
(pre)
legi

p
(pre)
hack

)
− β(rej)

Aw

Compare with (22), the confidence score can be mathemati-1

cally interpreted as2

sBA(T) = log
(
plegi(T)

phack(T)

)
(25)

where plegi(T), phack(T) denotes the system’s belief about3

the user being legitimate or imposter at time T .4

In this study, the FAR and FRR performances are estimated
by 3-fold cross validation with Bayesian average:

p̂FRR =
#false rejection + 1

#rejection + 2
, p̂FAR =

#false acceptance + 1

#acceptance + 2

5

VII. EXPERIMENT6

A. Experiment Assembly7

To verify the cost-performance trade-off, we conduct exper-8

iments on free-text keystroke dataset collected by Chang et al.9

[46]. The dataset contains keystroke dynamics collected by10

web-based software system from 1977 students in Iowa State11

University. The system provided three segments (Segment I,12

II, III) of simulated user environments, including typing short13

sentences, writing short essays, and browsing web-pages. Each14

segment takes approximately 30 minutes to be completed by15

a participant. In this study we only analyze the twenty-six16

lower-case letters plus the space, where we regard the upper-17

case letters as their lower-case letter counterparts.18

Among all 1977 participants, there were 18 participants19

whose data were manually discarded due to one or multiple20

of the following reasons:21

• They quit in the middle of the experiment.22

• They repeatedly typed in meaningless words, such as23

“fdsafewaqfsdagsa fd df d fsd af dsa fs a f af f f ff f”.24

• They used touch screen instead of keyboard to conduct25

the experiment.26

Among the remaining 1959 participants, there were 978 par-27

ticipants who completed all the three segments I, II, III, while28

the other 981 participants completed only segments I, II. In the29

following text, we denote set U as the 978 participants who30

completed all the three segments, and set U c as the other 98131

users who only completed segments I, II. Note that participants32

in U and U c are disjoint.33

During the training phase, the training dataset consists34

of keystroke dynamics collected in segments I, III from all35

participants in U , where each participant (also referred to36

as legitimate user) has approximately 2100 words collected.37

Each legitimate user A ∈ U has his own profile trained by38

formulating a binary classification problem, where the positive39

class consists of keystroke dynamics collected from A himself,40

and the negative class consists of keystroke dynamics collected41

from a random subset of 100 users in U −A.42

During the testing phase, the test dataset consists of43

keystroke dynamics collected in segment II from all partic-44

ipants in either U c (also referred to as impostors) or U . There45

are approximately 900 words collected from each participant 46

as test data. 47

B. Parameter Selection 48

To select kernel bandwidth σ (cf. (1)) and regularization 49

parameter ρ (cf. (12)) for SVM-RBF, we perform 3-fold 50

cross validation on training dataset as to be elaborated as 51

below: For each legitimate user A ∈ U , we take keystroke 52

dynamics from user A in training dataset (segments I, III) as 53

positive class, and keystroke dynamics from a random subset 54

of 50 users in U − A in training dataset as negative class. 55

The occurrences of false rejection and false acceptance for 56

authenticating A ∈ U are then evaluated by 3-fold cross 57

validation. Table. I, II summarizes the evaluated EER and the 58

area under detection error rate curve (AUC) on training dataset 59

for σ = 0.1, 0.2, 0.5, 1, 3 and ρ = 0.5, 1, 2, 5 (cf. (12)). We 60

choose σ = 0.5, ρ = 2, which minimizes both EER and AUC 61

evaluated by cross-validation on training dataset. For KRR- 62

TRBF and KRR-POLY, we choose σ = 0.5 and select the 63

corresponding ρ which minimizes the EER evaluated by cross 64

validation on training dataset, as summarized in Table.III. The 65

confidence score threshold at which the EER in Table III is 66

achieved is also summarized in Table IV. 67

C. Performance Metrics 68

The main performance metrics include the FRR and FAR, 69

which are measured as follows: 70

• FRR: A false rejection is detected whenever a profile of
a legitimate user A ∈ U fails to accept himself as the
legitimate user. The authentication system (cf. Figure 2)
will compare the keystroke dynamics of every word user
A typed in the testing phase (a.k.a. segment II) with his
own profile to see if the final confidence score, which
is a weighted sum of votes from the various trigraph
classifiers in profile, is beyond the threshold. The reported
FRR is defined as

FRR =
1

|U |
∑
i∈U

1{Profile i rejects user i}.

