
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

An Energy-Efficient Java Virtual Machine
Kuo-Yi Chen, J. Morris Chang and Ting-Wei Hou

Abstract—the power-saving opportunities of long-running application servers which execute on multi-core systems are studied

in this paper. The research goal is to develop an efficient power-saving strategy of application servers with the minimum

performance degradation in cloud environments. The power-saving strategy is based on the run-time information which is

already available in a JVM, the base software component of application servers. Several key findings are revealed through this

study. First, the particular behavior of application servers, also known as phases, can be related to the run-time information of a

JVM. Thus the phases of an application server can be predicted before the applications actually execute on hardware. Secondly,

some particular phases are observed in this study and used to establish the power-saving strategy, such as memory phases

and execute phases. Finally, a new finding of idle phase is proposed to reduce significant energy wastage without performance

degradations. Based on these findings, a set of power-saving algorithms is proposed and implemented with two widely used

JVMs, Sun's Hotspot and Jikes RVM. With the experiments of five multi-threaded benchmarks and two web application

benchmarks, the use of proposed power-saving strategy leads to the lowest value of EDP among the other power-saving

techniques, and the performance degradation is well below six percents.

Index Terms—Energy efficiency; Java Virtual Machine; Application servers; Multi-core systems; Multi-threaded applications.

—————————— � ——————————

1 INTRODUCTION

n recent years, web applications have become a popu-
lar choice for service providers and already show their
importance in the global marketplace. For example, a

suite of web applications (e.g, E-mail, Document process-
ing and File storages) was developed by Google has al-
ready influenced the use of the Internet [1]. The software
in cloud environments that grants web applications to be
served via the Internet is referred to as application servers.
Industry market watchers expect the revenue of applica-
tion servers could reach approximately 67 billion dollars
by year 2018 [2].
With the trend of energy saving and carbon reduction,

the energy wastage of long-running application servers is
becoming an important issue. For example, while applica-
tion servers tend to co-locate with data centers, the an-
nual data center energy consumption in US is estimated
to grow to over 140 billion kWh at a cost of $13 billion by
2020 [3]. Furthermore, the industry trend is toward inte-
grating multiple cores on a chip [4]. As a result, multi-
core processors are widely deployed on servers. The
power consumption of multiple processor cores stresses
the energy wastage issue of application servers.
In order to reduce power consumption of a long-

running application server, the energy wastage of proces-
sors is highlighted. Since the processors consume the
most of energy in a server platform [5]. The well-known
power-saving technique is called the Dynamic Voltage and
Frequency Scaling (DVFS), which is available in modern
processors [6]. Many studies are based on the DVFS tech-
nique to adjust the voltage and frequency of processors to
reduce CPU’s power consumption [7]. These researches

can be classified into two major groups, profiling and the
use of performance monitors.
The profiling approach relies on the analyses of appli-

cation behavior first, and then, uses this information to
adjust frequencies of processors [8]. Due to the additional
cost of code analyses and special instruction insertion,
profiling approaches is rarely deployed on a system
which requires quick responses and high performance,
such as application servers.
On the other hand, the performance monitor is a set of

registers in processors, which can be used to obtain hard-
ware events. The observation of phases can be used to
adjusted processors’ frequency to save energy [9]. How-
ever, the use of performance monitors has limitations.
First, phases only can be observed after hard-ware events
are appeared in performance monitors. It is always one
step behind. Secondly, the periods of a phase cannot be
observed precisely. The actual start/end timing of a given
phase is not known.
In order to improve the issues of profiling and the use

of performance monitors, our motivation is to detect the
phases of application servers precisely with the run-time
information of the Java Virtual Machine (JVM), which is
the base software of application servers. The instructions
of Java web applications, also known as the bytecodes,
have to be interpreted by the JVM, and then can be exe-
cuted on the hardware. This feature leads a capability to
observe the phase of application servers before the run-
time behavior is actually changed.
The experimental results show that the use of pro-

posed power-saving strategy leads to the significant en-
ergy reduction (14 to 23 percent) with the use of long-
running application server benchmarks, which is better
than other power-saving techniques (10 to 16 percent). It
is worth noting that the slight performance degradation
(four percent) is observed with the use of proposed strat-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Kuo-Yi Chen is with Department of CSIE, National Formosa University,
Taiwan. E-mail: Kuoyichen@nfu.edu.tw.

• J. Morris Chang is with the Electrical Engineering Department, Iowa State
University, Ames, IA, 50010. E-mail: morris@iastate.edu.

• Ting-Wei Hou is with Department of Engineering Science, National Cheng
Kung University, Tainan, Taiwan. E-mail: houtw@mail.ncku.edu.tw.

I

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

egy, which is also better than other power-saving tech-
niques (8 to 12 percent). The experimental result shows
can reach the goal of this study.
In the age of cloud computing, the application servers

play important roles both in cloud and mobile computing.
Such as weather-forecasting, IM service, map service and
social network service, application servers have to per-
formance 24x7 stably. As an application server that draws
500 W consumes 0.5 kWh actively [50]. There is 4380 kW
was consumed by this server per year. It is worth noting
that Amazon deployed over 1.5 to 2 million servers glob-
ally based on a conservative estimation in 2015 [51]. As-
suming the proposed power-saving technology saves 15
percent energy for each server, and then 976,000 mega-
watts, which is equal to 81 Fort Calhoun nuclear power
plants in Nebraska, could be saved per years. On the
other hand, the proposed power-saving technology could
be used to develop better power-performance balance
algorithm for devices which is powered by virtual ma-
chines, such as Dalvik VM of Android systems.
This paper is organized as follows. First, the run-time

behaviors of JVM’s software components are analyzed
with the use of a single core to validate its phases. Sec-
ondly, the run-time behaviors of JVM’s software compo-
nents are studied with the use of multiple cores to detail
their interaction. Thirdly, the particular phases, such as
the execution phase, memory phase and idle phase, are
analyzed to observe the power-saving capability. Finally,
based on the study of JVM’s software components, the
power-saving strategy is proposed and examined.

2 BACKGROUND AND RELATED WORK

This chapter describes the terminology and definitions
which relate to application servers, JVM, garbage collec-
tion and the current power saving technology. It is worth
noting that the term, application servers, is referred to
Java-based application servers in this study.

2.1 The Structure of Application Servers

In order to reach the requirements of security and
portability, web applications are usually hosted on the
application server with Java techniques. The application
server can be considered as a container of various types of
web applications, such as Servlets, Enterprise JavaBeans
(EJB) and JavaServer Pages (JSP). These web applications
use application servers as an interface to exploit external
resources, such as the hardware, network and databases.
The structure of a Java-based application server is

shown in Figure 1. The libraries of Java 2 Enterprise Edition
(J2EE) provide the support for web applications. More-
over, the JVM of Java 2 Stand Edition (J2SE) is used to in-
terpret the bytecode of web applications to machine codes,
and then exececute them on hardware. It is worth noting
that an application server is executed with a JVM instance.
In order to exploit the run-time information which is
available in a JVM to reduce the energy wastage, the JVM
behavior is studied in this research.

2.2 The Structure of Java Virtual Machines

In a JVM, the garbage collector is used to collect inac-
cessible objects, which are considered as the garbage. The
high latency of memory access usually leads to CPU wait-
ing for the results from the memory. The energy is con-
sumed by the waiting CPU, and system performance is
not improved. Thus the phase of garbage collections
might be a power-saving capability of a JVM. The struc-
ture of a JVM is shown in Figure 2

Based on the analysis of JVM’s software components,
we hypothesize that the behavior of the vm_thread and the
garbage collector of the JVM could be the power-saving
capability of application servers. This hypothesis will be
verified with the further behavior analysis of vm_thread
and the garbage collector.

