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An Energy-Efficient Java Virtual Machine 
Kuo-Yi Chen, J. Morris Chang and Ting-Wei Hou 

Abstract—the power-saving opportunities of long-running application servers which execute on multi-core systems are studied 

in this paper. The research goal is to develop an efficient power-saving strategy of application servers with the minimum 

performance degradation in cloud environments. The power-saving strategy is based on the run-time information which is 

already available in a JVM, the base software component of application servers. Several key findings are revealed through this 

study. First, the particular behavior of application servers, also known as phases, can be related to the run-time information of a 

JVM. Thus the phases of an application server can be predicted before the applications actually execute on hardware. Secondly, 

some particular phases are observed in this study and used to establish the power-saving strategy, such as memory phases 

and execute phases. Finally, a new finding of idle phase is proposed to reduce significant energy wastage without performance 

degradations. Based on these findings, a set of power-saving algorithms is proposed and implemented with two widely used 

JVMs, Sun's Hotspot and Jikes RVM. With the experiments of five multi-threaded benchmarks and two web application 

benchmarks, the use of proposed power-saving strategy leads to the lowest value of EDP among the other power-saving 

techniques, and the performance degradation is well below six percents. 

Index Terms—Energy efficiency; Java Virtual Machine; Application servers; Multi-core systems; Multi-threaded applications.  
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1 INTRODUCTION

n recent years, web applications have become a popu-
lar choice for service providers and already show their 
importance in the global marketplace. For example, a 

suite of web applications (e.g, E-mail, Document process-
ing and File storages) was developed by Google has al-
ready influenced the use of the Internet [1]. The software 
in cloud environments that grants web applications to be 
served via the Internet is referred to as application servers. 
Industry market watchers expect the revenue of applica-
tion servers could reach approximately 67 billion dollars 
by year 2018 [2]. 
With the trend of energy saving and carbon reduction, 

the energy wastage of long-running application servers is 
becoming an important issue. For example, while applica-
tion servers tend to co-locate with data centers, the an-
nual data center energy consumption in US is estimated 
to grow to over 140 billion kWh at a cost of $13 billion by 
2020 [3]. Furthermore, the industry trend is toward inte-
grating multiple cores on a chip [4]. As a result, multi-
core processors are widely deployed on servers. The 
power consumption of multiple processor cores stresses 
the energy wastage issue of application servers. 
In order to reduce power consumption of a long-

running application server, the energy wastage of proces-
sors is highlighted. Since the processors consume the 
most of  energy in a server platform [5]. The well-known 
power-saving technique is called the Dynamic Voltage and 
Frequency Scaling (DVFS), which is available in modern 
processors [6]. Many studies are based on the DVFS tech-
nique to adjust the voltage and frequency of processors to 
reduce CPU’s power consumption [7]. These researches 

can be classified into two major groups, profiling and the 
use of performance monitors. 
The profiling approach relies on the analyses of appli-

cation behavior first, and then, uses this information to 
adjust frequencies of processors [8]. Due to the additional 
cost of code analyses and special instruction insertion, 
profiling approaches is rarely deployed on a system 
which requires quick responses and high performance, 
such as application servers. 
On the other hand, the performance monitor is a set of 

registers in processors, which can be used to obtain hard-
ware events. The observation of phases can be used to 
adjusted processors’ frequency to save energy [9]. How-
ever, the use of performance monitors has limitations. 
First, phases only can be observed after hard-ware events 
are appeared in performance monitors. It is always one 
step behind. Secondly, the periods of a phase cannot be 
observed precisely. The actual start/end timing of a given 
phase is not known.  
In order to improve the issues of profiling and the use 

of performance monitors, our motivation is to detect the 
phases of application servers precisely with the run-time 
information of the Java Virtual Machine (JVM), which is 
the base software of application servers. The instructions 
of Java web applications, also known as the bytecodes, 
have to be interpreted by the JVM, and then can be exe-
cuted on the hardware. This feature leads a capability to 
observe the phase of application servers before the run-
time behavior is actually changed. 
The experimental results show that the use of pro-

posed power-saving strategy leads to the significant en-
ergy reduction (14 to 23 percent) with the use of long-
running application server benchmarks, which is better 
than other power-saving techniques (10 to 16 percent). It 
is worth noting that the slight performance degradation 
(four percent) is observed with the use of proposed strat-
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egy, which is also better than other power-saving tech-
niques (8 to 12 percent). The experimental result shows 
can reach the goal of this study. 
In the age of cloud computing, the application servers 

play important roles both in cloud and mobile computing. 
Such as weather-forecasting, IM service, map service and 
social network service, application servers have to per-
formance 24x7 stably. As an application server that draws 
500 W consumes 0.5 kWh actively [50]. There is 4380 kW 
was consumed by this server per year. It is worth noting 
that Amazon deployed over 1.5 to 2 million servers glob-
ally based on a conservative estimation in 2015 [51]. As-
suming the proposed power-saving technology saves 15 
percent energy for each server, and then 976,000 mega-
watts, which is equal to 81 Fort Calhoun nuclear power 
plants in Nebraska, could be saved per years. On the 
other hand, the proposed power-saving technology could 
be used to develop better power-performance balance 
algorithm for devices which is powered by virtual ma-
chines, such as Dalvik VM of Android systems. 
This paper is organized as follows. First, the run-time 

behaviors of JVM’s software components are analyzed 
with the use of a single core to validate its phases. Sec-
ondly, the run-time behaviors of JVM’s software compo-
nents are studied with the use of multiple cores to detail 
their interaction. Thirdly, the particular phases, such as 
the execution phase, memory phase and idle phase, are 
analyzed to observe the power-saving capability. Finally, 
based on the study of JVM’s software components, the 
power-saving strategy is proposed and examined. 

2 BACKGROUND AND RELATED WORK  

This chapter describes the terminology and definitions 
which relate to application servers, JVM, garbage collec-
tion and the current power saving technology. It is worth 
noting that the term, application servers, is referred to 
Java-based application servers in this study. 
 

2.1 The Structure of Application Servers 

In order to reach the requirements of security and 
portability, web applications are usually hosted on the 
application server with Java techniques. The application 
server can be considered as a container of various types of 
web applications, such as Servlets, Enterprise JavaBeans 
(EJB) and JavaServer Pages (JSP). These web applications 
use application servers as an interface to exploit external 
resources, such as the hardware, network and databases. 
The structure of a Java-based application server is 

shown in Figure 1. The libraries of Java 2 Enterprise Edition 
(J2EE) provide the support for web applications. More-
over, the JVM of Java 2 Stand Edition (J2SE) is used to in-
terpret the bytecode of web applications to machine codes, 
and then exececute them on hardware. It is worth noting 
that an application server is executed with a JVM instance. 
In order to exploit the run-time information which is 
available in a JVM to reduce the energy wastage, the JVM 
behavior is studied in this research. 
 

