
CoolCloud: A Practical Dynamic Virtual Machine Placement Framework for Energy
Aware Data Centers

Zhiming Zhang

Iowa State University
Ames IA, USA

Email: zhiming@iastate.edu

Chan-Ching Hsu

Iowa State University
Ames IA, USA

Email: cchsu@iastate.edu

Morris Chang

Iowa State University
Ames IA, USA

Email: morris@iastate.edu

Abstract—With the continuing growth of cloud computing
services, power consumption has become one of the most
challenging issues in data center environments. With the
support of today’s virtualization technology, the efficiency and
flexibility of data center management can be greatly enhanced,
creating great energy saving opportunities. However, effective
energy aware design is a non-trivial task, considering the size
of the data center, the dynamic fluctuation of workloads and
the variation of computing resource requests. In this paper,
we propose CoolCloud: a practical solution for managing the
mappings of VMs to physical servers. This framework solves
the problem of finding the most energy efficient way (least
resource wastage and least power consumption) of placing
the VMs considering their resource requirements. Experiment
result demonstrates our design can effectively improve data
center energy efficiency and scales well to large size data
centers. Comparing with industry leading product VMware’s
Distributed Resource Scheduler (DRS), our design offers better
performance in both load balancing and power consumption.

Keywords-Energy aware computing; virtualization; data cen-
ter

I. INTRODUCTION

Virtualized data center environment provides a shared

hosting infrastructure to customers who need server re-

sources to run their applications. All the applications run

inside virtual machines (VMs) which are provisioned and

managed on-demand. VMs’ resource utilization (CPU, mem-

ory, network, etc.) must be constantly monitored and the

data center manager must respond to the changing on-

demand resource requests from applications and determine

which physical server a VM should be placed on. This is a

time consuming task that can not be performed by human

operators in a timely fashion considering the complexity and

size of the data center.
Virtualized data center management has brought a great

amount of research interest. Most of the extant approaches

[1], [2], [3], [4] only consider solving one specific problem

or focus on one aspect of optimization, e.g., balancing VMs

across servers, eliminating hot spots, minimizing power con-

sumptions, maximizing resource utilizations, etc. However,

these goals or optimizations should be considered together

to build a well-performing data center. Note that some

of the objectives may conflict with each other when not

handled carefully, making the optimization problem more

complicated. Another issue is that past work only focuses

on one or two server resources at the same time, e.g., CPU,

memory or network bandwidth. These solutions usually

perform well on the server resource(s) being considered and

leave potential performance bottlenecks on the resource(s)

left out.

In this paper, we tackle the above discussed challenges

with the goal of designing a practical virtual machine

placement framework that can be applied to real world

enterprise data centers. We name our design CoolCloud
given its capability of cooling down the data center and

providing a more energy efficient cloud. We formulate the

VM placement problem into an ILP optimization problem

with the objective of maximizing cluster energy savings. Due

to that the optimization is NP hard, a heuristic approach

is further proposed to reduce computation complexity and

make our design scale well to the size of enterprise data

centers. VM Live migration (with its cost considered) is used

to move VMs from one server to another when placement

decisions are made. A real testbed data center implemented

with industry product VMware vSphere 5 is used to evaluate

the proposed framework. The main contributions of our work

are:

• Our optimization design can achieve maximum energy

savings with all resource constraints (CPU, memory,

network and storage) and VM live migration costs taken

into account.

• Our framework is a practical solution that can be

applied to enterprise data centers. The computation effi-

cient heuristic design provides fast placement solutions

given workload fluctuations.

• Our design is implemented and evaluated within a real

testbed built from industry leading platform. Exper-

iment result suggests that CoolCloud can effectively

improve data center energy efficiency and is highly

scalable for large size data centers.

The remaining of the paper is organized in the follow-

ing sequence. We provide our VM placement optimization

model in Section II. Section III introduces the heuristic

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.105

758

Figure 1. VM Placement Framework (CoolCloud)

design. The implementation of our design is provided in

section IV. Section V demonstrates the experiment results.