Here 1{·} denotes the indicator function. 71

• FAR: Each of the 978 profiles for legitimate users in U is
attacked by all the 981 impostors in U c. For an imposter
B ∈ U c to claim the identity of user A ∈ U , the au-
thentication system (cf. Figure 2) compares the keystroke
dynamics of every word imposter B typed in the testing
phase with A’s profile to see if the final confidence score
is beyond the threshold. A false acceptance is detected
whenever a legitimate user profile accepts an impostor as
the legitimate user. More precisely, the reported FAR is
defined as

FAR =
1

|U ||U c|
∑
i∈U

∑
j∈Uc

1{Profile i accepts user j}.

The detection error trade-off (DET) curves in Figures 3,4,5 72

are plotted by tuning the confidence score threshold in Figure 73

2 to trade-off between FRR and FAR. The EER and AUC, as 74

well as the confidence score at which EER is obtained, are 75

summarized in Table.V. 76

8

TABLE I
EER OF SVM-RBF EVALUATED BY 3-FOLD CROSS VALIDATION FROM

TRAINING DATASET.

EER ρ = 0.5 ρ = 1 ρ = 2 ρ = 5
σ = 0.1 29.79% 27.47% 24.02% 17.88%
σ = 0.2 9.22% 7.11% 4.02% 2.93%
σ = 0.5 1.18% 0.89% 0.76% 0.78%
σ = 1 0.92% 0.79% 0.97% 1.53%
σ = 3 1.39% 2.46% 5.01% 16.80%

TABLE II
AUC OF SVM-RBF EVALUATED BY 3-FOLD CROSS VALIDATION FROM

TRAINING DATASET.

AUC ρ = 0.5 ρ = 1 ρ = 2 ρ = 5
σ = 0.1 2.08× 10−1 1.65× 10−1 1.25× 10−1 8.38× 10−2

σ = 0.2 2.68× 10−2 1.45× 10−2 5.63× 10−3 2.85× 10−3

σ = 0.5 6.56× 10−4 4.80× 10−4 4.60× 10−4 5.30× 10−4

σ = 1 5.36× 10−4 6.10× 10−4 7.78× 10−4 1.50× 10−3

σ = 3 1.47× 10−3 3.52× 10−3 1.02× 10−2 6.16× 10−2

TABLE III
EER OF KRR-TRBF AND KRR-POLY EVALUATED BY 3-FOLD CROSS

VALIDATION FROM TRAINING DATASET.

EER linear TRBF2 TRBF3 POLY2 POLY3
ρ = 0.01 0.93% 1.16% 1.98% 1.00% 2.34%
ρ = 0.05 1.00% 0.98% 1.60% 1.13% 1.97%
ρ = 0.1 0.93% 1.09% 1.50% 0.98% 1.57%
ρ = 0.5 0.92% 0.95% 1.18% 1.00% 1.47%
ρ = 1 1.02% 0.76% 0.87% 1.02% 1.33%
ρ = 5 1.19% 0.78% 0.95% 0.77% 1.09%
ρ = 10 1.22% 0.89% 0.89% 0.74% 0.93%

TABLE IV
CONFIDENCE SCORE THRESHOLD FOR KRR-TRBF AND KRR-POLY AT

WHICH THE REPORTED EER IN TABLE III IS ACHIEVED.

EER linear TRBF2 TRBF3 POLY2 POLY3
ρ = 0.01 -2 -12 -15 -12 -14
ρ = 0.05 -3 -12 -15 -13 -14
ρ = 0.1 -3 -12 -15 -12 -13
ρ = 0.5 -3 -13 -14 -13 -15
ρ = 1 -3 -11 -12 -14 -14
ρ = 5 -2 -11 -14 -11 -14
ρ = 10 -2 -11 -13 -10 -13

TABLE V
EER AND AUC UNDER DET CURVE COMPARISON.

Kernel EER AUC Conf. Thresh.
KRR-linear 1.80% 0.00249 -13

KRR-POLY2 1.53% 0.00164 -26
KRR-POLY3 1.43% 0.00189 -24

SVM-RBF 1.41% 0.00203 -31
KRR-TRBF2 1.74% 0.00162 -27
KRR-TRBF3 1.39% 0.00182 -25

Notes:
Normalized tri-graph.
100 imposters for training.
Imposters in testing phase are different from training phase.