2.3 Related works

As hardware components are growing into more
power-hungry than ever, the power consumption of the
long-running servers is becoming an interesting topic.
Recent studies [10-12] have demonstrated that the power
consumption could be retrenched by applying the lower
power-level on the particular hardware component.
Moreover, due to the significant energy demands of CPU
in server systems, many studies focused on reducing
power consumption of CPU [5]. Weiser et al. [13], have
demonstrated the use of Dynamic Voltage Scaling (DVS) to
reduce energy wastage of CPU. Further studies [14-16]
explored the performance of DVS techniques in the gen-

Linux Windows Others

Java Libraries (J2SE API)

Just-in-Time Compiler VM Management

Bytecode Interpreter Garbage Collectors

J2SE Libraries

Deployment Technologies

Platforms

JVM

Java Languages (Applications)

JRE

JDK

Figure 2. The structure of Java virtual machines

Application Servers

Application
Client Container

Application
Client

Web
Container

EJB
Container

JSP Servlet EJB

J2EE Technologies and Libraries

J2SE Technologies

Figure 1. The structure of a Java application server

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 3

eral-purpose and real-time systems.
It is worth noting that there are more approaches to

reduce the power-saving of a cloud/data center. Such as
the studies of power-saving techniques on data centers
and content delivery networks [51-52]. These studies
show the distributed databases architecture has highly
potential to reduce power wasting. The use of virtualiza-
tion technology also leads to significant power saving [53].
With load-aware scheduling, the energy management
could be more efficiency [54-56]. However, these ap-
proaches required more coordination between various
servers, thus the side effect evaluation is required.
These studies put emphasis on the methodologies of

phase observations. The information of applications’
phases can be used to adjust the power-level of the objec-
tive system, and then reach the goal of power-saving. The
methodologies of phase observations can be classified
into two major groups, the profiling and the use of per-
formance monitors.
There are many power-saving studies which are based

on the profiling methodology. Delaluz et al. [17] and Hsu
et al. [18, 19] use the compiler-directed profiling approach
to reduce power consumption. The phases-transition in-
structions of particular power-levels are inserted into bi-
nary codes of applications based on the offline profiling.
However, the additional profiling work leads to the

unavoidable overhead. In addition, the compiler-directed
profiling only works with a single application at a time. In
run-time, other processes might affect the system status,
and reduce the profiling accuracy of the objective applica-
tion. It leads to either less efficiency or great overheads of
profiling approaches in multi-tasking and multi-cores
systems. Instead of the additional work of the profiling,
our approaches use the run-time information which is
already available in virtual machines. Thus the overheads
of phase detections could be limited.
On the other hand, the phase detection by performance

monitors is widely used in industries and researches. The
information of performance monitors can be observed by
the run-time statistics, built-in hardware registers and
external sensors. The use of run-time statistics [20-23],
such as the processor usage, is a popular approach to re-
duce energy wastage. Some studies use performance
counters, a set built-in registers of CPUs, to detect the
phase and adjust the power-level [24, 25].
In addition, the use of external sensors, such as the

thermal probe, to observe the heat generation and adjust
the power-level is also a popular approach [26-28]. Some
studies use a group of hardware registers, such as the
numbers of stall cycles and retired instructions, to detect
the phase and adjust the power-level [29-31]. Moreover,
some studies use the information of hardware registers to
improve task scheduling, and reach the goal of power-
saving [32, 33]. Due to the variations of performance
monitors only can be observed after the phase is changed,
thus the possibility of energy wastage and performance
degradations could be remained by this approach. In or-
der to eliminate this possibility, the beforehand phase
detection is proposed in proposed approach. The phases
could be observed precisely by the run-time information

which is already available in a JVM, before they actually
change. The precise information of phases could be used
to adjust appropriate frequencies, and then reduce the
most of energy wastage with performance maintenance.
Compared with the traditional power-saving ap-

proaches which are mentioned as above, the power-
saving approaches which are based on the use of virtual
machines (VMs) are rarely demonstrated. Fries et al. [34]
propose an approach to find an optimizing placement of a
group of VMs on multiple hardware platforms to reduce
the energy cost. An online method is proposed to config-
ure the configuration of VMs and reduce the number of
physical hosts [35]. The dynamically rescheduling is pro-
posed to collocate processing heterogeneous workloads of
VMs [36]. However, the phase detections of these ap-
proaches are based on the use of performance monitors.
Thus these approaches cannot detect phases as accurately
as the use of GVM approaches.

3 THE ANALYSIS OF JVM SOFTWARE

COMPONENTS

In order to reach the goal of power-saving by the run-
time information which is available in a JVM, the experi-
ments are proposed to analyze the behavior of JVM's
software components. The experimental steps are shown
as follows. First, the setup of experiments is detailed. Sec-
ondly, JVM's software components are analyzed with the
use of a single core. Thus the behavior of each JVM's
software component could be observed separately. Fi-
nally, the interactions of each JVM's software component
are studied with the use of multiple cores. Thus the inter-
action between each component is detailed. Based on ex-
perimental results, the behavior of JVM's software com-
ponents is clarified to develop the power-saving strategy.

3.1 The setup of experiments

All the experiments are based on a server with the
Q6600 processor, an Intel quad-core CPU. The frequency
of each core is allowed to be adjusted independently. The
four available frequencies of the Intel Q6600 are 2.4Ghz,
2.13Ghz, 1.87Ghz and 1.60Ghz. The Fedora Core 14 with
kernel version 2.6.35 and Sun's Java System Application
Server 9.1 are used as the operating system and the appli-
cation server in these experiments.
In order to evaluate the performance of various power-

saving approaches, the appropriate technique to measure
the power consumption of processors is important. In
general software approaches, such as dynamic power
measurement of CMOS circuits, the power consumption
of a CPU is expressed as the square value of voltage plus
frequency of each core. However, only dynamic power
consumption is measured by the software approach. Due
to the issue of leak current, the static power consumption
is becoming significant in modern processors [37]. The
lack of static power measurement might result in the in-
accurate evaluation of CPU power consumption [38].
In order to improve this issue, a new hardware ap-

proach is proposed [39]. Two accurate digital power me-
ters are used to measure the power consumption of proc-

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

essors by the current and voltage variation of a special
electronic socket, as known as Voltage Regulator Module
(VRM) [40], which is integrated on the motherboard to
provide power to main processors. The VRM is consisted
by several converters in parallel and usually has special
controls that respond to signals from the processor, such
as Voltage Identification Code (VID). It is worth noting that
the output voltage of the VRM is varied based on the de-
mand of processors.

3.2 Multi-threaded Java Benchmarks

In order to approximate the multi-threading feature of
web applications, five widely used multi-threaded Java
benchmarks are examined in this study. They are Eclipse,
Hsqldb, Lusearch and Xalan from the Dacapo benchmark
suit [42], and SPECjbb2005 benchmarks [43]. These multi-
threaded benchmarks perform various types of work-
loads to present the features of web applications.
Moreover, in order to validate the performance of pro-

posed power-saving approaches with the use of applica-
tion servers, two widely used web application bench-
marks, SPECjAppServer2004 and RUBiS, are used in ex-
periments. SPECjAppServer2004 [44] uses a large and
representative sample of J2EE APIs to evaluate the per-
formance of the individual system. RUBiS [45] is an on-
line auction site modeled after e-Bay. The experimental

results of SPECjAppServer2004 and RUBiS benchmarks
are used to represent the performance and power con-
sumption of the experimental application server, Sun's
Java System Application Server 9.1.

3.3 The Behavior Analysis of the Garbage Collector

Due to the higest market share of Hotspot JVM, a state-
of-the-art Hotspot JVM, shipped with OpenJDK 1.7 [46],
is used in the experiments. With the use of Hotspot JVM,
the parallel garbage collection is also referred to as the
throughput collector. It uses a parallel version of the
young generation collector. The old (tenured) generation
is still cleaned with the default collector. On the other
hand, the concurrent garbage collector is also referred to
as the concurrent low pause collector. It collects garbage
in the old (tenured) generation concurrently to executing
the application.
It is worth noting that the use of various heap sizes

could lead to significant effect when the NewRatio tech-
nique is applied. The size of the heap could determine the
frequency of collection and affect the locality of both old
and young objects. For example, the use of bigger heap
could reduce the frequency of collection. On the other
hand, the time consumption of each collection will in-
crease due to more objects have to be collected in the heap.