2.2 The Structure of Java Virtual Machines 

In a JVM, the garbage collector is used to collect inac-
cessible objects, which are considered as the garbage. The 
high latency of memory access usually leads to CPU wait-
ing for the results from the memory. The energy is con-
sumed by the waiting CPU, and system performance is 
not improved. Thus the phase of garbage collections 
might be a power-saving capability of a JVM. The struc-
ture of a JVM is shown in Figure 2 
 

Based on the analysis of JVM’s software components, 
we hypothesize that the behavior of the vm_thread and the 
garbage collector of the JVM could be the power-saving 
capability of application servers. This hypothesis will be 
verified with the further behavior analysis of vm_thread 
and the garbage collector. 
 
2.3 Related works 

As hardware components are growing into more 
power-hungry than ever, the power consumption of the 
long-running servers is becoming an interesting topic. 
Recent studies [10-12] have demonstrated that the power 
consumption could be retrenched by applying the lower 
power-level on the particular hardware component. 
Moreover, due to the significant energy demands of CPU 
in server systems, many studies focused on reducing 
power consumption of CPU [5]. Weiser et al. [13], have 
demonstrated the use of Dynamic Voltage Scaling (DVS) to 
reduce energy wastage of CPU. Further studies [14-16] 
explored the performance of DVS techniques in the gen-
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eral-purpose and real-time systems. 
It is worth noting that there are more approaches to 

reduce the power-saving of a cloud/data center. Such as 
the studies of power-saving techniques on data centers 
and content delivery networks [51-52]. These studies 
show the distributed databases architecture has highly 
potential to reduce power wasting. The use of virtualiza-
tion technology also leads to significant power saving [53]. 
With load-aware scheduling, the energy management 
could be more efficiency [54-56]. However, these ap-
proaches required more coordination between various 
servers, thus the side effect evaluation is required. 
These studies put emphasis on the methodologies of 

phase observations. The information of applications’ 
phases can be used to adjust the power-level of the objec-
tive system, and then reach the goal of power-saving. The 
methodologies of phase observations can be classified 
into two major groups, the profiling and the use of per-
formance monitors. 
There are many power-saving studies which are based 

on the profiling methodology. Delaluz et al. [17] and Hsu 
et al. [18, 19] use the compiler-directed profiling approach 
to reduce power consumption. The phases-transition in-
structions of particular power-levels are inserted into bi-
nary codes of applications based on the offline profiling. 
However, the additional profiling work leads to the 

unavoidable overhead. In addition, the compiler-directed 
profiling only works with a single application at a time. In 
run-time, other processes might affect the system status, 
and reduce the profiling accuracy of the objective applica-
tion. It leads to either less efficiency or great overheads of 
profiling approaches in multi-tasking and multi-cores 
systems. Instead of the additional work of the profiling, 
our approaches use the run-time information which is 
already available in virtual machines. Thus the overheads 
of phase detections could be limited. 
On the other hand, the phase detection by performance 

monitors is widely used in industries and researches. The 
information of performance monitors can be observed by 
the run-time statistics, built-in hardware registers and 
external sensors. The use of run-time statistics [20-23], 
such as the processor usage, is a popular approach to re-
duce energy wastage. Some studies use performance 
counters, a set built-in registers of CPUs, to detect the 
phase and adjust the power-level [24, 25]. 
In addition, the use of external sensors, such as the 

thermal probe, to observe the heat generation and adjust 
the power-level is also a popular approach [26-28]. Some 
studies use a group of hardware registers, such as the 
numbers of stall cycles and retired instructions, to detect 
the phase and adjust the power-level [29-31]. Moreover, 
some studies use the information of hardware registers to 
improve task scheduling, and reach the goal of power-
saving [32, 33]. Due to the variations of performance 
monitors only can be observed after the phase is changed, 
thus the possibility of energy wastage and performance 
degradations could be remained by this approach. In or-
der to eliminate this possibility, the beforehand phase 
detection is proposed in proposed approach. The phases 
could be observed precisely by the run-time information 

which is already available in a JVM, before they actually 
change. The precise information of phases could be used 
to adjust appropriate frequencies, and then reduce the 
most of energy wastage with performance maintenance. 
Compared with the traditional power-saving ap-

proaches which are mentioned as above, the power-
saving approaches which are based on the use of virtual 
machines (VMs) are rarely demonstrated. Fries et al. [34] 
propose an approach to find an optimizing placement of a 
group of VMs on multiple hardware platforms to reduce 
the energy cost. An online method is proposed to config-
ure the configuration of VMs and reduce the number of 
physical hosts [35]. The dynamically rescheduling is pro-
posed to collocate processing heterogeneous workloads of 
VMs [36]. However, the phase detections of these ap-
proaches are based on the use of performance monitors. 
Thus these approaches cannot detect phases as accurately 
as the use of GVM approaches. 

3 THE ANALYSIS OF JVM SOFTWARE 

COMPONENTS 

In order to reach the goal of power-saving by the run-
time information which is available in a JVM, the experi-
ments are proposed to analyze the behavior of JVM's 
software components. The experimental steps are shown 
as follows. First, the setup of experiments is detailed. Sec-
ondly, JVM's software components are analyzed with the 
use of a single core. Thus the behavior of each JVM's 
software component could be observed separately. Fi-
nally, the interactions of each JVM's software component 
are studied with the use of multiple cores. Thus the inter-
action between each component is detailed. Based on ex-
perimental results, the behavior of JVM's software com-
ponents is clarified to develop the power-saving strategy. 
 
3.1 The setup of experiments 

All the experiments are based on a server with the 
Q6600 processor, an Intel quad-core CPU. The frequency 
of each core is allowed to be adjusted independently. The 
four available frequencies of the Intel Q6600 are 2.4Ghz, 
2.13Ghz, 1.87Ghz and 1.60Ghz. The Fedora Core 14 with 
kernel version 2.6.35 and Sun's Java System Application 
Server 9.1 are used as the operating system and the appli-
cation server in these experiments. 
In order to evaluate the performance of various power-

saving approaches, the appropriate technique to measure 
the power consumption of processors is important. In 
general software approaches, such as dynamic power 
measurement of CMOS circuits, the power consumption 
of a CPU is expressed as the square value of voltage plus 
frequency of each core. However, only dynamic power 
consumption is measured by the software approach. Due 
to the issue of leak current, the static power consumption 
is becoming significant in modern processors [37]. The 
lack of static power measurement might result in the in-
accurate evaluation of CPU power consumption [38]. 
In order to improve this issue, a new hardware ap-

proach is proposed [39]. Two accurate digital power me-
ters are used to measure the power consumption of proc-
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essors by the current and voltage variation of a special 
electronic socket, as known as Voltage Regulator Module 
(VRM) [40], which is integrated on the motherboard to 
provide power to main processors. The VRM is consisted 
by several converters in parallel and usually has special 
controls that respond to signals from the processor, such 
as Voltage Identification Code (VID). It is worth noting that 
the output voltage of the VRM is varied based on the de-
mand of processors. 
 