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5%

F
A

R

FRR

Detection Error Tradeoff for TRBF (out)

KRR-linear

KRR-TRBF2

KRR-TRBF3

Fig. 3. DET curves for KRR learning model with TRBF kernel of various
degrees.

Notes:
Normalized tri-graph.
100 imposters for training.
Imposters in testing phase are different from training phase.

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5%

F
A

R

FRR

Detection Error Tradeoff for POLY (out)

KRR-linear

KRR-Poly2

KRR-Poly3

Fig. 4. DET curves for KRR learning model with polynomial kernel of various
degrees.

1) Error Rates for KRR-TRBF and KRR-POLY with
Various Degrees: Figure 34 summarizes the detection error
trade-off (DET) curves for KRR learning model with TRBF
and POLY kernels of various degrees. In terms of equal error
rates, we observe that

KRR− TRBF3 < KRR− TRBF2 < KRR− linear.

KRR− POLY 3 < KRR− POLY 2 < KRR− linear.

The EER for both KRR-TRBFp and KRR-POLYp decreases as 1

their degree p increases. This can be explained by the higher 2

dimension J of its kernel-induced feature space H = RJ , 3

which provides stronger representation power. 4

2) Comparison between KRR and SVM-RBF: Figure 5 5

shows the DET curves for KRR learning model with TRBF3 6

and Poly3 kernels, namely KRR-TRBF3 and KRR-Poly3, re- 7

spectively. They are compared to the SVM learning model with 8

Gaussian RBF kernel as a benchmark. We observe that KRR- 9

TRBF3, KRR-Poly3, and SVM-RBF have very similar EER. 10

However, KRR-TRBF3 has signicantly lower FAR concerning 11

the region where FRR is less than 1%. In terms of AUC (under 12

9

Notes:
Normalized tri-graph.
100 imposters for training.
Imposters in testing phase are different from training phase.

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5%

F
A

R

FRR

Detection Error Tradeoff (out)

KRR-Poly3

KRR-TRBF3

SVM-RBF

Fig. 5. DET curves for KRR-TRBF3, KRR-Poly3, and SVM-RBF.

DET curve), KRR-TRBF3 outperforms both SVM-RBF and1

KRR-POLY3.2

D. Scalability Issues3

Besides error rates, it is also an important issue on how4

the training and prediction computational costs of a learning5

model scales with the size of the collected data. The training6

time and prediction time reported in Figures 6,7,8,9 are7

measured as follows8

• Training time: Let t(i)train be the time needed to train
the profile for legitimate user i. We report the averaged
training time defined as

ttrain avg =
1

|U |
∑
i∈U

t
(i)
train,

• Prediction time: Let t(ij)pred be the prediction time for
comparing the typing patterns by imposter j to the profile
of legitimate user i. We report the averaged prediction
time defined as

tpred avg =
1

|U ||U c|
∑
i∈U

∑
j∈Uc

t
(ij)
pred,

The simulations are conducted on two Intel Xeon X5680 CPU9

@3.33 GHz, 8 GB RAM, with 6 cores for each processor,10

running the Linux version 2.6.32 with Red Hat 4.4.7-4 version.11

To see how training time scales up with the training data12

size, we conduct experiment to be elaborated as follows: In13

the training phase, the profile for a legitimate user A ∈ U is14

trained by formulating a binary classification problem. Similar15

to the experimental setup in Sec.VII-A, the positive class16

is composed of keystroke dynamics collected from user A17

in segment I, III. The negative class, however, is composed18

of keystroke dynamics collected from a random subset of19

L users in U − A, where L is a tunable integer which is20

roughly proportional to the training data size. In the following21

experiments we take L ∈ {50, 100, 150, 200, 250, 300}.22

Since the TRBF p and Poly p kernels have exactly the same23

kernel-induced Hilbert space dimension J (p), they have almost24

identical training and prediction costs, which is also observed25

Notes:
Normalized tri-graph.
100 imposters for training.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Tr
ai

n
in

g
ti

m
e

 (
se

c)

#Imposters in training dataset (L)

Training Time for TRBF

KRR-linear

KRR-TRBF2

KRR-TRBF3

Fig. 6. Training time for KRR learning model with TRBF kernel of various
degrees.