Figure 3. The time consumption of major/minor GCs with the use of various numbers of processor cores

The configuration of garbage collections is based on
the default settings in the HotSpot JVM, in which the

used garbage collector is a generational garbage collector.
The garbage-collected space is divided into two genera-

1.6 1.8 2.0 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n

su
m

p
tio

n
 o

f
th

e
 m

a
jo

r
G

C
 (

N
o
rm

a
liz

ie
d

)

CPU Frequency

 1 Core
 2 Cores
 4 Cores

1.6 1.8 2.0 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n

su
m

p
tio

n
 o

f
th

e
 m

a
jo

r
G

C
 (

N
o
rm

a
liz

ie
d

)

CPU Frequency

 1 Core
 2 Cores
 4 Cores

1.6 1.8 2.0 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n

su
m

p
tio

n
 o

f
th

e
 m

a
jo

r
G

C
 (

N
o
rm

a
liz

ie
d

)

CPU Frequency

 1 Core
 2 Cores
 4 Cores

(a) Time consumption of the Hsqldb benchmark
of major-GCs

(b) Time consumption of the Xalan benchmark
of major-GCs

(c) Time consumption of the SPECjbb2005 benchmark
of major-GCs

1.6 1.8 2.0 2.2 2.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 o

f
th

e
 m

in
o
r

G
C

 (
N

o
rm

a
liz

ie
d
)

CPU Frequency

 1 Core
 2 Cores

 4 Cores

1.6 1.8 2.0 2.2 2.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 o

f
th

e
 m

in
o
r

G
C

 (
N

o
rm

a
liz

ie
d
)

CPU Frequency

 1 Core
 2 Cores
 4 Cores

(f) Time consumption of the SPECjbb2005 benchmark
 of minor-GCs

(e) Time consumption of the Xalan benchmark
of minor-GCs

(d) Time consumption of the Hsqldb benchmark
of minor-GCs

1.6 1.8 2.0 2.2 2.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e
 c

o
n

su
m

p
tio

n
 o

f
th

e
 m

in
o
r

G
C

 (
N

o
rm

a
liz

ie
d

)

CPU Frequency

 1 Core
 2 Cores
 4 Cores

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 5

tions, the young generation and the tenured generation
[47]. The copying collector is used in the young genera-
tion. The young generation is optimized for those objects
with a short lifetime. After several collections, the sur-
vived objects are moved to the tenured generation since
these objects have a longer lifetime. In the tenured gen-
eration, the mark-sweep-compact collector is used to
collect the garbage concurrently [48].
In order to verify our hypothesis, the experiments are

proposed to clarify the hypothesis. In this experiment,
three multi-threaded benchmarks are used to examine
the time consumption of two main phases of a garbage
collector, the minor garbage collection (minor-GCs) and
the major garbage collection (major-GCs).
In order to detail the behavior of the minor-GC and

major-GC with the use of multi-core processors and dif-
ferent CPU frequency, the experiment is proposed to
examine the time consumption of the minor-GC and
major-GC. The less time consumption of GC indicates
the performance improvement by the use of more cores
or the higher frequency. Based on the experimental re-
sult, the power-saving capability of garbage collectors
can be verified.
The minor-GC time consumption of three multi-

threaded benchmarks, Hsqldb, Xalan and SPECjbb005, is
shown in Figures 3 (a) to (c). It is observed that time con-
sumption of the minor-GC is reduced significantly with
the use of more processor cores. This observation shows
that the gc_threads can take the advantage with all
available multiple processor cores in a minor-GC. That
also indicates that the gc_threads do the parallel collec-
tion. On the other hand, the slight time consumption
change of the minor-GC is observed when the use of
different CPU frequency. This observation shows that
the processor is waiting for the memory accesses, the
objecting moving from the young generation to the old
generation. Since the speed of the memory accesses is
much lower than the speed of the processor, the proces-
sor has to wait for the memory accesses, and results in
the plenty memory stalls. Based on this observation, it
can be assumed that the minor-GC is highly related to
the memory phase rather than the execution phase. It is
worth noting the CPU frequency can be minimized to
reduce the energy wastage during a memory phases
without the significant system performance degradation.
Thus a minor-GC can be considered as a power-saving
capability of a JVM.
The time consumption of the major-GC is shown in

Figures 3 (d) to (f). Instead of the minor-GC, the slight
variation of time consumption is observed when the
number of processor cores is increasing. On the other
hand, the significant time reduction is observed when
the CPU frequency is increasing. The observations show
that the performance of the major-GC is correlated to the
computing power of processors. Thus the major-GC is
highly related to the execution phase than the memory
phase.
Furthermore, the major-GC cannot take advantage

with the use of multiple cores, which can be observed by
the similar time consumption with the use of various

processor cores. When a major-GC is engaged, a lock is
used to guarantees that no other JVM thread is in the
middle of modifying the Java heap. Therefore, the global
work can be accomplished correctly. Since only one JVM
thread can work in the major-GC, the use of multiple
processor cores cannot reduce the time consumption of
the major-GC.
As a brief summary, the minor-GC takes advantage

with the use of multiple cores, but not the increasing of
the CPU frequency. Thus it can be hypothesized that the
configuration of using all available cores and setting
them to the minimum CPU frequency might lead to the
performance maintenance and the energy wastage re-
duction for the minor-GC. On the other hand, since the
major-GC takes advantage with the high CPU frequency
but not multiple processor cores. It can be hypothesized
that the use of a single core with the maximum CPU fre-
quency might lead to high performance and the low
power consumption for a major-GC.
In order to verify the hypotheses, the experiment

which is based on various numbers of processor cores is
proposed in the next section. The behavior of the minor-
GC and the major-GC are analyzed by certain hardware
events particularly. Thus the time consumption and the
power consumption of the garbage collector, which is
the power-saving capability, can be detailed further.

3.4 The Study of JVM's Software Components
with the single core

In order to verify the hypotheses, this experiment is

proposed with the use of a single core in this section to
detail the particular behavior of each JVM's software
component. With the use of the single core, the JVM
works as a single thread application. Thus each JVM's
software component executes sequentially. Therefore,
the interaction of multi-threading and multi-cores could
be avoided, and then the particular behavior of each
JVM's software component can be observed and ana-
lyzed.
In order to detail the particular behavior of each

JVM's software component, the hardware events are
monitored to determin the phases of components. Two
important hardware events, Instr_Ret and
IFU_Mem_Stall, are monitored by accessing the perform-
ance counter which is built in the CPU. Instr_Ret counts
the number of retired instructions and IFU_Mem_Stall
counts the number of stalled cycles while a CPU waits
for results of memory access.
Moreover, a special measure called Stall Cycle Per In-

struction (SCPI) is employed (tracked) to analyze the
phases of the multi-threaded benchmarks. The SCPI is
defined as follows:

where Mem_Stall and Instr_Ret are both the built into
hardware events. Instr_Ret stands for the number of in-
structions retired. Mem_Stall represents the number of

Instr_Ret

Mem_Stall
=SCPI

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the stalled cycles, which reflects the time the CPU needs
to wait for the required input data from memory.
In this experiment, a low value of SCPI is used to in-

dicate an execution phase, since it implies a high CPU
workload. On the other hand, a high value of SCPI is
used to signify a memory phase, which normally implies
the CPU waiting for memory requests and actually the
timing to lower the CPU frequencies.

There are four figures are used to represent the be-
havior of JVM’s software components. The global behav-
ior of a JVM (including all JVM’s software components)
is shown in figure 4. The behavior of the major JVM’s
software components, which are the vm_thread and
gc_thread, are shown in figure 6 and 7. Two measures,
the number of instruction retired and the SCPI value, are
used to present the behaviors of a JVM and its software
components. The time scale (X-axis) is the same in all
figures. Thus the comparison between JVM’s software
components can be reached. Furthermore, the engaged
and disengaged timing of the major-GC and minor-GC
is shown with the same time scale (X-axis), thus the pe-
riods of GC can be observed and compared with the be-
havior of JVM’s software components.