Related work is given in Section VI and Section VII con-

cludes this paper.

II. SYSTEM MODEL

The proposed CoolCloud design in Figure 1 includes

three major components. The first component is responsible

of collecting runtime resource utilizations of each VM.

These resources include CPU, memory, network and storage.

The second component is an integer linear programming

optimization model (a heuristic approach is proposed later

for practical deployment) that provides the optimal VM

placement solution. The objective function of this model

is to minimize data center energy consumption without

affecting each VM’s performance. The model takes each

VM’s resource requirements as its constraints to guarantee

performance. The third component is a commander respon-

sible of sending out VM migration commands based on the

placement solution from the optimization model.

A. VM Placement Problem Formulation

The following sections presents the optimization model

for the virtual machine replacement problem. The problem

is to minimize the system energy consumption, denoted as

E , by deploying VMs in active mode on physical machines

(PMs) with the consideration of the migration cost. The

output includes the virtual machine destinations, migration

indicators and operation mode of physical machines speci-

fied as, lmn, gmn and on.

1) Decision Variables: The decision variables of the

placement problem are presented by two matrices L, G
and a vector O. L = (lmn)M×N is the virtual-physical

machine incidence matrix, or the placement matrix and

G = (gmn)M×N is the virtual machine migrating incidence

matrix, or the migration matrix; O = (on)1×N is the phys-

ical machine activation incidence vector, or the operation

mode vector. The value of a decision variable is determined

as follows.

lmn =

⎧⎨
⎩

1,VMm is placed on PMn,
∀m ∈ NVM, n ∈ NPM;

0, otherwise,

gmn =

⎧⎨
⎩

1,VMm is migrated to PMn,
∀m ∈ NVM, n ∈ NPM;

0, otherwise,

on =

{
1, PMn is in active mode,∀n ∈ NPM;
0, otherwise,

When lmn is asserted, the physical machine n serves

the virtual machine m, provisioning with the power, Pmn;

om has to set a value of one correspondingly. If VM m
does migrate to PM n, the migration cost involves power,

Pmigrate
mn and time, Tmigrate

mn for the procedure. It is prac-

tical to assume that a physical machine operateing actively

(om = 1) consumes energy at a much higher level than in

sleep mode.

2) Placement Constraint: Each virtual machine can be

served by only one physical machine, and it must be placed

on one of the physical machines to have the resource granted

toward it. The following constraint essentially set up this

condition to satisfy.∑
n∈NPM

lmn = 1, ∀m ∈ NVM, (1)

Live virtual machine migration is put into action if a

virtual machine is decided to be placed on a physical

machine n different from the one it is currently residing

on before the optimal solution is provided. Namely, for a

machine m, its next placement, lmn = 1 and its current

placement, l′mn = 0, which is given information initially, are

compared to represent that the virtual machine m is migrated

to the physical machine n from other physical machine.

Constraint (2) gives the value of gmn by the comparison

of the two states, lmn and l′mn.

lmn − lmn · l′mn = gmn, ∀m ∈ NVM, n ∈ NPM, (2)

3) Resource Constraints: The service level agreements

are categorized by four aspects: CPU, memory, hard disk

and network bandwidth utilization. Essentially, the deployed

resources of a physical machine cannot exceed a specified

utilization level. In this paper, we assume if the resource

constraint of each VM can be satisfied, the applications’

SLA can be satisfied as well. The constraints are as follows,

where Um indicates the utilization of virtual machine m:∑
m∈NVM

(lmn · UCPU
m) ≤ HCPU

n , ∀n ∈ NPM, (3)

∑
m∈NVM

(lmn · UMEM
m) ≤ HMEM

n , ∀n ∈ NPM, (4)