Notes:
Normalized tri-graph.
100 imposters for training.

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300
P

re
d

ic
ti

o
n

 t
im

e
 (

m
ill

is
e

c)

#Imposters in training dataset (L)

Prediction Time for TRBF (out)

KRR-linear

KRR-TRBF2

KRR-TRBF3

Fig. 7. Prediction time for KRR learning model with TRBF kernel of various
degrees.

by our experiments. In the following context, we will focus 26

on the training and prediction costs for TRBF kernels. 27

1) Training time for KRR-TRBF with various degrees: 28

Figure 6 summarizes the training time for KRR learning model 29

with TRBF kernel of various degrees. We observe that for each 30

specific curve, the training time grows linearly with L, which 31

is roughly proportional to the training data size as expected. 32

Recall Figure 3, we also observe a consistent trade-off between 33

error rate performance and training time: With higher degree 34

p, the TRBF p kernel has higher kernel-induced Hilbert space 35

dimension J (p), which implies stronger representation power 36

and smaller error rates, at a cost of higher training cost. 37

2) Prediction time for KRR-TRBF with various degrees: 38

Figure 7 summarizes the prediction time for KRR learning 39

model with TRBF kernel of various degrees. We observe that 40

for each specific curve, the prediction time is independent of 41

L. In other words, the prediction time is constant over training 42

data size. Recall Figure 3, we also observe a consistent trade- 43

off between error rate performance and prediction time, where 44

TRBF kernel with higher degree gives smaller error rates but 45

requires higher prediction time. 46

3) Training and Prediction Time Comparison between 47

KRR and SVM: Figure 8 plots the training time for KRR 48

learning model with TRBF3 and Poly3 kernels. They are 49

compared to the SVM learning model with Gaussian RBF 50

kernel as a benchmark. We observe that both KRR-Poly3 and 51

KRR-TRBF3 have significantly less training cost than SVM- 52

RBF. Furthermore, the training time for both KRR-TRBF3 and 53

KRR-Poly3 grow linearly with the training data size N, while 54

10

Notes:
Normalized tri-graph.
100 imposters for training.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

Tr
ai

n
in

g
ti

m
e

 (
se

c)

#Imposters in training dataset (L)

Training Time

KRR-TRBF3

SVM-RBF

KRR-Poly3

Fig. 8. Training time for KRR learning model with TRBF3 and Poly3 kernels,
which are compared with SVM learning model with Gaussian-RBF kernel.

Notes:
Normalized tri-graph.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

P
re

d
ic

ti
o

n
ti

m
e

 (
m

ill
is

e
c)

#Imposters in training dataset (L)

Prediction Time (out)

KRR-TRBF3

SVM-RBF

KRR-Poly3

Fig. 9. Prediction time for KRR learning model with TRBF3 and Poly3
kernels, which are compared with SVM learning model with Gaussian-RBF
kernel.