3.2 Multi-threaded Java Benchmarks 

In order to approximate the multi-threading feature of 
web applications, five widely used multi-threaded Java 
benchmarks are examined in this study. They are Eclipse, 
Hsqldb, Lusearch and Xalan from the Dacapo benchmark 
suit [42], and SPECjbb2005 benchmarks [43]. These multi-
threaded benchmarks perform various types of work-
loads to present the features of web applications. 
Moreover, in order to validate the performance of pro-

posed power-saving approaches with the use of applica-
tion servers, two widely used web application bench-
marks, SPECjAppServer2004 and RUBiS, are used in ex-
periments. SPECjAppServer2004 [44] uses a large and 
representative sample of J2EE APIs to evaluate the per-
formance of the individual system. RUBiS [45] is an on-
line auction site modeled after e-Bay. The experimental 

results of SPECjAppServer2004 and RUBiS benchmarks 
are used to represent the performance and power con-
sumption of the experimental application server, Sun's 
Java System Application Server 9.1. 
 

3.3 The Behavior Analysis of the Garbage Collector 

Due to the higest market share of Hotspot JVM, a state-
of-the-art Hotspot JVM, shipped with OpenJDK 1.7 [46], 
is used in the experiments. With the use of Hotspot JVM, 
the parallel garbage collection is also referred to as the 
throughput collector. It uses a parallel version of the 
young generation collector. The old (tenured) generation 
is still cleaned with the default collector. On the other 
hand, the concurrent garbage collector is also referred to 
as the concurrent low pause collector. It collects garbage 
in the old (tenured) generation concurrently to executing 
the application. 
It is worth noting that the use of various heap sizes 

could lead to significant effect when the NewRatio tech-
nique is applied. The size of the heap could determine the 
frequency of collection and affect the locality of both old 
and young objects. For example, the use of bigger heap 
could reduce the frequency of collection. On the other 
hand, the time consumption of each collection will in-
crease due to more objects have to be collected in the heap. 

 

Figure 3. The time consumption of major/minor GCs with the use of various numbers of processor cores 

The configuration of garbage collections is based on 
the default settings in the HotSpot JVM, in which the 

used garbage collector is a generational garbage collector. 
The garbage-collected space is divided into two genera-
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tions, the young generation and the tenured generation 
[47]. The copying collector is used in the young genera-
tion. The young generation is optimized for those objects 
with a short lifetime. After several collections, the sur-
vived objects are moved to the tenured generation since 
these objects have a longer lifetime. In the tenured gen-
eration, the mark-sweep-compact collector is used to 
collect the garbage concurrently [48].  
In order to verify our hypothesis, the experiments are 

proposed to clarify the hypothesis. In this experiment, 
three multi-threaded benchmarks are used to examine 
the time consumption of two main phases of a garbage 
collector, the minor garbage collection (minor-GCs) and 
the major garbage collection (major-GCs). 
In order to detail the behavior of the minor-GC and 

major-GC with the use of multi-core processors and dif-
ferent CPU frequency, the experiment is proposed to 
examine the time consumption of the minor-GC and 
major-GC. The less time consumption of GC indicates 
the performance improvement by the use of more cores 
or the higher frequency. Based on the experimental re-
sult, the power-saving capability of garbage collectors 
can be verified. 
The minor-GC time consumption of three multi-

threaded benchmarks, Hsqldb, Xalan and SPECjbb005, is 
shown in Figures 3 (a) to (c). It is observed that time con-
sumption of the minor-GC is reduced significantly with 
the use of more processor cores. This observation shows 
that the gc_threads can take the advantage with all 
available multiple processor cores in a minor-GC. That 
also indicates that the gc_threads do the parallel collec-
tion. On the other hand, the slight time consumption 
change of the minor-GC is observed when the use of 
different CPU frequency. This observation shows that 
the processor is waiting for the memory accesses, the 
objecting moving from the young generation to the old 
generation. Since the speed of the memory accesses is 
much lower than the speed of the processor, the proces-
sor has to wait for the memory accesses, and results in 
the plenty memory stalls. Based on this observation, it 
can be assumed that the minor-GC is highly related to 
the memory phase rather than the execution phase. It is 
worth noting the CPU frequency can be minimized to 
reduce the energy wastage during a memory phases 
without the significant system performance degradation. 
Thus a minor-GC can be considered as a power-saving 
capability of a JVM. 
The time consumption of the major-GC is shown in 

Figures 3 (d) to (f). Instead of the minor-GC, the slight 
variation of time consumption is observed when the 
number of processor cores is increasing. On the other 
hand, the significant time reduction is observed when 
the CPU frequency is increasing. The observations show 
that the performance of the major-GC is correlated to the 
computing power of processors. Thus the major-GC is 
highly related to the execution phase than the memory 
phase. 
Furthermore, the major-GC cannot take advantage 

with the use of multiple cores, which can be observed by 
the similar time consumption with the use of various 

processor cores. When a major-GC is engaged, a lock is 
used to guarantees that no other JVM thread is in the 
middle of modifying the Java heap. Therefore, the global 
work can be accomplished correctly. Since only one JVM 
thread can work in the major-GC, the use of multiple 
processor cores cannot reduce the time consumption of 
the major-GC. 
As a brief summary, the minor-GC takes advantage 

with the use of multiple cores, but not the increasing of 
the CPU frequency. Thus it can be hypothesized that the 
configuration of using all available cores and setting 
them to the minimum CPU frequency might lead to the 
performance maintenance and the energy wastage re-
duction for the minor-GC. On the other hand, since the 
major-GC takes advantage with the high CPU frequency 
but not multiple processor cores. It can be hypothesized 
that the use of a single core with the maximum CPU fre-
quency might lead to high performance and the low 
power consumption for a major-GC. 
In order to verify the hypotheses, the experiment 

which is based on various numbers of processor cores is 
proposed in the next section. The behavior of the minor-
GC and the major-GC are analyzed by certain hardware 
events particularly. Thus the time consumption and the 
power consumption of the garbage collector, which is 
the power-saving capability, can be detailed further. 
 