759

Table I
DEFINITIONS OF IMPORTANT SYMBOLS

Symbol Definition

N Number of physical machines to serve virtual machines

M Number of virtual machines

Pactive Basic power level of physical machines in active mode

Psleep Power level of physical machines in sleep mode

Period Time period for which the solution pertains

Pmigrate
mn Power level for VM m migrating to PM n

Tmigrate
mn Time for VM m migrating to PM n

HCPU Limit on CPU utilization of physical machines

HMEM Limit on memory utilization of physical machines

HHD Limit on hard disk utilization of physical machines

HBW Limit on network bandwidth utilization of physical machines

NVM Set of VMs, |NVM| = M
NPM Set of PMs, |NPM| = N
UCPU Virtual machine CPU utilization, UCPU = {UCPU

m , ∀m ∈ NVM}
UMEM Virtual machine memory utilization, UMEM = {UMEM

m , ∀m ∈ NVM}
UHD Virtual machine hard disk utilization, UHD = {UHD

m , ∀m ∈ NVM}
UBW Virtual machine network bandwidth utilization, UBW = {UBW

m , ∀m ∈ NVM}
E Total system energy consumed

L Placement matrix (decision variable), L = (lmn)M×N

G Migration matrix (decision variable), G = (gmn)M×N

O Operation mode vector (decision variable), O = (on)1×N

∑
m∈NVM

(lmn · UHD
m) ≤ HHD

n , ∀n ∈ NPM, (5)

∑
m∈NVM

(lmn · UBW
m) ≤ HBW

n , ∀n ∈ NPM, (6)

For physical machines, the resource utilization level is

limited to be not over a specific value, for example, HCPU

is the maximum CPU utilization level, which could be

a measurement of percentage. A set-up percentage less

than 100% leaves the margin for new arrival tasks (25%

headroom is given in our design). Energy can be consumed

at diverse power levels and the execution time are different

from virtual machines.

4) Operation Mode Constraints: The following two con-

straints define in which mode a physical machine will run.

If it is an physical machine operating in active mode, om is

equal to 1 for PM m.

on ≤
∑

m∈NVM

lmn, ∀n ∈ NPM, (7)

lmn ≤ on, ∀m ∈ NVM, n ∈ NPM, (8)

Constraint (7) and (8) together satisfy the conditions that a

physical machine operates in active mode if and only if it

needs to host an active VM. Otherwise, the physical machine

will be turned into sleep mode.

5) Objective Function: We define the energy consump-

tion as a summation of the virtual machine execution en-

ergy, migration energy, active physical machine energy and

sleeping physical machine energy, which are termed below

respectively. The next expression presents the energy con-

sumed as a whole, where Period is the predefined execution

time period.

min E =
∑

m∈NVM,n∈NPM

(Pmn · Period · lmn)

+
∑

m∈NVM,n∈NPM

(Pmigrate
mn · Tmigrate

mn · gmn)

+
∑

n∈NPM

(Pn
active · Period · on)

+
∑

n∈NPM

[Pn
sleep · Period · (1− on)].

(9)

Eq. (9) is the objective function optimizing the total

energy consumption of the data center. Pmn denotes the

required power level of the virtual machine m to operate on

the physical machine n.

III. HEURISTIC DESIGN FOR PRACTICAL DEPLOYMENT

The proposed ILP design provides optimal VM placement

solutions, however it is NP hard and unpractical for large

size data centers. We develop a heuristic approach which

solves the formulated problem to avoid the exponential

760

growth in the computation time. The devised algorithm has

the goal of offering suboptimal solutions and low computa-

tional complexity.

The pseudocode is shown in Algorithm 1, given the same

input with what the model will take into account, and is

implemented using Java programming language. The output

includes the placement of virtual machines, lmn, virtual

machine migration, gmn and operation mode of physical

machines, on.