Compared with the global behavior of JVM in Figure
4, it is observed that the most of Instr_Ret are generated
by the vm_thread and the gc_thread in Figures 5 and 6.
It is worth noting that a vm_thread and the gc_thread
are both highly related with the garbage collection, the
power-saving capability of a JVM. In order to detail the
correlation of software components and garbage collec-

tions, the periods of garbage collections (including the
minor-GC and major-GC) are shown in Figure 7.

In a major-GC, the large numbers of Instr_Ret are ob-
served in a vm_thread in Figure 7. However, the large
Instr_Ret numbers of a vm_thread only lead a few SCPI
value in a major-GC. This observation shows that the
few memory access stall cycles are generated in a major-
GC. The workload of a vm_thread, to visit all objects and
finds inaccessible objects, leads to this observation. Thus
the period of a major-GC is considered as the execute
phase due to the few memory access stall cycles of the
vm_thread.

Moreover, the significant peaks of the SCPI value are
observed at the end of each major-GC in Figure 7. In the
execution round, the SCPI peaks are observed in 8.76
second, 9.43 second, 10.05 second and 10.32 second. The
SCPI peaks are due to the large number of memory ac-
cess stall cycles, which are generated by the garbage col-
lection of the gc_thread. Due to the observation of the
large number of memory access stall cycles, the end of a
major-GC should be considered as the memory phase.
On the other hand, the significant SCPI values are ob-

served in each minor-GC. Compared the Instr_Rets val-
ues of the vm_thread and gc_thread in Figures 7, it
could be observed that the most of Instr_Rets are gener-
ated by the gc_thread. At the same time, the gc_thread
also generates significant memory stall cycles. Therefore,
it leads the significant SCPI value in a minor-GC. This
observation verifies the hypothesis: a minor-GC is highly

0 1 2 3 4 5 6 7 8 9 10 11

-5.00E+007

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

Time (second)

Time (second)Number of Instruction Retired

SCPI

Figure 4. The global behavior of the JVM

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Disengaged

Disengaged

Engaged

Engaged

Time (second)

Time (second)Major-GC

Minor-GC

Figure 7. The engaged/disengaged timing of the major-GC and
minor-GC

0 1 2 3 4 5 6 7 8 9 10 11

-5.00E+007

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

Time (second)

Time (second)Number of Instruction Retired

SCPI

Figure 5. The global behavior of the VM_thread

0 1 2 3 4 5 6 7 8 9 10 11

-5.00E+007

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12 Time (second)

Time (second)SCPI

Number of Instruction Retired

Figure 6. The behavior of the gc_thread

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 7

related to the memory phase
As a brief summary, the phase of the major-GC is con-

sidered as the execution phase due to the behavior of a
vm_thread. Furthermore, the end of a major-GC, which
is the period for the gc_thread collects garbage, should
be considered as the memory phase. On the other hand,
a minor-GC should be considered as the memory phase
due to the behavior of the gc_thread. It is worth noting
that the engaged and disengaged timing of the major-GC
and minor-GC can be observed with the run-time infor-
mation which is already available in a JVM. Thus the
accurate phase determination can be reached to develop
the power-saving strategy of a JVM.

3.5 The Study of JVM's Software Components
with multiple cores

In general, the modern multi-threaded applications

can take advantage by the use of multiple core proces-
sors. However, due to the interaction of the software and
hardware, such as locks, task scheduling, parallelism
and cache locality. A multi-threaded application might
not take advantages fully with all available cores. More-
over, the interaction might lead the to the energy wast-
age. For example, the poor task scheduling might lead to
that one processor core waits for another core, and then
results in the energy wastage due to the idle waiting of
the processor core.
In order to analyze the interaction of software and

hardware with the use of multiple cores, two multi-
threaded benchmarks, Hsqldb and Xalan, are examined
with the multi-core processor (four cores) in this experi-
ment. Due to the finding in Section 3.4, the garbage col-
lection could be the power-saving capability of a JVM,
thus the interaction of major-GC and minor-GC are de-
tailed further in this experiment.
The experimental results of two multithreaded

benchmarks are shown as follows. For Hsqldb bench-
mark, the number of instruction retired, the SCPI value
and engage/disengage timing of GC are shown in Fig-
ures 8 (a) to (c). For Xalan benchmark, they are shown in
Figures 8 (d) to (f). The time scale (X-axis) is the same in
these figures. The analysis of the experimental results is
as follows
First, compared with the number of Instr_Ret and the

engage/disengage timing of the major-GC in Figures 8
(a) to (c), the significant number of Instr_Ret are ob-
served in only one core. On the other hand, the very few
number of Instr_Ret is observed with the other cores at
the same time. Furthermore, the same experimental re-
sult of major-GC is observed with the use of Xalan in
Figures (d) to (f). The reason which leads to this observa-
tion is detailed as follows
The use of locks for the JVM’s global work leads to

this observation in a major-GC. In a major-GC, the
vm_thread uses the lock mechanism to avoid the heap
modification by the other JVM threads. Thus the status
of objects in a heap can be preserved. With the use of the
lock, the vm_thread can visit the stacks of Java_threads
and the heap to find the inaccessible objects. However,

the use of a lock might lead the other cores are idle. That
seems the reason which leads to the specific observation
of the major-GC, only one core works and the other
cores are idle
Secondly, the low values of SCPI are observed only

with the core which is doing the major-GC. This obser-
vation is due to the behavior of a vm_thread in a major-
GC. With marking inaccessible objects, the status of ob-
jects are changed, but not be collected. Thus the few
memory access stalls are generated. That shows the core
which a vm_thread executes with is highly related to
execution phases. On the other hand, the extreme high
SCPI values could be observed in the other idle cores.
This observation details the behavior of a major-GC fur-
ther with the use of multiple cores. In a major-GC, the
core which a vm_thread works with is considered as the
execution phase, and the other cores are related to idle
phases.
Finally, in a minor-GC, the high numbers of Instr_Ret

and the high SCPI value are observed in all cores. The
high number of Instr_Ret indicates that the garbage col-
lector exploit all available cores in a minor-GC. The ob-
servation of high SCPI values verifies that the minor-GC
is highly related to memory phases. Since the high num-
ber of Instr_Ret can be observed in all available cores,
the observation validates that the parallel garbage collec-
tor works during a minor-GC. All cores work in a minor-
GC, and all cores are related to the memory phase.
These findings of garbage collectors provide the

power-saving capability of a JVM. First, the CPU fre-
quency of the idle cores in a major-GC should be mini-
mized to reduce energy wastage since they are idle wait-
ing for the lock. It is worth noting that the CPU fre-
quency tuning would not reduce the system perform-
ance since the frequency tuning is only applied on the
idle cores. Secondly, the CPU frequency the specific core,
which a vm_thread executes with, should be maximized
to maintain the performance of garbage collection in a
major-GC. Thirdly, the CPU frequency should be maxi-
mized for all available cores in the garbage collection,
which is observed at the end of a major-GC. Finally, the
frequency of all available cores should be minimized in a
minor-GC due to that minor-GC is highly related to
memory phases.

3.6 The Summary of Studies

As a brief summary, the findings of this study are
shown as follows. First, only one core work in the major-
GC, and its phase is the execution phase. Secondly, the
other cores in a major-GC are idle phases. Finally, all
cores can work in a minor-GC and their phases are
memory phases. Moreover, the beginning and ending of
these phases could be observed by the run-time informa-
tion of a JVM before the phases are actually changed.
Based on these findings, the power-saving algorithms
and implementation of the Green Virtual Machine (GVM)
approach are proposed in the next section.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(a) The number of instruction retired of Hsqldb (d) The number of instruction retired of Xalan

(b) The SCPI values of Hsqldb (e) The SCPI values of Xalan

(c) The GC engaged/disengaged timing of Hsqldb (f) The GC engaged/disengaged timing of Xalan

Figure 8. The behavior of Hsqldb and Xalan with the use of four cores

4 The power-saving strategy of a JVM

Based on the finding above, the power-saving strategy

of a JVM, also known as Green Java virtual machine
(GVM), is proposed in this section. The GVM power-
saving approach is combined with two power-saving al-
gorithms, major-GC and minor-GC. In addition, the ad-
vantages of GVM power-saving approach are also dis-
cussed in this section.