3.4 The Study of JVM's Software Components 
with the single core 

 
In order to verify the hypotheses, this experiment is 

proposed with the use of a single core in this section to 
detail the particular behavior of each JVM's software 
component. With the use of the single core, the JVM 
works as a single thread application. Thus each JVM's 
software component executes sequentially. Therefore, 
the interaction of multi-threading and multi-cores could 
be avoided, and then the particular behavior of each 
JVM's software component can be observed and ana-
lyzed. 
In order to detail the particular behavior of each 

JVM's software component, the hardware events are 
monitored to determin the phases of components. Two 
important hardware events, Instr_Ret and 
IFU_Mem_Stall, are monitored by accessing the perform-
ance counter which is built in the CPU. Instr_Ret counts 
the number of retired instructions and IFU_Mem_Stall 
counts the number of stalled cycles while a CPU waits 
for results of memory access. 
Moreover, a special measure called Stall Cycle Per In-

struction (SCPI) is employed (tracked) to analyze the 
phases of the multi-threaded benchmarks. The SCPI is 
defined as follows: 

 
where Mem_Stall and Instr_Ret are both the built into 
hardware events. Instr_Ret stands for the number of in-
structions retired. Mem_Stall represents the number of 

Instr_Ret

Mem_Stall
=SCPI
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the stalled cycles, which reflects the time the CPU needs 
to wait for the required input data from memory. 
In this experiment, a low value of SCPI is used to in-

dicate an execution phase, since it implies a high CPU 
workload. On the other hand, a high value of SCPI is 
used to signify a memory phase, which normally implies 
the CPU waiting for memory requests and actually the 
timing to lower the CPU frequencies. 

There are four figures are used to represent the be-
havior of JVM’s software components. The global behav-
ior of a JVM (including all JVM’s software components) 
is shown in figure 4. The behavior of the major JVM’s 
software components, which are the vm_thread and 
gc_thread, are shown in figure 6 and 7. Two measures, 
the number of instruction retired and the SCPI value, are 
used to present the behaviors of a JVM and its software 
components. The time scale (X-axis) is the same in all 
figures. Thus the comparison between JVM’s software 
components can be reached. Furthermore, the engaged 
and disengaged timing of the major-GC and minor-GC 
is shown with the same time scale (X-axis), thus the pe-
riods of GC can be observed and compared with the be-
havior of JVM’s software components. 

Compared with the global behavior of JVM in Figure 
4, it is observed that the most of Instr_Ret are generated 
by the vm_thread and the gc_thread in Figures 5 and 6. 
It is worth noting that a vm_thread and the gc_thread 
are both highly related with the garbage collection, the 
power-saving capability of a JVM. In order to detail the 
correlation of software components and garbage collec-

tions, the periods of garbage collections (including the 
minor-GC and major-GC) are shown in Figure 7. 

In a major-GC, the large numbers of Instr_Ret are ob-
served in a vm_thread in Figure 7. However, the large 
Instr_Ret numbers of a vm_thread only lead a few SCPI 
value in a major-GC. This observation shows that the 
few memory access stall cycles are generated in a major-
GC. The workload of a vm_thread, to visit all objects and 
finds inaccessible objects, leads to this observation. Thus 
the period of a major-GC is considered as the execute 
phase due to the few memory access stall cycles of the 
vm_thread. 

Moreover, the significant peaks of the SCPI value are 
observed at the end of each major-GC in Figure 7. In the 
execution round, the SCPI peaks are observed in 8.76 
second, 9.43 second, 10.05 second and 10.32 second. The 
SCPI peaks are due to the large number of memory ac-
cess stall cycles, which are generated by the garbage col-
lection of the gc_thread. Due to the observation of the 
large number of memory access stall cycles, the end of a 
major-GC should be considered as the memory phase. 
On the other hand, the significant SCPI values are ob-

served in each minor-GC. Compared the Instr_Rets val-
ues of the vm_thread and gc_thread in Figures 7, it 
could be observed that the most of Instr_Rets are gener-
ated by the gc_thread. At the same time, the gc_thread 
also generates significant memory stall cycles. Therefore, 
it leads the significant SCPI value in a minor-GC. This 
observation verifies the hypothesis: a minor-GC is highly 
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Figure 4. The global behavior of the JVM 
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Figure 7. The engaged/disengaged timing of the major-GC and 
minor-GC 
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Figure 5. The global behavior of the VM_thread 
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Figure 6. The behavior of the gc_thread 
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related to the memory phase 
As a brief summary, the phase of the major-GC is con-

sidered as the execution phase due to the behavior of a 
vm_thread. Furthermore, the end of a major-GC, which 
is the period for the gc_thread collects garbage, should 
be considered as the memory phase. On the other hand, 
a minor-GC should be considered as the memory phase 
due to the behavior of the gc_thread. It is worth noting 
that the engaged and disengaged timing of the major-GC 
and minor-GC can be observed with the run-time infor-
mation which is already available in a JVM. Thus the 
accurate phase determination can be reached to develop 
the power-saving strategy of a JVM. 
 

3.5 The Study of JVM's Software Components 
with multiple cores 

 
In general, the modern multi-threaded applications 

can take advantage by the use of multiple core proces-
sors. However, due to the interaction of the software and 
hardware, such as locks, task scheduling, parallelism 
and cache locality. A multi-threaded application might 
not take advantages fully with all available cores. More-
over, the interaction might lead the to the energy wast-
age. For example, the poor task scheduling might lead to 
that one processor core waits for another core, and then 
results in the energy wastage due to the idle waiting of 
the processor core. 
In order to analyze the interaction of software and 

hardware with the use of multiple cores, two multi-
threaded benchmarks, Hsqldb and Xalan, are examined 
with the multi-core processor (four cores) in this experi-
ment. Due to the finding in Section 3.4, the garbage col-
lection could be the power-saving capability of a JVM, 
thus the interaction of major-GC and minor-GC are de-
tailed further in this experiment. 
The experimental results of two multithreaded 

benchmarks are shown as follows. For Hsqldb bench-
mark, the number of instruction retired, the SCPI value 
and engage/disengage timing of GC are shown in Fig-
ures 8 (a) to (c). For Xalan benchmark, they are shown in 
Figures 8 (d) to (f). The time scale (X-axis) is the same in 
these figures. The analysis of the experimental results is 
as follows 
First, compared with the number of Instr_Ret and the 

engage/disengage timing of the major-GC in Figures 8 
(a) to (c), the significant number of Instr_Ret are ob-
served in only one core. On the other hand, the very few 
number of Instr_Ret is observed with the other cores at 
the same time. Furthermore, the same experimental re-
sult of major-GC is observed with the use of Xalan in 
Figures (d) to (f). The reason which leads to this observa-
tion is detailed as follows 
The use of locks for the JVM’s global work leads to 

this observation in a major-GC. In a major-GC, the 
vm_thread uses the lock mechanism to avoid the heap 
modification by the other JVM threads. Thus the status 
of objects in a heap can be preserved. With the use of the 
lock, the vm_thread can visit the stacks of Java_threads 
and the heap to find the inaccessible objects. However, 

the use of a lock might lead the other cores are idle. That 
seems the reason which leads to the specific observation 
of the major-GC, only one core works and the other 
cores are idle 
Secondly, the low values of SCPI are observed only 