A. Algorithm Design Principle

The initial placement is taken by the algorithm as a

preliminary solution to improve upon. The algorithm first

looks for a solution which does not violate the resource

constraints (3)-(6). Because of the substantial gap between

the operation energy usages of active and sleep modes of a

physical machine, turning physical machines to sleep mode

when possible can save energy. The attempt is to seek a

new solution with an improved energy consumption value

by consolidating virtual machines to less physical machines

so that physical machines that are originally active can be

switched into sleep mode. The algorithm is devised to solve

the problem in a timely manner so that suboptimal solutions

can be reached to respond to the granularity of fluctuation

of the workload. Overall, the computation complexity of the

algorithm is O(MN(logM)2 logN) in the worst case.

B. Algorithm Description

We divide the heuristic into two working stages, feasible

solution initialization and virtual machine consolidation. At

the first stage, the algorithm works on looking for feasible

solution where all the constraints are satisfied. In the case of

no constraint violations, the algorithm proceed to the next

stage of the heuristic method, taking the initial placement as

a feasible solution; or otherwise the initial placement causes

one or more constraint violations, in which case, the initial

placement is not viable as a feasible solution.

Making the attempt to find an effective solution, the

heuristic essentially migrates around VMs onto different

physical machines with the fundamental principle of reduc-

ing respective resource utilization by firstly, moving VMs

requiring large amount of respective resource to another

physical machine which is able to accommodate with suffi-

cient resource. If the constraint is still violated, the algorithm

begins a procedure that switches virtual machines to physical

machines until either the constraints are all satisfied or no

more moves can be made to produce a possible feasible solu-

tion, which usually means keeping the original placements.

The second stage of the heuristic serves the primary

purpose of consolidating VMs in order to sleep more PMs,

reducing energy consumption. The resource utilization of

PMs are summed up to draw a comparison between ori-

gin to destination. PMs are chosen in ascending order as

prospective candidates if the VMs residing on them could

Algorithm 1: Energy-saving VM Placement

Input: Period,L′,NVM,NPM,P,Pactive,Psleep,
UCPU,UMEM,UHD,UBW,Tmigrate,
HCPU,HMEM,HHD,HBW and Pmigrate.

Output: L,G and O.

STAGE 1: Feasible Solution Initialization

1: while There exists a resource constraint violation do
2: Perform virtual machine migration to

find a feasible solution;

3: if A feasible solution cannot be found then
4: Adopt the alternative for operation;

5: break;

6: end if
7: end while

STAGE 2: Virtual Machine Consolidation

8: repeat
9: Seek a better solution to consume

energy at a lower level;

10: until The solution cannot be improved.

11: return L,G and O.

be potentially migrated to the remaining PMs. Once the

candidate PMs are selected, the heuristic chooses one out

of the rest of active PMs to host incoming VMs.

Then the VMs currently residing on a given candidate

PM migrates tentatively to check whether the following

conditions are satisfied: no resource utilization constraints

are violated and the after-migration energy consumption

is less than the initial placement energy consumption. As

long as one of the conditions fails, the given solution will

not be sufficient to improve with the tentative candidate

consideration. Along with the consolidation process, when

encountering a resource constraint violation, the algorithm

will start from the resource exceeding the most (HCPU,

HMEM, HHD or HBW), and attempt to reach a solution

without exceeding the limits down the road. All the energy

terms in Eq. (9) are considered in this phase of the algorithm.

IV. TESTBED IMPLEMENTATION

We have built a real virtualized data center testbed to

evaluate our design and ensure it can be practically applied

to real world data centers. Currently we have four physical

servers to host virtual machines, each configured with i7

3770 CPU, 16GB DDR3 memory. Each physical server

is virtualized using VMware ESXi5 hypervisor. We have

deployed 20 Ubuntu 12.04 LTS Linux virtual machines in

this data center. Each VM is equipped with an iSCSI network

storage and can be accessed by every physical server. A third

server is used to host the heart of the data center vCenter,

which manages all the VMs and hypervisors. vCenter is also

responsible for sending out migration command once VM

761

placement decisions are made. Two additional virtual servers

are used to provide DNS, Active Directory Domain and

network storage services. The following provides detailed

information about the hardware and software setup of the

testbed:

• vCenter Server 5.0: Intel Core i7-3770@3.40GHz, 4

GB RAM, runs 64-bit Windows 2008 Server R2.