4.1 The algorithms of the power-saving strategy

Based the phase analysis of garbage collectors, the

GVM power-saving algorithms are proposed to exploit
the run-time behavior in a JVM. Due the different behav-
ior of the minor-GC and major-GC, the GVM algorithms
are constructed by two parts as follows.

First, the power-saving capability of a JVM, the major-
GC, is used to develop the major-GC power-saving algo-
rithm. Based on the experiment result, a major-GC can be
considered as a combination of the execution phase, the
idle phase and the memory phase. The execution phase is
observed in the core which a vm_thread executes with,
and the idle phases are observed in the other cores. Fur-
thermore, in the end of a major-GC, all available cores are
becoming the memory phase since the garbage is col-
lected.
The CPU frequency of the specific core, which the

vm_thread executes with, should be maximized to main-
tain performance of a major-GC. The CPU frequency of
idle cores should be minimized to reduce energy wastage
without performance degradation. In the end of a major-
GC, the CPU frequency of all available cores should be
minimized since the memory phase. Based on the find-

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008
 Core 0

 Core 1

 Core 2
 Core 3

T
h
e

 N
u
m

b
e

r
o
f
In

s
tr

u
c
ti
o
n
s
 R

e
ti
re

d

Time (second)

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

300

350

T
h
e
 S

C
P

I
v
a

lu
e

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Major-GC

Time (second)

Engaged

Disengaged

Minor-GC

Time (second)

Disengaged

Engaged

18.0 18.5 19.0 19.5 20.0 20.5

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

1.40E+008

1.60E+008

1.80E+008

T
h
e
 N

u
m

b
e
r

o
f
In

s
tr

u
c
ti
o

n
s
 R

e
ti
re

d

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008
 Core 0

 Core 1

 Core 2
 Core 3

T
h
e

 N
u
m

b
e

r
o
f
In

s
tr

u
c
ti
o
n
s
 R

e
ti
re

d

Time (second)

18.0 18.5 19.0 19.5 20.0 20.5

0.0

0.5

1.0

1.5

200

220

T
h
e
 S

C
P

I
v
a

lu
e

Time (second)

 Core 0

 Core 1

 Core 2
 Core 3

18.0 18.5 19.0 19.5 20.0 20.5

18.0 18.5 19.0 19.5 20.0 20.5

Major-GC

Disengaged

Engaged

Time (second)

Minor-GC

Disengaged

Time (second)

Engaged

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 9

ings, the major-GC power-saving algorithm is proposed
in Algorithm 1.

In the major-GC power-saving algorithm, the en-
gage/disengage timing of a major-GC can be observed by
the run-time information of a JVM. Moreover, the specific
core (Cv), which the vm_thread executes with, also can be
observed by the run-time information of a JVM. In the
period of a major-GC, the CPU frequency of Cv is maxi-
mized to maintain the performance. On the other hand,
the CPU frequencies of the idle cores (Ci) are minimized
to reduce the energy wastage of processors. When the
vm_thread finish the finding of the inaccessible objects,
the CPU frequency of all available cores (Ca) should be
minimized since the garbage collection is the memory
phases. After a major-GC, all cores work for application
normally, thus the CPU frequencies of Ca should be
maximized to maintain system performance. It is worth
noting that the CPU frequency tuning would not reduce
the system performance since the tuning only applies on
idle cores (Ci).

Another power-saving capability of a JVM, the minor-

GC, is used to develop the minor-GC power-saving algo-
rithm. Based on the study above, a minor-GC is consid-
ered as a memory phase for all available cores. Based on
this finding, the minor-GC power-saving algorithm is
proposed in Algorithm 2.

In the minor-GC power-saving algorithm, the en-
gage/disengage timing of a minor-GC can be observed by
the run-time information of a JVM. Due to the minor-GC
is highly related to memory phases, the CPU frequency of
all available cores should be minimized to wait the mem-
ory access. Thus the energy wastage can be reduced in a
minor-GC.
Based on the observation in Figures 8(e) and 8(f), the

major-GC and minor-GC would not be activated at the
same time. That means the period of the major-GC and
minor-GC are not overlapped. Therefore, the major-GC
and minor-GC power-saving algorithms can be integrated
as the GVM power-saving algorithm in Algorithm 3.

The GVM power-saving algorithm can be considered

as the integration of Algorithms 1 and 2. The GVM
power-saving algorithm can take advantages from the
minor-GC and major-GC. All GVM power-saving algo-
rithms, including major-GC, minor-GC and GVM, are
implemented with two widely used JVMs, Sun's Hotspot
and Jikes RVM. Instead of Sun's Hotspot, which is the
widely deployed commercial JVM, Jikes RVM can be con-
sidered as an academic JVM for research. Based on the
experimental results with these two JVMs, the power-
efficiency of proposed GVM approach can be proved.
The implementation of the GVM power-saving ap-

proach is illustrated in Figure 9. This, technically, in-
volves (1) instrumenting the JVM of the Application serv-
ers for detecting the idel, execute and memory phases,
and (2) the procedure of adjustment the CPU frequencies
of the device/server.

Algorithm 2. The power-saving algorithm for Minor-GC

Algorithm 1. The power-saving algorithm for Major-GC

The GVM Power-Saving Algorithm:

for each Major-GC event Ema, issued by the JVM process

if Ema = Major-GC_START then

for the core which vm_thread executes CPU Cv

Cv := maximum frequency;

for the other cores CPU Ci

Ci := minimum frequency;

else if Ema = GC_START then

for each available CPU Ca

Ca := minimum frequency;

else if Ema = Major-GC_FINISH then

for each available CPU Ca

Ca := maximum frequency;

end if

for each Minor-GC event Emi, issued by the JVM process

if Emi = Minor-GC_START then

for each available CPU Ca

Ca := minimum frequency;

else if Emi = Minor-GC_FINISH then

for each available CPU Ca

Ca := maximum frequency;

end if

Algorithm 3. The power-saving algorithm

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The former corresponds to the timing informing mod-
ule, which is added for observing and gathering the re-
quired GC information, e.g. the timing information about
the start and the end of a major-GC or minor-GC phase.
The latter is realized by the frequency adjustment module,
which is embedded in the kernel for efficiently adjusting
the CPU frequencies (as requested). All the requests are
from the timing informing module. It is also worth noting
that the frequency adjustment module includes in-line
assembly codes that can directly adjust CPU frequencies
by accessing some particular registers of the CPU. Thus,
compared with the method based on user-level calls, the
way we adjust CPU frequencies is more efficient; the re-
quired CPU cycles for the frequency adjustment are
minimized.

4.2 The advantages of proposed GVM power-

saving strategy

In order to detail the advantages of the GVM power-

saving approach, the further analysis are proposed. The
advantages of GVM approach, which include slight over-
heads of phases detections, precise phases timing, accu-
rate phase determinations and performance maintenance,
are analyzed in this section.
First, phases detecting plays an important role in the

most of power-saving approaches. Based on the results of
phase detections, the appropriate CPU frequencies could
be applied to reduce energy wastage. However, the phase
detections usually lead to the overheads, and reduce the
system performance. For example, the requirement of
additional profiling work could be considered as the
overhead in profiling approaches. Moreover, the per-
formance monitor accesses also lead to overheads of
power-saving approaches by performance monitors.
It is worth noting that the phase detections of GVM

power-saving approaches are based on the run-time in-
formation which is already available in a JVM. Such as
the engage/disengage timing of the major-GC and minor-
GC. Moreover, the particular phases of the major-GC and
minor-GC are constant and already observed. Thus the
phase detections would not lead to the overhead in the
GVM power-saving approach.
Secondly, the inaccurate timing of phases is a disad-

vantage of power-saving approaches with the use of per-

formance monitors. The particular phase is identified
only after the actual behavior already appeared in the
performance monitors. It is always one step behind. The
inaccurate phases timing could lead to unnecessary per-
formance degradations and the energy wastage.
On the other hand, the period of garbage collection can