with the core which is doing the major-GC. This obser-
vation is due to the behavior of a vm_thread in a major-
GC. With marking inaccessible objects, the status of ob-
jects are changed, but not be collected. Thus the few 
memory access stalls are generated. That shows the core 
which a vm_thread executes with is highly related to 
execution phases. On the other hand, the extreme high 
SCPI values could be observed in the other idle cores. 
This observation details the behavior of a major-GC fur-
ther with the use of multiple cores. In a major-GC, the 
core which a vm_thread works with is considered as the 
execution phase, and the other cores are related to idle 
phases. 
Finally, in a minor-GC, the high numbers of Instr_Ret 

and the high SCPI value are observed in all cores. The 
high number of Instr_Ret indicates that the garbage col-
lector exploit all available cores in a minor-GC. The ob-
servation of high SCPI values verifies that the minor-GC 
is highly related to memory phases. Since the high num-
ber of Instr_Ret can be observed in all available cores, 
the observation validates that the parallel garbage collec-
tor works during a minor-GC. All cores work in a minor-
GC, and all cores are related to the memory phase. 
These findings of garbage collectors provide the 

power-saving capability of a JVM. First, the CPU fre-
quency of the idle cores in a major-GC should be mini-
mized to reduce energy wastage since they are idle wait-
ing for the lock. It is worth noting that the CPU fre-
quency tuning would not reduce the system perform-
ance since the frequency tuning is only applied on the 
idle cores. Secondly, the CPU frequency the specific core, 
which a vm_thread executes with, should be maximized 
to maintain the performance of garbage collection in a 
major-GC. Thirdly, the CPU frequency should be maxi-
mized for all available cores in the garbage collection, 
which is observed at the end of a major-GC. Finally, the 
frequency of all available cores should be minimized in a 
minor-GC due to that minor-GC is highly related to 
memory phases. 
 

3.6 The Summary of Studies 

As a brief summary, the findings of this study are 
shown as follows. First, only one core work in the major-
GC, and its phase is the execution phase. Secondly, the 
other cores in a major-GC are idle phases. Finally, all 
cores can work in a minor-GC and their phases are 
memory phases. Moreover, the beginning and ending of 
these phases could be observed by the run-time informa-
tion of a JVM before the phases are actually changed. 
Based on these findings, the power-saving algorithms 
and implementation of the Green Virtual Machine (GVM) 
approach are proposed in the next section. 
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(a) The number of instruction retired of Hsqldb                                 (d) The number of instruction retired of Xalan  

(b) The SCPI values of Hsqldb                                                               (e) The SCPI values of Xalan 

 
 
 
 
 
 
 
 
 
 
 
 
(c) The GC engaged/disengaged timing of Hsqldb                                     (f) The GC engaged/disengaged timing of Xalan 

 
Figure 8. The behavior of Hsqldb and Xalan with the use of four cores 

4 The power-saving strategy of a JVM 

 
Based on the finding above, the power-saving strategy 

of a JVM, also known as Green Java virtual machine 
(GVM), is proposed in this section. The GVM power-
saving approach is combined with two power-saving al-
gorithms, major-GC and minor-GC. In addition, the ad-
vantages of GVM power-saving approach are also dis-
cussed in this section. 
 

4.1 The algorithms of the power-saving strategy 

 
Based the phase analysis of garbage collectors, the 

GVM power-saving algorithms are proposed to exploit 
the run-time behavior in a JVM. Due the different behav-
ior of the minor-GC and major-GC, the GVM algorithms 
are constructed by two parts as follows. 

First, the power-saving capability of a JVM, the major-
GC, is used to develop the major-GC power-saving algo-
rithm. Based on the experiment result, a major-GC can be 
considered as a combination of the execution phase, the 
idle phase and the memory phase. The execution phase is 
observed in the core which a vm_thread executes with, 
and the idle phases are observed in the other cores. Fur-
thermore, in the end of a major-GC, all available cores are 
becoming the memory phase since the garbage is col-
lected. 
The CPU frequency of the specific core, which the 

vm_thread executes with, should be maximized to main-
tain performance of a major-GC. The CPU frequency of 
idle cores should be minimized to reduce energy wastage 
without performance degradation. In the end of a major-
GC, the CPU frequency of all available cores should be 
minimized since the memory phase. Based on the find-

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008
 Core 0

 Core 1

 Core 2
 Core 3

T
h
e

 N
u
m

b
e

r 
o
f 
In

s
tr

u
c
ti
o
n
s
 R

e
ti
re

d

Time (second)

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

300

350

T
h
e
 S

C
P

I 
v
a

lu
e

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Major-GC

 

Time (second)

Engaged

Disengaged

Minor-GC

Time (second)

Disengaged

 

Engaged

18.0 18.5 19.0 19.5 20.0 20.5

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

1.40E+008

1.60E+008

1.80E+008

T
h
e
 N

u
m

b
e
r 

o
f 
In

s
tr

u
c
ti
o

n
s
 R

e
ti
re

d

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008
 Core 0

 Core 1

 Core 2
 Core 3

T
h
e

 N
u
m

b
e

r 
o
f 
In

s
tr

u
c
ti
o
n
s
 R

e
ti
re

d

Time (second)

18.0 18.5 19.0 19.5 20.0 20.5

0.0

0.5

1.0

1.5

200

220

T
h
e
 S

C
P

I 
v
a

lu
e

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

18.0 18.5 19.0 19.5 20.0 20.5

18.0 18.5 19.0 19.5 20.0 20.5

Major-GC

Disengaged

Engaged

 

Time (second)

Minor-GC

Disengaged

 

Time (second)

Engaged



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.:  TITLE 9 

 

ings, the major-GC power-saving algorithm is proposed 
in Algorithm 1. 

In the major-GC power-saving algorithm, the en-
gage/disengage timing of a major-GC can be observed by 
the run-time information of a JVM. Moreover, the specific 
core (Cv), which the vm_thread executes with, also can be 
observed by the run-time information of a JVM. In the 
period of a major-GC, the CPU frequency of Cv is maxi-
mized to maintain the performance. On the other hand, 
the CPU frequencies of the idle cores (Ci) are minimized 
to reduce the energy wastage of processors. When the 
vm_thread finish the finding of the inaccessible objects, 
the CPU frequency of all available cores (Ca) should be 
minimized since the garbage collection is the memory 
phases. After a major-GC, all cores work for application 
normally, thus the CPU frequencies of Ca should be 
maximized to maintain system performance. It is worth 
noting that the CPU frequency tuning would not reduce 
the system performance since the tuning only applies on 
idle cores (Ci). 

 
Another power-saving capability of a JVM, the minor-

GC, is used to develop the minor-GC power-saving algo-
rithm. Based on the study above, a minor-GC is consid-
ered as a memory phase for all available cores. Based on 
this finding, the minor-GC power-saving algorithm is 
proposed in Algorithm 2. 