• vCenter Database: Intel Core i7-3770@3.40GHz, 4

GB RAM, runs 64-bit Windows 2008 Server R2 and

Microsoft SQL Server 2005.

• ESX 5.0 Servers: Intel Core i7-3770@3.40GHz, 32 GB

RAM.

• Network: 1Gbps vMotion network configured on a

private LAN.

• Storage: 2 1TB iSCSI storage hosted by 2 Windows

2008 Server R2, shared by all the hosts.

We configure a Hadoop cluster built with Apache Hadoop

2.2.0 on top of our testbed data center to perform execution

of MapReduce benchmarks. The cluster is composed of one

master node and 20 computing nodes running Ubuntu 12.04.

Each node has 4 GB of memory and 40 GB hard disk.

The Hadoop configuration uses the default settings and runs

with Oracle JDK 1.7. The estimation of resource usage of a

specific VM is based on the VM’s history resource usage as

all applications have program phases [5] that last for a period

of time. With the characterization of the workloads and

benchmark suite used in this paper, the workload fluctuations

range from seconds to minutes, which are actively monitored

by the CoolCloud data center. In this design, we use one

minute as the threshold for a stable program phase and the

threshold for initiating VM migration/remapping.

V. EXPERIMENT RESULT

We first evaluate the energy conserving capability of our

optimization framework (the ILP design) to demonstrate that

optimal dynamic VM placement can be achieved. Secondly,

we demonstrate that the heuristic design is capable of

achieving near optimal results. Thirdly, we use simulation

to demonstrate that the heuristic design can scale well to

large scale server clusters.

In order to thoroughly examine whether the dynamic VM

placement decisions could effectively result in a balanced

and energy aware data center, long-running and fluctuating

workloads are required to trigger the VM migration. These

workloads include: Apache ab, Phoronix Test Suite [6] and

HiBench [7]. HiBench is a widely-used benchmark suite for

Hadoop provided by Intel to characterize the performance

of MapReduce based data analysis running in data centers.

While the benchmark programs are running, our dynamic

VM placement software will keep monitoring the VMs and

servers to make migration decisions when necessary. At the

same time, we keep record of each physical server’s resource

utilization and power consumption for a one hour period. We

Figure 2. Network Utilization in DRS

run all experiments three times and use the average as the

result.

For the evaluation of energy saving capabilities of

VMware DRS [4] and our heuristic algorithm, the same

testbed and workloads are used. We compare these three

designs in regard of their abilities to balance workloads,

server resources and their energy saving abilities. The results

of network utilization, imbalance score and power consump-

tion of each design are compared to demonstrate their overall

performance.

The power consumption of each physical server is mea-

sured based on the work in [8], [9], where the full-system

average power is approximately linear with respect to CPU

utilization as given in eq. (10). It has proven to be an

accurate way of measuring server power consumption espe-

cially in a data center environment where the total power

consumption is an aggregation over a large number of

servers.

PTotal = PDynamic · UAvg + PIdle (10)

In eq (10), PTotal is the total power consumption of the

server, PDynamic is the dynamic power consumption of the

CPU, UAvg is the average CPU utilization and PIdle is the

power consumption when CPU is idle. In our experiment, all

the metrics on the right side of eq.(10) are measured using

the Intel Power Gadget [10].

A. Evaluation on Testbed

In the following experiment result charts, note that

CoolCloud is the proposed optimization design,

where CoolCloud(I) represents the ILP design and

CoolCloud(H) represents the heuristic design.