be marked by the engage/disengage time of the garbage
collector precisely. The timing can be used to determine
the phase of the JVM. Moreover, Due to the middle-ware
features of a JVM, the phases can be observed before they
are arisen on hardware actually. Thus accurate phase tim-
ing can be reached by the GVM power-saving approach.
Thirdly, in the profiling power-saving approach, the

observed phases could be affected by the other tasks in
the run-time. It leads to that the observed phase is not
identical to the profiled phase. The inaccurate information
of phases might lead to inappropriate frequency tuning,
and then results in the unnecessary performance degrada-
tions and energy wastage.
On the other hand, the accurate phase determination

can be reached by the GVM power-saving approach.
Since GVM power-saving algorithms focus on the phase
of the garbage collector, which is related to a JVM itself
instead of the application. The phases of garbage collec-
tors are stable even with the use of different application.
Therefore, the phase determination of GVM would not be
affected by applications. The unnecessary performance
degradation and energy wastage can be avoided.
Finally, the advantages of GVM power-saving ap-

proach improve the problem of the other power-saving
approaches, performance degradations. Due to the un-
avoidable overheads of phase detections, inaccurate
phases timing and inaccurate phase determinations, the
system performance usually is degraded. However, the
major-GC power-saving algorithm proposes the power-
saving solution with the well performance maintenance.
Thus the major-GC algorithm could be the power-saving
solution for a web application server which highly re-
quires performances and the quick response.

5 The experimental results

In this section, the performance of the GVM power-
saving approach is examined and compared with the
other power-saving techniques. Five widely used Java
multi-threaded benchmarks are used to evaluate the per-
formance of power-saving techniques with the use of
Sun's Hotspot. Furthermore, two multi-tier web applica-
tion benchmarks, SPECjAppServer2004 and RUBiS, are
used to validate the GVM's performance with two JVMs,
Sun's Hotspot and Jikes RVM. Based on these experi-
ments results, the GVM's performance could be examined
and clarified.
It is worth noting that the power consumption cannot

exactly indicate the power-efficiency, because the lower
frequency settings (of CPUs) might significantly decrease
the system performance. Hence, another measure called
energy-delay product (EDP) is used here to evaluate the
power-efficiency. The EDP value is defined as the product
of the power consumption and the execution time
squared. Since this measure considers both energy and

Figure 9. The implementation of proposed strategy

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 11

delay simultaneously, the EDP value can better reflect the
power-efficiency. In general, a lower EDP value indicates
a better power-efficiency.

5.1 The Comparing of Power-saving Techniques

In order to compare the performance of GVM power-

saving approach with the other power-saving techniques,
six power configurations are proposed to examine the
performance and power consumptions of power-saving
technologies. The experimental power configurations are
illustrated as follows.
First, two static CPU frequencies, the maximum and

minimum frequencies, are used as the control group in
experiments. The two static configurations are mapped to
the performance and power-saving governors in Linux. In
general, the use of maximum frequency leads to the best
performance and the use of minimum frequency leads to
the worst performance. Moreover, the use of minimum
frequency usually leads to the significant power con-
sumption due to the long executing time.
Secondly, two power-saving algorithms of the GVM,

the major-GC power-saving algorithm (Algorithm 1) and
minor-GC power-saving algorithm (Algorithm 2), are
used to examine their performance. Furthermore, the
other two configurations, respectively, refer to the Linux
power-saving governors, ondemand and conservative.
These two power-saving governors would adjust fre-
quencies based on observing the CPU workload. The use
of ondemand governors normally switches to the highest
frequency immediately when the CPU load is high. It can
thus maintain the system performance well, while it leads
to more energy wastage. On the other hand, the use of
conservative governors increases frequency step by step.
Thus, slight performance degradation and less energy
wastage would be observed. These two Linux power-
saving governors are popular and actually could be used
to represent the performance monitor-based power-
saving approaches.
In order to compare the combine of ondemand and

conservative, a merge governor, Smartass, is evaluated.
Smartass could be considered as a merge of the best
properties of the opposite of conservative and ondemand.
This governor attempts to balance performance with effi-
ciency by focusing on an ideal frequency.
All available cores (four cores) are used in these ex-

periments, and the CPU frequency of each core can be
adjusted independently. The experimental result of sys-
tem performance, power consumptions and EDP are
shown in Figures 10 to 12. The results of maximum CPU
frequency have normalized to 1.0, then, for each power
configuration, the results are normalized to the results of
maximum frequency.
First, it is observed that only the use of the major-GC

power-saving algorithm maintains the similar perform-
ance as the use of the maximum frequency in Figure 11,
only two percent degradation. Comparing with the 10 to
16 percent performance degradation of the conservative
and ondemand approaches, the major-GC power-saving
algorithm can maintain system performance better.

In addition, with the major-GC power-saving algo-
rithm applying, the significant energy reduction (15 to 29
percent) is observed in Figure 12. The reduction of power
consumption of the major-GC algorithm is higher than
the reduction of the conservative and ondemand ap-
proaches (10 to 16 percent). Moreover, in Figure 13, the
use of the major-GC algorithm leads to the lowest EDP
value in the most of benchmarks (Lusearch is the excep-
tion). These observations show that the major-GC power-
saving algorithm can reduce energy wastage significantly
without performance degradations, and leads to the low-
est value of EDP.

Secondly, it is observed that the acceptable perform-
ance reduction (three to six percent averagely) is observed
with the use of the minor-GC power-saving algorithm in
Figure 11. In addition, the fair energy reduction (15 to 20
percent) with the use of the minor-GC algorithms could
be observed in Figure 11. Moreover, in Figure 12, the EDP
values of the minor-GC algorithm are only higher than
the EDP values of the use of major-GC algorithm, and
lower than the conservative and ondemand approaches.
These observations show that the use of the minor-GC
algorithm leads to the better performance than the use of
conservative and ondemand approaches.

Compared with the major-GC algorithm, it seems that
the fewer contributions are made by the minor-GC algo-
rithm. However, in some special cases, the minor-GC al-
gorithm shows its importance and cannot be replaced.
For example, it is worth noting that the use of the major-

Eclipse Hsqldb Lusearch Xalan SPECjbb2005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e
 (

N
o
rm

a
liz

e
d
)

Java Multi-threaded Benchmarks

 Max Frequency GVM Full-GC Conservative
 Min Frequency GVM Minor-GC Ondaemon

 Smartass

Figure 10. The system performance of various power-saving tech-
niques.

Eclipse Hsqldb Lusearch Xalan SPECjbb2005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
 Max Frequency GVM Major-GC Conservative
 Min Frequency GVM Minor-GC Ondaemon

 Smartass

P
o
w

e
r

C
o
n
s
u
m

p
ti
o

n
 (

N
o

rm
a
liz

e
d
)

Java Multi-threaded Benchmarks

Figure 11. The power consumption of various power-saving tech-
niques.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

GC algorithm cannot reduce the power consumption of
Lusearch benchmark in Figure 11. Due to the less mem-
ory space requirement of Lusearch, there is no any major-
GC is generated in the run-time. Thus the use of the ma-
jor-GC algorithm cannot reduce any energy wastage in
this special case.
On the other hand, the use of the minor-GC algorithm

leads to 23 percent of the energy reduction with six per-
cent of performance degradations in Lusearch. This ob-
servation shows that a comprehensive power-saving solu-
tion for application servers should be integrated by the
major-GC and minor-GC algorithms. The integrated
power-saving approach, the GVM power-saving algo-
rithm (Algorithm 3) should be the comprehensive solu-
tion for application servers.

Finally, the summary of these experiments is shown as
follows. The use of the major-GC power-saving algorithm
reduces the significant power consumption without few
performance degradation. Based on the statistic, the per-
formance of merge governor, Smartass, is very similar as
the use of ondemand or conservative among various ex-
perimental setup. The differences are less than 2.5 percent
on average. However, in some special case, the use of the
major-GC algorithm might not reduce any energy wast-
age. Thus the comprehensive power-saving solution
should be integrated by the major-GC and minor-GC al-
gorithms. The integrated GVM power-saving algorithm
would be examined with the use of web application
benchmarks in the next section.