In the minor-GC power-saving algorithm, the en-
gage/disengage timing of a minor-GC can be observed by 
the run-time information of a JVM. Due to the minor-GC 
is highly related to memory phases, the CPU frequency of 
all available cores should be minimized to wait the mem-
ory access. Thus the energy wastage can be reduced in a 
minor-GC. 
Based on the observation in Figures 8(e) and 8(f), the 

major-GC and minor-GC would not be activated at the 
same time. That means the period of the major-GC and 
minor-GC are not overlapped. Therefore, the major-GC 
and minor-GC power-saving algorithms can be integrated 
as the GVM power-saving algorithm in Algorithm 3. 

 
The GVM power-saving algorithm can be considered 

as the integration of Algorithms 1 and 2. The GVM 
power-saving algorithm can take advantages from the 
minor-GC and major-GC. All GVM power-saving algo-
rithms, including major-GC, minor-GC and GVM, are 
implemented with two widely used JVMs, Sun's Hotspot 
and Jikes RVM. Instead of Sun's Hotspot, which is the 
widely deployed commercial JVM, Jikes RVM can be con-
sidered as an academic JVM for research. Based on the 
experimental results with these two JVMs, the power-
efficiency of proposed GVM approach can be proved. 
The implementation of the GVM power-saving ap-

proach is illustrated in Figure 9. This, technically, in-
volves (1) instrumenting the JVM of the Application serv-
ers for detecting the idel, execute and memory phases, 
and (2) the procedure of adjustment the CPU frequencies 
of the device/server. 

 

Algorithm 2. The power-saving algorithm for Minor-GC 

 

Algorithm 1. The power-saving algorithm for Major-GC 

The GVM Power-Saving Algorithm:

for each Major-GC event Ema, issued by the JVM process 

if Ema = Major-GC_START then

for the core which vm_thread executes CPU Cv

Cv := maximum frequency;

for the other cores CPU Ci

Ci := minimum frequency;

else if Ema = GC_START then

for each available CPU Ca

Ca := minimum frequency;

else if Ema = Major-GC_FINISH then

for each available CPU Ca

Ca := maximum frequency;

end if

for each Minor-GC event Emi, issued by the JVM process 

if Emi = Minor-GC_START then

for each available CPU Ca

Ca := minimum frequency;

else if Emi = Minor-GC_FINISH then

for each available CPU Ca

Ca := maximum frequency;

end if
 

Algorithm 3. The power-saving algorithm 
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The former corresponds to the timing informing mod-
ule, which is added for observing and gathering the re-
quired GC information, e.g. the timing information about 
the start and the end of a major-GC or minor-GC phase. 
The latter is realized by the frequency adjustment module, 
which is embedded in the kernel for efficiently adjusting 
the CPU frequencies (as requested). All the requests are 
from the timing informing module. It is also worth noting 
that the frequency adjustment module includes in-line 
assembly codes that can directly adjust CPU frequencies 
by accessing some particular registers of the CPU. Thus, 
compared with the method based on user-level calls, the 
way we adjust CPU frequencies is more efficient; the re-
quired CPU cycles for the frequency adjustment are 
minimized. 

 
4.2 The advantages of proposed GVM power-

saving strategy 

 
In order to detail the advantages of the GVM power-

saving approach, the further analysis are proposed. The 
advantages of GVM approach, which include slight over-
heads of phases detections, precise phases timing, accu-
rate phase determinations and performance maintenance, 
are analyzed in this section. 
First, phases detecting plays an important role in the 

most of power-saving approaches. Based on the results of 
phase detections, the appropriate CPU frequencies could 
be applied to reduce energy wastage. However, the phase 
detections usually lead to the overheads, and reduce the 
system performance. For example, the requirement of 
additional profiling work could be considered as the 
overhead in profiling approaches. Moreover, the per-
formance monitor accesses also lead to overheads of 
power-saving approaches by performance monitors. 
It is worth noting that the phase detections of GVM 

power-saving approaches are based on the run-time in-
formation which is already available in a JVM. Such as 
the engage/disengage timing of the major-GC and minor-
GC. Moreover, the particular phases of the major-GC and 
minor-GC are constant and already observed. Thus the 
phase detections would not lead to the overhead in the 
GVM power-saving approach. 
Secondly, the inaccurate timing of phases is a disad-

vantage of power-saving approaches with the use of per-

formance monitors. The particular phase is identified 
only after the actual behavior already appeared in the 
performance monitors. It is always one step behind. The 
inaccurate phases timing could lead to unnecessary per-
formance degradations and the energy wastage. 
On the other hand, the period of garbage collection can 

be marked by the engage/disengage time of the garbage 
collector precisely. The timing can be used to determine 
the phase of the JVM. Moreover, Due to the middle-ware 
features of a JVM, the phases can be observed before they 
are arisen on hardware actually. Thus accurate phase tim-
ing can be reached by the GVM power-saving approach. 
Thirdly, in the profiling power-saving approach, the 

observed phases could be affected by the other tasks in 
the run-time. It leads to that the observed phase is not 
identical to the profiled phase. The inaccurate information 
of phases might lead to inappropriate frequency tuning, 
and then results in the unnecessary performance degrada-
tions and energy wastage. 
On the other hand, the accurate phase determination 

can be reached by the GVM power-saving approach. 
Since GVM power-saving algorithms focus on the phase 
of the garbage collector, which is related to a JVM itself 
instead of the application. The phases of garbage collec-
tors are stable even with the use of different application. 
Therefore, the phase determination of GVM would not be 
affected by applications. The unnecessary performance 
degradation and energy wastage can be avoided. 
Finally, the advantages of GVM power-saving ap-

proach improve the problem of the other power-saving 
approaches, performance degradations. Due to the un-
avoidable overheads of phase detections, inaccurate 
phases timing and inaccurate phase determinations, the 
system performance usually is degraded. However, the 
major-GC power-saving algorithm proposes the power-
saving solution with the well performance maintenance. 
Thus the major-GC algorithm could be the power-saving 
solution for a web application server which highly re-
quires performances and the quick response. 
 

5 The experimental results 

In this section, the performance of the GVM power-
saving approach is examined and compared with the 
other power-saving techniques. Five widely used Java 
multi-threaded benchmarks are used to evaluate the per-
formance of power-saving techniques with the use of 
Sun's Hotspot. Furthermore, two multi-tier web applica-
tion benchmarks, SPECjAppServer2004 and RUBiS, are 
used to validate the GVM's performance with two JVMs, 
Sun's Hotspot and Jikes RVM. Based on these experi-
ments results, the GVM's performance could be examined 
and clarified. 
It is worth noting that the power consumption cannot 

exactly indicate the power-efficiency, because the lower 
frequency settings (of CPUs) might significantly decrease 
the system performance. Hence, another measure called 
energy-delay product (EDP) is used here to evaluate the 
power-efficiency. The EDP value is defined as the product 
of the power consumption and the execution time 
squared. Since this measure considers both energy and 

 

Figure 9. The implementation of proposed strategy 



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.:  TITLE 11 

 

delay simultaneously, the EDP value can better reflect the 
power-efficiency. In general, a lower EDP value indicates 
a better power-efficiency. 
 