Figure 2 shows the network utilization of each server

while the testbed data center is managed by VMware DRS.

As we can see there are big differences of network band-

width consumption of each server. For example, within the

15 minutes examining period, server 1 only consumes less

than 100 Kbps of bandwidth. Server 4 on the other hand,

consumes more than 700 Kbps of bandwidth. This is because

DRS does not balance the network resource utilizations

762

Figure 3. Network Utilization in CoolCloud

Figure 4. Power Consumption Comparison

across servers. This is especially harmful when several VMs

that all require high network bandwidth are placed on the

same server. This design flaw causes resource wastage: due

to the bottle neck of one resource, other resources can not

be fully utilized. For example, in the case of unbalanced

network utilization, if a PM runs out of network bandwidth,

even if it still has large amount of remaining CPU or memory

resource, it is unlikely to accommodate any more VMs.

On the other hand, Figure 3 shows the network utilization

of each servers while the testbed data center is being man-

aged by our dynamic VM placement design. To demonstrate

the effectiveness of our design and to save space at the same

time, we only show the result for CoolCloud ILP, since

the result for Heuristic is similar. The network utilization

starts unbalanced with server 4 having heavy network traffic

(1200 Kbps) and server 2 having very little network traffic (0

Kbps). Our optimization model quickly detects this imbal-

ance and provides the optimal placement solution. In about

3 minutes, the migrations are complete and the network

bandwidth consumptions are balanced across all servers.

This demonstrates our design solves the unbalanced issue in

DRS, eliminating potential network bandwidth bottlenecks.

Figure 4 shows the power consumption of the data center

managed by No Migration, DRS, CoolCloud(I) and

CoolCloud(H). Each case is monitored in a 60 minutes

Figure 5. CoolCloud Performance Evaluation

time period. The data center starts with the same workload

and initial VM placement. The result shows both DRS and

our design are capable of achieving power savings. DRS
can provide 15.5% power savings on average compared

to the settings where no management scheme is used at

all. CoolCloud(I) and CoolCloud(H) achieved 28.6% and

28.3% power savings respectively when comparing with the

case of no management scheme used, and this is over 15%

gain of power savings compared with DRS. The power

consumption measured here is the result of taking all costs

including the cost of live migration into consideration.

Both DRS and our design provide power savings by

turning off under utilized servers, however our design is

capable of achieving the maximum power savings. This is

because DRS mainly focuses on balancing CPU resource,

and it only periodically (every 5 minutes) checks if any

server is under utilized. This periodic checking may miss

some energy saving opportunities due to the fluctuation

of workloads. Further more, DRS does not provide the

balancing of memory or network bandwidth across servers.

This implies that some servers cannot be turned off due

to resource wastage which leads to waste of energy. On

the other hand, our design has an objective of minimizing

energy consumption and all aspects of server resources are

being considered. This creates a well balanced data center

in regard of all resources, thus more servers can be turned

off to achieve more energy savings. Notice that our design

constantly monitors the server resource utilization in a pro-

active fashion, thus responding quickly to the workload

fluctuations and seizing every energy saving opportunities.

Figure 5 provides the performance evaluation of Cool-

Cloud. In this experiment, we measure the execution time for

four benchmark programs from HiBench, i.e., WordCount,

Sort, PageRank and Kmeans. For WordCount, the execution

time is about the same across all three configurations, i.e.,

132s for No Migration, 138s for CoolCloud and 130s for

DRS. CoolCloud requires slightly longer time to complete

execution due to the overhead of live migration. However

763

for PageRank and Kmeans (825s for No Migration, 684s

for CoolCloud and 756 for Kmeans), CoolCloud demon-

strates significant lower execution time compared to No
Migration and DRS. This is because No Migration can

not resolve the resource contention issue experienced by

VMs, and DRS only reacts to this issue every 5 minutes.