SVM-RBF has training time growing quadratically with N.1

Figure 9 plots the prediction time for KRR-TRBF3, KRR-2

Poly3, and SVM-RBF. We observe that both KRR-TRBF3,3

KRR-Poly3 have significantly less prediction cost than SVM-4

RBF. Furthermore, the prediction time for both KRR-TRBF35

and KRR-Poly3 remains constant regardless of training data6

size, while SVM-RBF has prediction time that scales up7

linearly with the training data size N.8

Recall Figure 5, both KRR-POLY3 and KRR-TRBF39

achieve significantly less training and prediction times while10

retaining comparable error rates as SVM-RBF. This shows11

great potential in large-scale authentication system applica-12

tions.13

VIII. DISCUSSIONS AND CONCLUSIONS14

In real world applications, an authentication system can15

easily grow beyond thousands of users, with keystroke dy-16

namics constantly collected during the users’ daily work.17

The large scale dataset raises scalability concerns, which in18

turn necessitate our development of efficient learning and19

prediction algorithms. We apply Kung and Wu’s work [27] to20

(1) approximate the Gaussian-RBF kernel with a truncated-21

RBF (TRBF) kernel and (2) then solve the KRR learning22

model in the intrinsic space [27]. This results in a fast-KRR23

learning algorithm with O(N) training cost, making it very24

cost effective for large-scale learning applications. Likewise,25

in the prediction phase, the RBF kernels again suffer from the26

curse of dimensionality problem, causing its prediction time to27

grow linearly with the training data size N , or more exactly, 28

with the number of support vectors. In contrast, the TRBF 29

kernel needs only a constant prediction time regardless of the 30

training data size, rendering it very appealing for real-time 31

prediction. 32

The fast-KRR algorithm (along with TRBF kernels) of- 33

fers computational advantages over the traditional SVM with 34

Gaussian-RBF kernel, while retaining similar error-rate per- 35

formances. More precisely, our learning model achieves an 36

equal error rate of 1.39% with O(N) training time, while 37

SVM with the RBF kernel shows a rate of 1.41% with 38

O(N2) training time. This points to potentially promising 39

deployment of the fast-KRR learning model for real-world 40

large-scale active authentication systems. Furthermore, the 41

TRBF kernel may be tuned by the TRBF order which in 42

turn dictates the intrinsic degree J of the TRBF kernel. Both 43

the theory and experiments shows that, by tuning the intrinsic 44

degree J , one may strike a compromise between accuracy and 45

training/prediction complexities. 46

Besides the class-dependent cost algorithmic approach im- 47

plemented in this manuscript, there are various techniques 48

proposed to ameliorate the class imbalance problem both on 49

the algorithmic and data levels [58], [59]. At the data level, 50

different forms of re-sampling are proposed such as random 51

oversampling the minority class with replacement, random 52

undersampling the majority class, directed oversampling, di- 53

rected undersampling, oversampling with informed generation 54

of new samples, or a combination of the aforementioned 55

approaches [60]. At the algorithmic level, solutions include 56

class-dependent costs to compensate class imbalance [61], 57

adjusting the decision threshold, adopting recognition based 58

(formulate as one-class problem) rather than discrimination- 59

based (formulate as two class problem) learning. We will 60

explore various data-centered approaches for class imbalanced 61

problems in our future work. 62

In this manuscript the flexibility of hyper-parameter selec- 63

tion is not yet fully explored. For instance, the optimal hyper 64

parameter σ for POLY and TRBF kernels may be different, 65

as they weight higher order terms differently. Also, Table.III 66

suggests that EER may be further reduced by selecting a 67

wider range of hyper-parameter ρ. These issues will be further 68

addressed in our future work. 69

The KRR-TRBF implemented in this manuscript can be 70

considered as a regular linear regression in a finite dimensional 71

space RJ , where the raw attributes are mapped to RJ by some 72

specific nonlinear transformation. Such idea of representing 73

the samples by vectors in some finite dimensional space RJ , 74

on which the original kernel regression problem is approxi- 75

mated by a regular linear regression problem in RJ , can be also 76

found in other large-scale KRR approaches such as Nystrom 77

method [62] and fixed-size LS-SVM [63]. The difference 78

lies in how the finite dimensional space is formulated. In 79

Nystrom method the principle component analysis (PCA) is 80

implicitly applied on the N training samples in the kernel- 81

induced feature space H, where each sample is represented by 82

its N principle components; In fixed size LSSVM [63], instead 83

of performing PCA on all the N training samples, it selects 84

a subsample of predefined size J � N by maximizing the 85

11

quadratic Renyi entropy, and then apply PCA on the selected1

J subsamples to find J principle components to represent each2

sample. In the future work we will quantitatively compare3

KRR-TRBF with Nystrom method and fixed-size LS-SVM,4

as well as other approaches summarized in [33] which are5

scalable for large-scale active authentication applications.6

ACKNOWLEDGMENT7

This work was supported in part by the Active Authentica-8

tion Program of DARPA under grant FA8750-12-2-0200.19

1The views, opinions, and/or findings contained in this article/presentation
are those of the author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