5.1 The Comparing of Power-saving Techniques 

 
In order to compare the performance of GVM power-

saving approach with the other power-saving techniques, 
six power configurations are proposed to examine the 
performance and power consumptions of power-saving 
technologies. The experimental power configurations are 
illustrated as follows. 
First, two static CPU frequencies, the maximum and 

minimum frequencies, are used as the control group in 
experiments. The two static configurations are mapped to 
the performance and power-saving governors in Linux. In 
general, the use of maximum frequency leads to the best 
performance and the use of minimum frequency leads to 
the worst performance. Moreover, the use of minimum 
frequency usually leads to the significant power con-
sumption due to the long executing time. 
Secondly, two power-saving algorithms of the GVM, 

the major-GC power-saving algorithm (Algorithm 1) and 
minor-GC power-saving algorithm (Algorithm 2), are 
used to examine their performance. Furthermore, the 
other two configurations, respectively, refer to the Linux 
power-saving governors, ondemand and conservative. 
These two power-saving governors would adjust fre-
quencies based on observing the CPU workload. The use 
of ondemand governors normally switches to the highest 
frequency immediately when the CPU load is high. It can 
thus maintain the system performance well, while it leads 
to more energy wastage. On the other hand, the use of 
conservative governors increases frequency step by step. 
Thus, slight performance degradation and less energy 
wastage would be observed. These two Linux power-
saving governors are popular and actually could be used 
to represent the performance monitor-based power-
saving approaches. 
In order to compare the combine of ondemand and 

conservative, a merge governor, Smartass, is evaluated. 
Smartass could be considered as a merge of the best 
properties of the opposite of conservative and ondemand. 
This governor attempts to balance performance with effi-
ciency by focusing on an ideal frequency. 
All available cores (four cores) are used in these ex-

periments, and the CPU frequency of each core can be 
adjusted independently. The experimental result of sys-
tem performance, power consumptions and EDP are 
shown in Figures 10 to 12. The results of maximum CPU 
frequency have normalized to 1.0, then, for each power 
configuration, the results are normalized to the results of 
maximum frequency. 
First, it is observed that only the use of the major-GC 

power-saving algorithm maintains the similar perform-
ance as the use of the maximum frequency in Figure 11, 
only two percent degradation. Comparing with the 10 to 
16 percent performance degradation of the conservative 
and ondemand approaches, the major-GC power-saving 
algorithm can maintain system performance better. 

In addition, with the major-GC power-saving algo-
rithm applying, the significant energy reduction (15 to 29 
percent) is observed in Figure 12. The reduction of power 
consumption of the major-GC algorithm is higher than 
the reduction of the conservative and ondemand ap-
proaches (10 to 16 percent). Moreover, in Figure 13, the 
use of the major-GC algorithm leads to the lowest EDP 
value in the most of benchmarks (Lusearch is the excep-
tion). These observations show that the major-GC power-
saving algorithm can reduce energy wastage significantly 
without performance degradations, and leads to the low-
est value of EDP. 

Secondly, it is observed that the acceptable perform-
ance reduction (three to six percent averagely) is observed 
with the use of the minor-GC power-saving algorithm in 
Figure 11. In addition, the fair energy reduction (15 to 20 
percent) with the use of the minor-GC algorithms could 
be observed in Figure 11. Moreover, in Figure 12, the EDP 
values of the minor-GC algorithm are only higher than 
the EDP values of the use of major-GC algorithm, and 
lower than the conservative and ondemand approaches. 
These observations show that the use of the minor-GC 
algorithm leads to the better performance than the use of 
conservative and ondemand approaches. 

Compared with the major-GC algorithm, it seems that 
the fewer contributions are made by the minor-GC algo-
rithm. However, in some special cases, the minor-GC al-
gorithm shows its importance and cannot be replaced. 
For example, it is worth noting that the use of the major-
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Figure 10. The system performance of various power-saving tech-
niques. 
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Figure 11. The power consumption of various power-saving tech-
niques. 
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GC algorithm cannot reduce the power consumption of 
Lusearch benchmark in Figure 11. Due to the less mem-
ory space requirement of Lusearch, there is no any major-
GC is generated in the run-time. Thus the use of the ma-
jor-GC algorithm cannot reduce any energy wastage in 
this special case. 
On the other hand, the use of the minor-GC algorithm 

leads to 23 percent of the energy reduction with six per-
cent of performance degradations in Lusearch. This ob-
servation shows that a comprehensive power-saving solu-
tion for application servers should be integrated by the 
major-GC and minor-GC algorithms. The integrated 
power-saving approach, the GVM power-saving algo-
rithm (Algorithm 3) should be the comprehensive solu-
tion for application servers. 

Finally, the summary of these experiments is shown as 
follows. The use of the major-GC power-saving algorithm 
reduces the significant power consumption without few 
performance degradation. Based on the statistic, the per-
formance of merge governor, Smartass, is very similar as 
the use of ondemand or conservative among various ex-
perimental setup. The differences are less than 2.5 percent 
on average. However, in some special case, the use of the 
major-GC algorithm might not reduce any energy wast-
age. Thus the comprehensive power-saving solution 
should be integrated by the major-GC and minor-GC al-
gorithms. The integrated GVM power-saving algorithm 
would be examined with the use of web application 
benchmarks in the next section. 
 

5.2 The Validation with the use of the Web 
Application Benchmarks 

 
In order to verify that the use of the integrated GVM 

power-saving algorithm can reach the goal of this study, 
power-saving and performance maintenance of applica-
tion servers. Two widely used web application bench-
marks, SPECjAppServer2004 and RUBiS, and two widely 
used JVMs, Hostspot and Jikes RVM, are used to evaluate 
the performance of the GVM power-saving approach. In 
this experiment, the performance of major-GC algorithm 
(Algorithm 1) and the GVM power-saving algorithm (Al-
gorithm 3) are examined in this experiment. The experi-
mental results of performance, power consumption and 

EDP are shown in Figures 13 to 15. 

In this experiment, the significant advantage of the 
GVM power-saving algorithm is observed in a long-
running environment. With the use of the GVM algo-
rithms, 14 to 23 percent energy reductions among two 
benchmarks could be observed in Figure 13. In addition, 
the performance degradation of GVM algorithms is less 
than four percent in Figure 13. Compared with the 10 to 
16 percent energy reductions and the 8 to 12 percent per-
formance degradation of conservative and ondemand 
power-saving approaches, the better performance with 
the use of GVM power-saving algorithm is verified. 
Moreover, the use of GVM power-saving algorithm leads 
to the lowest value of EDP in Figure 15. Based on the ex-
perimental results, the GVM algorithms can be an effec-
tive and comprehensive power-saving solution for a long 
running web applications server. 