On the other hand, CoolCloud is able to detect the resource

contention proactively and respond quickly by initiating

VM migration to resolve this issue. Note that the cost for

live migration is fully considered in both the optimization

model and the heuristic. The time duration for live migration

typically ranges from several seconds to tens of seconds

depending on the memory footprint of the VM. The small

performance degradation comes from the live migration

overhead and affects the applications performance running

on that specific VM. CoolCloud prioritizes VMs’ with

smaller memory footprints for migration thus significantly

reduces the overall migration overhead

B. Evaluation through Simulation

The evaluation result of the ILP and heuristic designs

against the test bed data center has proven to provide better

energy conservations compared to VMWare’s Dynamic Re-

source Planning design. In this section, we demonstrate that

the heuristic design can be effectively applied to large-scale

clusters to provide energy savings. To thoroughly evaluate

the heuristic design, we designed an hybrid approach that

combines profiling VM data from the test bed and simulating

a large-scale cluster using the collected data.

1) VM Profiling: The goal of VM profiling is to generate

large numbers of VMs with runtime information and feed

these VMs’ runtime info as inputs to the ILP and heuristic

to evaluate their performance in respect of energy saving

capability and computation complexity. The VM profiling is

accomplished while running benchmark programs on the 20

VMs in the data center testbed. To accelerate the profiling

process and not lose the fluctuation of workloads, each

profile lasts 30 minutes. The profile includes VM’s CPU,

memory, network, harddisk utilization and power consump-

tion footprint. Since each profile represents 20 VMs and

requires 30 minutes to generate, we need 60 minutes to

generate profiles for 40 VMs, 150 minutes for 100 VMs, 240

minutes for 160 VMs and so forth. In this paper, we generate

profiles for 1000 VMs in total and provide the simulation

result in the following.

2) Performance Comparison of CPLEX and Heuristic Al-
goritm: The simulation for the ILP design and the heuristic

design are carried out with the same system configuration: A

server with 2 Intel Xeon x5650 CPUs which has 24 virtual

cores, Red Hat Enterprise Linux Workstation 6.6 (Santiago)

with 2.6 kernel, and the total amount of memory is 47 GB.

The optimization ILP formulation is solved by IBM CPLEX

12.5.

Figure 6. Energy consumption for ILP and Heuristic

Figure 7. Computation time for ILP and Heuristic

Figure 6 displays the energy consumption result for the

ILP design and the Heuristic design when the number of

virtual machines in the data center ranges from 20 to 1000.

In the case of 1000 VMs, with the management of ILP, the

data center energy consumption is 5280kJ and this number

is 5401kJ for applying the heuristic design. This means the

solution provided by the heuristic design only differs 2.3%

from the optimal result. Overall, this result demonstrates that

the heuristic design can provide solutions with only slight

degradation on energy savings compared to the optimal ILP

design.

Figure 7 displays the computation time of ILP and

Heuristic. In the case of 20 VMs, ILP and Heuristic take

comparable time for calculation with 180ms and 375ms

respectively. At the point of 50 VMs, the computation

time is about the same with 630ms and 661 respectively.

However when there are more than 50 VMs, the computation

time for solving ILP grows dramatically as the number of

VMs increases. In the case of 1000 VMs, the computation

time for ILP and Heuristic are 680s and 22s respectively.

This result demonstrates that the heuristic design is highly

computational efficient when it comes to large-scale clusters.

Overall, the simulation result shows that the heuristic

design can provide near optimal solutions for energy savings

and it is highly computational efficient making it a practical

solution for large-scale data centers.

764

VI. RELATED WORK

Earlier work mostly focuses on improving resource uti-

lization and load balancing of VMs across physical servers

[7]. Timothy et al. [7] propose a VM mapping algorithm

called Sandpiper to detect hotspots and relocate VMs from

overloaded servers to under-utilized ones. When a migration

between two servers is not directly feasible, Sandpiper can

identify a set of VMs to interchange in order to free up

sufficient amount of resources on the destination server. This

approach is able to solve specific replacement issues but

requires extra memory space for interim hosting of VMs.