5.2 The Validation with the use of the Web
Application Benchmarks

In order to verify that the use of the integrated GVM

power-saving algorithm can reach the goal of this study,
power-saving and performance maintenance of applica-
tion servers. Two widely used web application bench-
marks, SPECjAppServer2004 and RUBiS, and two widely
used JVMs, Hostspot and Jikes RVM, are used to evaluate
the performance of the GVM power-saving approach. In
this experiment, the performance of major-GC algorithm
(Algorithm 1) and the GVM power-saving algorithm (Al-
gorithm 3) are examined in this experiment. The experi-
mental results of performance, power consumption and

EDP are shown in Figures 13 to 15.

In this experiment, the significant advantage of the
GVM power-saving algorithm is observed in a long-
running environment. With the use of the GVM algo-
rithms, 14 to 23 percent energy reductions among two
benchmarks could be observed in Figure 13. In addition,
the performance degradation of GVM algorithms is less
than four percent in Figure 13. Compared with the 10 to
16 percent energy reductions and the 8 to 12 percent per-
formance degradation of conservative and ondemand
power-saving approaches, the better performance with
the use of GVM power-saving algorithm is verified.
Moreover, the use of GVM power-saving algorithm leads
to the lowest value of EDP in Figure 15. Based on the ex-
perimental results, the GVM algorithms can be an effec-
tive and comprehensive power-saving solution for a long
running web applications server.

On the other hand, the major-GC algorithm is exam-
ined for the performance maintenance. In Figure 14, only
two percent performance degradation is observed with
the use of the major-GC algorithm less than the use of the
maximum frequency. Compared with the reduction of
power consumption with the use of GVM algorithm (14
to 23 percent), the reduction of power consumption of the
major-GC algorithm is less (15 to 29 percent). However,
the use of the major-GC algorithm still leads to the second
low value of EDP in Figure 15. The observations show
that the performance of the major-GC algorithm is better
than conservative and ondemand approaches. Moreover,

Eclipse Hsqldb Lusearch Xalan SPECjbb2005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4 Max Frequency GVM Full-GC Conservative
 Min Frequency GVM Minor-GC Ondaemon

 Smartass

E
n
e

rg
y
 o

f
P

ro
d

u
c
t
(N

o
rm

a
liz

e
d

)

Java Multi-threaded Benchmarks

Figure 12. The EDP of various power-saving techniques.

SPECjApp2004
(Hotspot)

SPECjApp2004
(RVM)

RUBiS
(Hotspot)

RUBiS
(RVM)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 Max Frequency GVM Full-GC Conservative
 Min Frequency GVM Combination Ondaemon

 Smartass

P
e
rf

o
rm

a
n
c
e

 (
N

o
rm

a
liz

e
d

)

Multi-tier Web Application Benchmarks

Figure 13. The system performance of web application bench-
marks

SPECjApp2004
(Hotspot)

SPECjApp2004
(RVM)

RUBiS
(Hotspot)

RUBiS
(RVM)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4 Max Frequency GVM Major-GC Conservative
 Min Frequency GVM Combination Ondaemon

 Smartass

P
o
w

e
r

C
o
n
s
u
m

p
ti
o

n
 (

N
o
rm

a
li
z
e
d
)

Multi-tier Web Application Benchmarks

Figure 14. The power consumption of web application bench-
marks

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

AUTHOR ET AL.: TITLE 13

due to the well performance maintenance, the major-GC
algorithm can be an effective power-saving solution for
some web applications which require short respond in-
tervals.

Based on the experiment result, the better performance
of the GVM algorithm is validated than the other power-
saving techniques. The use of run-time information,
which is already available in a JVM, leads to slight over-
heads and accurate phase detections, and results in sig-
nificant energy reductions and slight performance degra-
dations. Moreover, the performance could be maintained
well by the use of the major-GC algorithm, and noticeable
energy reductions can be observed still. Thus the GVM
power-saving algorithm can be a comprehensive power-
saving solution of a long-running application server, and
the major-GC power-saving algorithm can be another
choice when the system performance must to be main-
tained well.
6 Conclusion

In this paper, the GVM power-saving approaches are
implemented and validated. The GVM power-saving ap-
proaches use the run-time information which is already
available in a JVM to detect phases, and then adjust
power-levels to reduce energy wastages without intro-
ducing serious performance degradation. The GVM im-
plementations of Sun's Hotspot and Jikes RVM are used
to evaluate the performance with five multithreaded
benchmarks, SPECjAppServer2004 and RUBiS. The ex-
perimental results show that GVM approaches could
reach our goal and lead the lowest value of EDPs among
other power-saving techniques.
With the use of full-GC algorithms, the experimental

results shows that energy wastages reduce in the range of
18 to 24 percent without performance degradations. On
the other hand, with GVM algorithms, the significant
power consumption reductions (25 to 34 percent) could
be observed with only six percent performance degrada-
tions. It is worth noting that performance of GVM is
much better than the other power-saving techniques.
These experimental results show that GVM power-saving
approaches could be the appropriate techniques on long-
running application servers.
To the best of our knowledge, GVM approaches pre-

sent one of the first working implementation based on the
run-time information which is already available in a JVM.

In the validations with the other power-saving techniques,
GVM approaches reach the lowest EDP value and well
performance maintenance. Based on the experiment re-
sults, the proposed GVM approach does achieve the goal
in this paper, power-saving and performance mainte-
nance at the same time.

REFERENCES

[1] Battelle, J., The search: How Google and its rivals rewrote the

rules of business and transformed our culture. September 8,

2005, New York: Portfolio Hardcover.

[2] Worldwide Cloud Applications Market Forecast 2014-2018.

https://www.appsrunthecloud.com/opinions/index/150#stha

sh.i6u3yp8f.dpuf, last retrieved Sep, 2014.

[3] America's Data Centers Consuming and Wasting Growing

Amounts of Energy, Natural resources defense council

(NRDC) , last retrieved Spet, 2014.

[4] Hill, M.D. and M.R. Marty, Amdahl's law in the multicore era.

Computer, 2008. 41(7): p. 33-38.

[5] Bianchini, R. and R. Rajamony, Power and energy management

for server systems. Computer, 2014. 37(11): p. 68-76.

[6] Herbert, S. and D. Marculescu, Analysis of dynamic volt-

age/frequency scaling in chip-multiprocessors. Proceedings of

the 2007 international symposium on Low power electronics

and design, 2011: p. 38-43.

[7] Isci, C., A. Buyuktosunoglu, and M. Martonosi, Long-term

workload phases: Duration predictions and applications to

DVFS. Micro, IEEE, 2005. 25(5): p. 39-51.

[8] Fornaciari, W., et al., Power optimization of system-level ad-

dress buses based on software profiling. Proceedings of the

eighth international workshop on Hardware/software codesign,

2009: p. 29-33.

[9] Sherwood, T., S. Sair, and B. Calder, Phase tracking and predic-

tion. SIGARCH Comput. Archit. News, 2013. 31(2): p. 336-349.

[10] Lorch, J.R. and A.J. Smith, Improving dynamic voltage scaling

algorithms with PACE. Proceedings of SIGMET-

RICS/Performance, 2011: p. 50-61.

[11] Aydin, H., et al., Dynamic and aggressive scheduling tech-

niques for power-aware real-time systems. Real-Time Systems

Symposium, 2011: p. 95-105.

[12] Pillai, P. and K.G. Shin, Real-time dynamic voltage scaling for

low-power embedded operating systems. Proceedings of the

eighteenth ACM symposium on Operating systems principles

2001: p. 89-102.

[13] Weiser, M., et al., Scheduling for reduced CPU energy. Mobile

Computing, 1996: p. 449-471.

[14] Burd, T.D. and R.W. Brodersen, Energy efficient CMOS micro-

processor design. Proceedings of the Twenty-Eighth Hawaii In-

ternational Conference on System Sciences, 1995. 1: p. 288-297.

[15] Pouwelse, J., K. Langendoen, and H. Sips, Dynamic voltage

scaling on a low-power microprocessor. Proceedings of the 7th

annual international conference on Mobile computing and net-

working, 2009: p. 251-259.