On the other hand, the major-GC algorithm is exam-
ined for the performance maintenance. In Figure 14, only 
two percent performance degradation is observed with 
the use of the major-GC algorithm less than the use of the 
maximum frequency. Compared with the reduction of 
power consumption with the use of GVM algorithm (14 
to 23 percent), the reduction of power consumption of the 
major-GC algorithm is less (15 to 29 percent). However, 
the use of the major-GC algorithm still leads to the second 
low value of EDP in Figure 15. The observations show 
that the performance of the major-GC algorithm is better 
than conservative and ondemand approaches. Moreover, 
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Figure 12. The EDP of various power-saving techniques. 
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Figure 13. The system performance of web application bench-
marks 
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Figure 14. The power consumption of web application bench-
marks 
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due to the well performance maintenance, the major-GC 
algorithm can be an effective power-saving solution for 
some web applications which require short respond in-
tervals. 

Based on the experiment result, the better performance 
of the GVM algorithm is validated than the other power-
saving techniques. The use of run-time information, 
which is already available in a JVM, leads to slight over-
heads and accurate phase detections, and results in sig-
nificant energy reductions and slight performance degra-
dations. Moreover, the performance could be maintained 
well by the use of the major-GC algorithm, and noticeable 
energy reductions can be observed still. Thus the GVM 
power-saving algorithm can be a comprehensive power-
saving solution of a long-running application server, and 
the major-GC power-saving algorithm can be another 
choice when the system performance must to be main-
tained well. 
6 Conclusion 

In this paper, the GVM power-saving approaches are 
implemented and validated. The GVM power-saving ap-
proaches use the run-time information which is already 
available in a JVM to detect phases, and then adjust 
power-levels to reduce energy wastages without intro-
ducing serious performance degradation. The GVM im-
plementations of Sun's Hotspot and Jikes RVM are used 
to evaluate the performance with five multithreaded 
benchmarks, SPECjAppServer2004 and RUBiS. The ex-
perimental results show that GVM approaches could 
reach our goal and lead the lowest value of EDPs among 
other power-saving techniques. 
With the use of full-GC algorithms, the experimental 

results shows that energy wastages reduce in the range of 
18 to 24 percent without performance degradations. On 
the other hand, with GVM algorithms, the significant 
power consumption reductions (25 to 34 percent) could 
be observed with only six percent performance degrada-
tions. It is worth noting that performance of GVM is 
much better than the other power-saving techniques. 
These experimental results show that GVM power-saving 
approaches could be the appropriate techniques on long-
running application servers. 
To the best of our knowledge, GVM approaches pre-

sent one of the first working implementation based on the 
run-time information which is already available in a JVM. 

In the validations with the other power-saving techniques, 
GVM approaches reach the lowest EDP value and well 
performance maintenance. Based on the experiment re-
sults, the proposed GVM approach does achieve the goal 
in this paper, power-saving and performance mainte-
nance at the same time. 

REFERENCES 

[1] Battelle, J., The search: How Google and its rivals rewrote the 

rules of business and transformed our culture. September 8, 

2005, New York: Portfolio Hardcover. 

[2] Worldwide Cloud Applications Market Forecast 2014-2018. 

https://www.appsrunthecloud.com/opinions/index/150#stha

sh.i6u3yp8f.dpuf,  last retrieved Sep, 2014. 

[3] America's Data Centers Consuming and Wasting Growing 

Amounts of Energy, Natural resources defense council 

(NRDC) , last retrieved Spet, 2014. 

[4] Hill, M.D. and M.R. Marty, Amdahl's law in the multicore era. 

Computer, 2008. 41(7): p. 33-38. 

[5] Bianchini, R. and R. Rajamony, Power and energy management 

for server systems. Computer, 2014. 37(11): p. 68-76. 

[6] Herbert, S. and D. Marculescu, Analysis of dynamic volt-

age/frequency scaling in chip-multiprocessors. Proceedings of 

the 2007 international symposium on Low power electronics 

and design, 2011: p. 38-43. 

[7] Isci, C., A. Buyuktosunoglu, and M. Martonosi, Long-term 

workload phases: Duration predictions and applications to 

DVFS. Micro, IEEE, 2005. 25(5): p. 39-51. 

[8] Fornaciari, W., et al., Power optimization of system-level ad-

dress buses based on software profiling. Proceedings of the 

eighth international workshop on Hardware/software codesign, 

2009: p. 29-33. 

[9] Sherwood, T., S. Sair, and B. Calder, Phase tracking and predic-

tion. SIGARCH Comput. Archit. News, 2013. 31(2): p. 336-349. 

[10] Lorch, J.R. and A.J. Smith, Improving dynamic voltage scaling 

algorithms with PACE. Proceedings of SIGMET-

RICS/Performance, 2011: p. 50-61. 

[11] Aydin, H., et al., Dynamic and aggressive scheduling tech-

niques for power-aware real-time systems. Real-Time Systems 

Symposium, 2011: p. 95-105. 

[12] Pillai, P. and K.G. Shin, Real-time dynamic voltage scaling for 

low-power embedded operating systems. Proceedings of the 

eighteenth ACM symposium on Operating systems principles 

2001: p. 89-102. 

[13] Weiser, M., et al., Scheduling for reduced CPU energy. Mobile 

Computing, 1996: p. 449-471. 

[14] Burd, T.D. and R.W. Brodersen, Energy efficient CMOS micro-

processor design. Proceedings of the Twenty-Eighth Hawaii In-

ternational Conference on System Sciences, 1995. 1: p. 288-297. 

[15] Pouwelse, J., K. Langendoen, and H. Sips, Dynamic voltage 

scaling on a low-power microprocessor. Proceedings of the 7th 

annual international conference on Mobile computing and net-

working, 2009: p. 251-259. 

[16] Flautner, K., S. Reinhardt, and T. Mudge, Automatic perform-

ance setting for dynamic voltage scaling. Wireless networks, 

2008. 8(5): p. 507-520. 

[17] Delaluz, V., et al., Dram energy management using sofware and 

hardware directed power mode control. Proceedings of the 7th 

international conference on high performance computer archi-

tecture, 2009: p. 159-169. 

SPECjApp2004
(Hotspot)

SPECjApp2004
(RVM)

RUBiS
(Hotspot)

RUBiS
(RVM)

0.0

0.2

0.4

0.6

0.8

1.0

6

9

 Max Frequency  GVM Major-GC  Conservative
 Min Frequency  GVM Combination  Ondaemon

 Smartass

E
n
e
rg

y
 o

f 
P

ro
d
u
c
t 
(N

o
rm

a
liz

e
d
)

Multi-tier Web Application Benchmarks
 

Figure 15. The EDP of web application benchmarks 
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