This process also needs extra rounds of migration and may

affect system performance.

Static VM placement methods [11], [12] are effective for

initial VM placements. However, these approaches do not

consider future dynamic workload changes that may need

VM remappings. Jing et al. [11] propose a multi-objective

virtual machine placement algorithm that simultaneously

minimize power consumption, resource wastage and thermal

dissipation. Xin et al. [12] also considers physical resources

as multi-dimensional and propose a multi-dimensional space

partition model to determine the mapping of VMs and PMs.

Furthermore, Bobroff et al. [13] uses first-fit approxima-

tion to solve the VM placement problem focusing on CPU

utilization. Fabien et al. [14] formulate VM placement into

a constraint satisfaction problem to minimize the number

of physical machines. This work considers uni-processor

computers and assumes each PM can only host one active

VM. Hien et al. [15] extends [14] and considers CPU and

RAM as constraints.

VII. CONCLUSION

This paper presents a dynamic virtual machine placement

framework to manage the mappings of VMs to physical

servers. This framework tackles the problem of finding the

most energy efficient way (least resource wastage and least

power consumption) of placing the VMs considering their

fluctuating workloads and resource requirements. With all

resource constraints and migration cost taken into account,

the design is implemented and evaluated against a real

testbed. It is proven that CoolCloud is highly scalable and

can be practically applied to enterprise data centers for great

energy efficiency.

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[2] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros,
“Implementing scalable, network-aware virtual machine mi-
gration for cloud data centers,” in Proceedings of the 2013
IEEE Sixth International Conference on Cloud Computing,
ser. CLOUD ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 557–564.

[3] A. Gulati, “Towards proactive resource management in virtu-
alized datacenters,” http://www.vmware.com, 2013.

[4] A. G. Ganesha Shanmuganathan, “Vmware distributed re-
source management: Design, implementation, and lessons
learned,” http://www.vmware.com, 2012.

[5] Z. Zhang and J. Chang, “A cool scheduler for multi-core
systems exploiting program phases,” Computers, IEEE Trans-
actions on, vol. 63, no. 5, pp. 1061–1073, May 2014.

[6] Phoronix Media, Phoronix Test Suite. http://www.phoronix-
test-suite.com/.

[7] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The hibench benchmark suite: Characterization of the
mapreduce-based data analysis,” in Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference
on, March 2010, pp. 41–51.

[8] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning
for a warehouse-sized computer,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: ACM, 2007, pp. 13–23.

[9] D. Meisner and T. F. Wenisch, “Peak power modeling for
data center servers with switched-mode power supplies,” in
Proceedings of the 16th ACM/IEEE International Symposium
on Low Power Electronics and Design, ser. ISLPED ’10.
New York, NY, USA: ACM, 2010, pp. 319–324.

[10] White Paper. Measuring Processor Power. Intel Corporation.,
April 2011.

[11] J. Xu and J. A. B. Fortes, “Multi-objective virtual ma-
chine placement in virtualized data center environments,” in
Green Computing and Communications (GreenCom), 2010
IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), 2010, pp. 179–
188.

[12] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual
machine placement algorithm with balanced and improved
resource utilization in a data center,” Mathematical and
Computer Modelling, no. 0, pp. –, 2013.

[13] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of
virtual machines for managing sla violations,” in Integrated
Network Management, 2007. IM ’07. 10th IFIP/IEEE Inter-
national Symposium on, 2007, pp. 119–128.

[14] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall, “Entropy: a consolidation manager for clusters,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments, ser.
VEE ’09. New York, NY, USA: ACM, 2009, pp. 41–50.

[15] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud, “Au-
tonomic virtual resource management for service hosting
platforms,” in Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing, ser.
CLOUD ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1–8.

765