REFERENCES 10

[1] A. Adams and M. A. Sasse, “Users are not the enemy,” Commun. ACM, 11

vol. 42, no. 12, pp. 41–46, 1999. 12

[2] A. Peacock, X. Ke, and M. Wilkerson, “Typing patterns: A key to user 13

identication,” IEEE Security Privacy, vol. 2, no. 5, pp. 40–47, 2004. 14

[3] K. Niinuma, U. Park, and A. K. Jain, “Soft biometric traits for contin- 15

uous user authentication,” IEEE Trans. Inf. Forensics Security, vol. 5, 16

no. 4, pp. 771–780, 12 2010. 17

[4] J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst. 18

Video Technol., vol. 14, no. 1, p. 2004, 1 2004. 19

[5] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar, “Continuous verifi- 20

cation using multimodal biometrics,” IEEE Trans. Pattern Anal. Mach. 21

Intell., vol. 29, no. 4, pp. 687–700, 4 2007. 22

[6] D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM Trans. 23

Inf. Syst. Secur, vol. 8, no. 3, pp. 312–347, 8 2005. 24

[7] M. Pusara and C. E. Brodley, “User re-authentication via mouse move- 25

ments,” in Proc. 2004 ACM Workshop Visualization and Data Mining 26

for Computer Security, ser. VizSEC/DMSEC ’04. New York, NY, USA: 27

ACM, 2004, pp. 1–8. 28

[8] J. Lu and Y. P. Tan, “Regularized locality preserving projections and its 29

extensions for face recognition,” IEEE Transactions on Systems, Man, 30

and Cybernetics, Part B (Cybernetics), vol. 40, no. 3, pp. 958–963, June 31

2010. 32

[9] M. F. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer, “Meta- 33

analysis of the first facial expression recognition challenge,” IEEE 34

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35

vol. 42, no. 4, pp. 966–979, Aug 2012. 36

[10] J. Zuo and N. A. Schmid, “On a methodology for robust segmentation 37

of nonideal iris images,” IEEE Transactions on Systems, Man, and 38

Cybernetics, Part B (Cybernetics), vol. 40, no. 3, pp. 703–718, June 39

2010. 40

[11] Y. Du, E. Arslanturk, Z. Zhou, and C. Belcher, “Video-based noncoop- 41

erative iris image segmentation,” IEEE Transactions on Systems, Man, 42

and Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 64–74, Feb 43

2011. 44

[12] R. Cappelli, “Fast and accurate fingerprint indexing based on ridge 45

orientation and frequency,” IEEE Transactions on Systems, Man, and 46

Cybernetics, Part B (Cybernetics), vol. 41, no. 6, pp. 1511–1521, Dec 47

2011. 48

[13] R. Cappelli, M. Ferrara, and D. Maio, “A fast and accurate palmprint 49

recognition system based on minutiae,” IEEE Transactions on Systems, 50

Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 3, pp. 956–962, 51

June 2012. 52

[14] M. Goffredo, I. Bouchrika, J. N. Carter, and M. S. Nixon, “Self- 53

calibrating view-invariant gait biometrics,” IEEE Transactions on Sys- 54

tems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 4, pp. 55

997–1008, Aug 2010. 56

[15] M. Karg, K. Kuhnlenz, and M. Buss, “Recognition of affect based on 57

gait patterns,” IEEE Transactions on Systems, Man, and Cybernetics, 58

Part B (Cybernetics), vol. 40, no. 4, pp. 1050–1061, Aug 2010. 59

[16] R. Joyce and G. Gupta, “Identity authentication based on keystroke 60

latencies,” Commun. ACM, vol. 33, no. 2, pp. 168–176, 2 1990. 61

[17] R. Spillane, “Keyboard apparatus for personal identification,” IBM Tech. 62

Disclosure Bulletin, vol. 17, no. 3346, 1975. 63

[18] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural 64

networks architectures,” Neural Computation, vol. 7, pp. 219–269, 1995. 65

[19] V. N. Vapnik, The Nature of Statistical Learning Theorey. New York: 66

Springer-Verlag, 1995. 67

[20] B. Scholkopf, A. Smola, and K.-R. Muller, “Nonlinear component 68

analysis as a kernel eigenvalue problem,” Neural Computation, vol. 10, 69

pp. 1299–1319, 1998. 70

[21] M. E. Mavroforakis and S. Theodoridis, “A geometric approach to 71

support vector machine (svm) classification,” IEEE Trans. Neural Netw., 72

vol. 17, no. 3, pp. 671–682, 5 2006. 73

[22] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. 74

New York: Wiley, 2001. 75

[23] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge 76

University Press, 2014. 77

[24] J. Mercer, “Functions of positive and negative type, and their connection 78