[16] Flautner, K., S. Reinhardt, and T. Mudge, Automatic perform-

ance setting for dynamic voltage scaling. Wireless networks,

2008. 8(5): p. 507-520.

[17] Delaluz, V., et al., Dram energy management using sofware and

hardware directed power mode control. Proceedings of the 7th

international conference on high performance computer archi-

tecture, 2009: p. 159-169.

SPECjApp2004
(Hotspot)

SPECjApp2004
(RVM)

RUBiS
(Hotspot)

RUBiS
(RVM)

0.0

0.2

0.4

0.6

0.8

1.0

6

9

 Max Frequency GVM Major-GC Conservative
 Min Frequency GVM Combination Ondaemon

 Smartass

E
n
e
rg

y
 o

f
P

ro
d
u
c
t
(N

o
rm

a
liz

e
d
)

Multi-tier Web Application Benchmarks

Figure 15. The EDP of web application benchmarks

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2481395, IEEE Transactions on Cloud Computing

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[18] Hsu, C.H., U. Kremer, and M. Hsiao, Compiler-directed dy-

namic frequency and voltage scheduling. Power-Aware Com-

puter Systems, 2007: p. 65-81.

[19] Hsu, C.H. and U. Kremer, The design, implementation, and

evaluation of a compiler algorithm for CPU energy reduction.

ACM SIGPLAN Notices, 2013. 38(5): p. 38-48.

[20] Ge, R., et al., CPU miser: A performance-directed, run-time

system for power-aware clusters. Proceedings of International

Conference on Parallel Processing, 2007: p. 18-26.

[21] Wang, X., et al., Power-aware CPU utilization control for dis-

tributed real-time systems. Proceedings of the 2009 15th IEEE

Real-Time and Embedded Technology and Applications Sym-

posium, 2009. 0: p. 233-242.

[22] Rivoire, S., P. Ranganathan, and C. Kozyrakis, A comparison of

high-level full-system power models. Proceedings of the con-

ference on Power aware computing and systems, 2008: p. 3-3.

[23] Pettis, N.E. and Y.H. Lu, A homogeneous architecture for

power policy integration in operating systems. IEEE Transac-

tions on Computers, 2008: p. 945-955.

[24] Curtis-Maury, M., et al., Identifying energy-efficient concur-

rency levels using machine learning. Proceedings of the 2007

IEEE International Conference on Cluster Computing, 2007: p.

488-495.

[25] Merkel, A. and F. Bellosa, Balancing power consumption in

multiprocessor systems. ACM SIGOPS Operating Systems Re-

view, 2006. 40(4): p. 403-414.

[26] Mesa-Martinez, F.J., J. Nayfach-Battilana, and J. Renau, Power

model validation through thermal measurements. SIGARCH

Comput. Archit. News, 2007. 35(2): p. 302-311.

[27] Rao, R., S. Vrudhula, and C. Chakrabarti, Throughput of multi-

core processors under thermal constraints. Proceedings of the

2007 international symposium on Low power electronics and

design, 2007: p. 201-206.

[28] Liu, Y., et al., Thermal vs energy optimization for dvfs-enabled

processors in embedded systems. Proceedings of 8th Interna-

tional Symposium on Quality Electronic Design (ISQED'07),

2007: p. 204-209.

[29] Kim, W., et al., System level analysis of fast, per-core DVFS

using on-chip switching regulators. Proceedings of IEEE 14th

International Symposium on High Performance Computer Ar-

chitecture, 2008: p. 123-134.

[30] Niu, L. and G. Quan, System Wide Dynamic Power Manage-

ment for Weakly Hard Real-Time Systems. Journal of Low

Power Electronics, 2006. 2(3): p. 342-355.

[31] Gniady, C., et al., Program counter-based prediction techniques

for dynamic power management. IEEE Transactions on Com-

puters, 2006: p. 641-658.

[32] Kweon, H., et al., An efficient power-aware scheduling algo-

rithm in real time system. Proceedings of IEEE Pacific Rim Con-

ference on Communications, Computers and Signal Processing,

2007: p. 350-353.

[33] Teodorescu, R. and J. Torrellas, Variation-Aware Application

Scheduling and Power Management for Chip Multiprocessors.

SIGARCH Comput. Archit. News, 2008. 36(3): p. 363-374.

[34] Fries, R.M., Virtual Machine Placement Based on Power Calcu-

lations. US Patent App. 20,090/293,022, 2008.

[35] Khanna, G., et al., Application performance management in

virtualized server environments. Proceedings of Network Op-

erations and Management Symposium, 2006: p. 373-381.

[36] Steinder, M., et al., Server virtualization in autonomic man-

agement of heterogeneous workloads. Proceedings of Inte-

grated Network Management, IM '07. 10th IFIP/IEEE Interna-

tional Symposium, 2007: p. 139-148.

[37] Kim, N.S., et al., Leakage current: Moore's law meets static

power. Computer, 2003. 36(12): p. 68-75.

[38] Le Sueur, E. and G. Heiser. Dynamic voltage and frequency

scaling: The laws of diminishing returns. in Proceedings of the

2010 international conference on Power aware computing and

systems. 2010. USENIX Association.

[39] Kuo-Yi Chen, Fuh-Gwo Chen, and Jr-Shian Chen. A Cost-

effective Hardware Approach for Measuring Power Consump-

tion of Modern Multi-core Processors. in International Confer-

ence on Power and Energy Engineering (ICPEE 2011). 2011.

Bangkok, Thailand: IEEE.

[40] Huang, W., et al., System accuracy analysis of the multiphase

voltage regulator module. Power Electronics, IEEE Transactions

on, 2007. 22(3): p. 1019-1026.

[41] Gonzalez, R. and M. Horowitz, Energy dissipation in general

purpose microprocessors. IEEE Journal of Solid-State Circuits,

2002. 31(9): p. 1277-1284.

[42] Blackburn, S.M., et al., The DaCapo benchmarks: Java bench-

marking development and analysis. ACM SIGPLAN Notices,

2006. 41(10): p. 169-190.

[43] Morin, R., A. Kumar, and E. Ilyina, A multi-level comparative

performance characterization of specjbb2005 versus

specjbb2000. Proceedings of the IEEE Workload Characteriza-

tion Symposium, 2005: p. 67-75.

[44] SPECjAppServer2004. http://www.spec.org/jAppServer2004/.

[45] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.

[46] OpenJDK. http://openjdk.java.net/.

[47] Appel, A.W., Simple generational garbage collection and fast

allocation. Software: Practice and Experience, 1989. 19(2): p.

171-183.

[48] Sankaran, N., A bibliography on garbage collection and related

topics. ACM SIGPLAN Notices, 1994. 29(9): p. 149-158.

[49] Greg Schulz, Determining energy usage in the data center, En-

ergy-efficient and ecologically friendly data centers, 2009.

[50] Jack Clark, 5 Numbers That Illustrate the Mind-Bending Size of

Amazon's Cloud, Bloomberg Business, 2014.

[51] Bagci, F. Towards Performance and Power Management of

Cloud Servers. in Information Technology: New Generations

(ITNG), 2014 11th International Conference on. 2014. IEEE.

[52] Ge, C., Z. Sun, and N. Wang, A survey of power-saving tech-

niques on data centers and content delivery networks. Com-

munications Surveys & Tutorials, IEEE, 2013. 15(3): p. 1334-

1354.

[53] Isci, C., et al. Agile, efficient virtualization power management

with low-latency server power states. in ACM SIGARCH Com-

puter Architecture News. 2013. ACM.

[54] Kuehn, P.J. and M.E. Mashaly, Automatic energy efficiency

management of data center resources by load-dependent server

activation and sleep modes. Ad Hoc Networks, 2015. 25: p. 497-

504.

[55] McGough, A.S., et al., Analysis of power‐ saving techniques

over a large multi‐ use cluster with variable workload. Con-

currency and Computation: Practice and Experience, 2013.

25(18): p. 2501-2522.

[56] Miles, A., et al. An experimental study of hybrid energy-aware

scheduling in a cloud testbed. in Global Information Infrastruc-

ture and Networking Symposium (GIIS), 2014. 2014. IEEE.