with the theory of integral equations,” Trans. London Philosoph. Soc. 79

(A), vol. 209, pp. 415–446, 1909. 80

[25] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation 81

for nonorthogonal problems,” Technometrics, vol. 42, no. 1, p. 8086, 82

1970. 83

[26] A. N. Tychonoff, “On the stability of inverse problems,” Doklady 84

Akademii Nauk SSSR, vol. 39, no. 5, pp. 195–198, 1943. 85

12

[27] S. Y. Kung and P. Wu, “On efficient learning and classification kernel1

methods,” Proc. ICASSP, Kyoto, March 2012.2

[28] M. Obaidat and B. Sadoun, “Verification of computer users using3

keystroke dynamics,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 2,4

pp. 261–269, Apr 1997.5

[29] F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through6

keystroke dynamics,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp.7

367–397, nov 2002.8

[30] Y. Sheng, V. Phoha, and S. Rovnyak, “A parallel decision tree-based9

method for user authentication based on keystroke patterns,” IEEE Trans.10

Syst., Man, Cybern. B, vol. 35, no. 4, pp. 826–833, Aug 2005.11

[31] D. Hosseinzadeh and S. Krishnan, “Gaussian mixture modeling of12

keystroke patterns for biometric applications,” IEEE Trans. Syst., Man,13

Cybern. C, vol. 38, no. 6, pp. 816–826, Nov 2008.14

[32] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection15

algorithms for keystroke dynamics,” in Proc. 39th Annu. Int. Conf.16

Dependable Syst. Networks, ser. DSN 2009. Los Alamitos: IEEE17

Computer Society Press, 2009, pp. 125–134.18

[33] A. Alsultan and K. Warwick, “Keystroke dynamics authentication: A19

survey of free text methods,” Int. J. Comput. Sci. Issues, vol. 10, no. 1,20

pp. 1–10, July 2013.21

[34] F. Monrose and A. Rubin, “Authentication via keystroke dynamics,” in22

Proc. 4th ACM Conf. Comput. Commun. Security, ser. CCS ’97. New23

York, NY, USA: ACM, 1997, pp. 48–56.24

[35] A. Ahmed and I. Traore, “Biometric recognition based on free-text25

keystroke dynamics,” IEEE Trans. Cybern., vol. 44, no. 4, pp. 458–472,26

April 2014.27

[36] M. Villani, C. Tappert, G. Ngo, J. Simone, H. Fort, and S.-H. Cha,28

“Keystroke biometric recognition studies on long-text input under ideal29

and application-oriented conditions,” in Conf. Comput. Vision Pattern30

Recognition Workshop, CVPRW ’06, June 2006.31

[37] H. Davoudi and E. Kabir, “A new distance measure for free text32

keystroke authentication,” in 14th Int. CSI Comput. Conf. (CSICC 2009),33

Oct 2009, pp. 570–575.34

[38] S. Park, J. Park, and S. Cho, “User authentication based on keystroke35

analysis of long free texts with a reduced number of features,” in 2nd36

Int. Conf. Commun. Syst. Networks Applicat. (ICCSNA 2010), vol. 1,37

June 2010, pp. 433–435.38

[39] S. Singh and K. V. Arya, “Key classification: A new approach in free39

text keystroke authentication system,” in 3rd Pacific-Asia Conf. Circuits,40

Commun. Syst. (PACCS 2011), July 2011, pp. 1–5.41

[40] M. Curtin, M. Villani, G. Ngo, J. Simone, H. S. Fort, and S. h. Cha,42

“Keystroke biometric recognition on long-text input: A feasibility study,”43

in Proc. Int. Workshop Sci Comp/Comp Stat (IWSCCS 2006), Hong44

Kong, 2006.45

[41] D. Gunetti and G. Ruffo, “Intrusion detection through behavioral data,”46

in Advances in Intell. Data Anal., ser. Lecture Notes in Computer47

Science, D. Hand, J. Kok, and M. Berthold, Eds. Springer Berlin48

Heidelberg, 1999, vol. 1642, pp. 383–394.49

[42] R. Janakiraman and T. Sim, “Keystroke dynamics in a general setting,”50

in Advances in Biometrics, ser. Lecture Notes in Computer Science, S.-51

W. Lee and S. Li, Eds. Springer Berlin Heidelberg, 2007, vol. 4642,52

pp. 584–593.53

[43] J. Hu, D. Gingrich, and A. Sentosa, “A k-nearest neighbor approach for54

user authentication through biometric keystroke dynamics,” in IEEE Int.55

Conf. Commun., ICC ’08., May 2008, pp. 1556–1560.56

[44] A. A. E. Ahmed, I. Traor, and A. Ahmed, “Digital fingerprinting based57

on keystroke dynamics.” in HAISA, N. L. Clarke and S. Furnell, Eds.58

University of Plymouth, 2008, pp. 94–104.59

[45] A. Messerman, T. Mustafic, S. Camtepe, and S. Albayrak, “Continuous60

and non-intrusive identity verification in real-time environments based61

on free-text keystroke dynamics,” in Int. Joint Conf. Biometrics (IJCB62

2011), Oct 2011, pp. 1–8.63

[46] J. M. Chang, C. C. Fang, K. H. Ho, N. Kelly, P. Wu, Y. Ding,64

C. Chu, S. Gilbert, A. E. Kamal, and S. Y. Kung, “Capturing cognitive65

fingerprints from keystroke dynamics,” IT Professional, vol. 15, no. 4,66

pp. 24–28, July-August 2013.67

[47] P.-Y. Wu, C.-C. Fang, J. Chang, S. Gilbert, and S. Kung, “Cost-68

effective kernel ridge regression implementation for keystroke-based69

active authentication system,” in IEEE Int. Conf. Acoust. Speech Signal70

Process. (ICASSP 2014), May 2014, pp. 6028–6032.71

[48] T.-T. Frieß and R. F. Harrison, “A kernel-based adaline,” in ESANN72

1999, 7th European Symp. Artificial Neural Networks, Bruges, Belgium,73

April 21-23, 1999, Proceedings, 1999, pp. 245–250.74

[49] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares75

algorithm,” IEEE Trans. Signal Process., vol. 52, pp. 2275–2285, 2003.76

[50] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with 77

kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176, 8 78

2004. 79

[51] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square 80

algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543–554, 2 81

2008. 82

[52] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning 83

algorithm in dual variables,” in Proc. 15th Int. Conf. Mach. Learning, 84

ser. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Publishers 85

Inc., 1998, pp. 515–521. 86

[53] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector 87

machines,” ACM Trans. Intell. Syst. and Tech., vol. 2, pp. 27:1–27:27, 88

2011, software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm. 89

[54] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit 90

feature maps,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, 91

pp. 480–492, March 2012. 92

[55] S. Phonphitakchai and T. Dodd, “Stochastic meta descent in online 93

kernel methods,” in 6th Int. Conf. Elect. Eng./Electron., Comput., 94

Telecommun. Inform. Tech. (ECTI-CON 2009), vol. 02, May 2009, pp. 95

690–693. 96

[56] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time 97

series data with kernels,” IEEE Trans. Signal Process., vol. 57, no. 3, 98

pp. 1058–1067, March 2009. 99

[57] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor 100

detection systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 22, pp. 101

98–101, Jan 1986. 102

[58] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 103

“Smote: Synthetic minority over-sampling technique,” J. Artificial Intell. 104

Research, vol. 16, pp. 321–357, 2002. 105

[59] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD 106

Explor. Newsl., vol. 6, no. 1, pp. 7–19, jun 2004. 107

[60] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of 108

the behavior of several methods for balancing machine learning training 109

data,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 20–29, 2004. 110

[61] B. Zadrozny and C. Elkan, “Learning and making decisions when costs 111

and probabilities are both unknown,” in Proc. 7th ACM SIGKDD Int. 112

Conf. Knowledge Discovery Data Mining, ser. KDD ’01. New York, 113

NY, USA: ACM, 2001, pp. 204–213. 114

[62] C. K. I. Williams and M. Seeger, “Using the nyström method to speed 115

up kernel machines,” in Advances in Neural Inform. Process. Syst. 13, 116

T. Leen, T. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp. 682– 117

688. 118

[63] M. Espinoza, J. Suykens, and B. Moor, “Fixed-size least squares support 119

vector machines: A large scale application in electrical load forecasting,” 120

Computational Manag. Sci., vol. 3, no. 2, pp. 113–129, 2006. 121

