
QoS-Aware Data Replication for Data-Intensive
Applications in Cloud Computing Systems

Jenn-Wei Lin, Chien-Hung Chen, and J. Morris Chang, Senior Member, IEEE

Abstract—Cloud computing provides scalable computing and storage resources. More and more data-intensive applications are

developed in this computing environment. Different applications have different quality-of-service (QoS) requirements. To continuously

support the QoS requirement of an application after data corruption, we propose two QoS-aware data replication (QADR) algorithms in

cloud computing systems. The first algorithm adopts the intuitive idea of high-QoS first-replication (HQFR) to perform data replication.

However, this greedy algorithm cannot minimize the data replication cost and the number of QoS-violated data replicas. To achieve

these two minimum objectives, the second algorithm transforms the QADR problem into the well-known minimum-cost maximum-flow

(MCMF) problem. By applying the existing MCMF algorithm to solve the QADR problem, the second algorithm can produce the optimal

solution to the QADR problem in polynomial time, but it takes more computational time than the first algorithm. Moreover, it is known

that a cloud computing system usually has a large number of nodes. We also propose node combination techniques to reduce the

possibly large data replication time. Finally, simulation experiments are performed to demonstrate the effectiveness of the proposed

algorithms in the data replication and recovery.

Index Terms—Cloud computing, data-intensive application, quality of service, data replication, network flow problem

Ç

1 INTRODUCTION

CLOUD computing provides scalable computing and
storage resources via the Internet [1], [2], [3]. It also

enables users to access services without regard to where the
services are provided and how they are delivered, similar
to water, electricity, gas, and telephony utilities [4]. With
the flexible and transparent features in the resource
allocation and service provisioning, more and more data-
intensive applications are developed in the cloud comput-
ing environment. The data-intensive applications devote
most of their execution time in disk I/O for processing a
large volume of data, for example, data mining of
commercial transactions, satellite data processing, web
search engine, and so on. Apache Hadoop [5] is an
emerging cloud computing platform dedicated for data-
intensive applications.

Due to a large number of nodes in the cloud computing
system, the probability of hardware failures is nontrivial
based on the statistical analysis of hardware failures in [6],
[7], [8]. Some hardware failures will damage the disk data
of nodes. As a result, the running data-intensive applica-
tions may not read data from disks successfully. To tolerate
the data corruption, the data replication technique is

extensively adopted in the cloud computing system to
provide high data availability [9], [10], [11], [12]. However,
the QoS requirement of an application is not taken into
account in the data replication. When data corruption
occurs, the QoS requirement of the application cannot be
supported continuously. The reason is explained as follows.
With a large number of nodes in the cloud computing
system, it is difficult to ask all nodes with the same
performance and capacity in their CPUs, memory, and
disks [13]. For example, the Amazon EC2 is a realistic
heterogeneous cloud platform, which provides various
infrastructure resource types to meet different user needs
in the computing and storage resources [14]. The cloud
computing system has heterogeneous characteristics in
nodes. Due to the node heterogeneity, the data of a high-
QoS application may be replicated in a low-performance
node (the node with slow communication and disk access
latencies). Later, if data corruption occurs in the node
running the high-QoS application, the data of the applica-
tion will be retrieved from the low-performance node. Since
the low-performance node has slow communication and
disk access latencies, the QoS requirement of the high-QoS
application may be violated. Note that the QoS requirement
of an application is defined from the aspect of the request
information. For example, in [15], the response time of a
data object access is defined as the QoS requirement of an
application in the content distribution system.

This paper investigates the QoS-aware data replication
(QADR) problem for data-intensive applications in cloud
computing systems. The QADR problem concerns how to
efficiently consider the QoS requirements of applications in
the data replication. The main goal of the QADR problem is
to minimize the data replication cost and the number of QoS-
violated data replicas. By minimizing the data replication
cost, the data replication can be completed quickly. This can
significantly reduce the probability that the data corruption
occurs before completing data replication. Due to limited

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013 101

. J.-W. Lin is with the Department of Computer Science and Information
Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
E-mail: jwlin@csie.fju.edu.tw.

. C.-H. Chen is with the Department of Electrical Engineering, National
Taiwan University, Taipei 10617, Taiwan.
E-mail: d01921025@ntu.edu.tw.

. J.M. Chang is with the Department of Electrical and Computer
Engineering, Iowa State University, 391A Durham, 2215 Coover Hall,
Ames, Iowa 50011-2252. E-mail: morris@iastate.edu.

Manuscript received 15 Feb. 2013; revised 24 May 2013; accepted 23 June
2013; published online 16 July 2013.
Recommended for acceptance by P. Balaji.
For information on obtaining reprints of this article, please send e-mail to:
tcc@computer.org, and reference IEEECS Log Number TCC-2013-02-0027.
Digital Object Identifier no. 10.1109/TCC.2013.1.

2168-7161/13/$31.00 � 2013 IEEE Published by the IEEE CS, ComSoc, PES, CES, & SEN

replication space of a storage node, the data replicas of some
applications may be stored in lower-performance nodes.
This will result in some data replicas that cannot meet the
QoS requirements of their corresponding applications.
These data replicas are called the QoS-violated data replicas.
The number of QoS-violated data replicas is expected to be
as small as possible.

To solve the QADR problem, we first propose a greedy
algorithm, called the high-QoS first-replication (HQFR)
algorithm. In this algorithm, if application i has a higher
QoS requirement, it will take precedence over other
applications to perform data replication. However, the
HQFR algorithm cannot achieve the above minimum
objective. Basically, the optimal solution of the QADR
problem can be obtained by formulating the problem as an
integer linear programming (ILP) formulation. However, the
ILP formulation involves complicated computation. To find
the optimal solution of the QADR problem in an efficient
manner, we propose a new algorithm to solve the QADR
problem. In this algorithm, the QADR problem is trans-
formed to the minimum-cost maximum-flow (MCMF) pro-
blem. Then, an existing MCMF algorithm is utilized to
optimally solve the QADR problem in polynomial time.
Compared to the HQFR algorithm, the optimal algorithm
takes more computational time. However, the two pro-
posed replication algorithms run in polynomial time. Their
time complexities are dependent on the number of nodes in
the cloud computing system. To accommodate to a large-
scale cloud computing system, the scalable replication issue
is particularly considered in our QADR problem. We use
node combination techniques to suppress the computa-
tional time of the QADR problem without linear growth as
increasing the number of nodes.

To the best of our knowledge, this is the first paper to
investigate the QADR problem in the cloud computing
system. Overall, the main contributions of this paper are
summarized as follows:

. Unlike previous data replication schemes of the cloud
computing system, our data replication algorithms
consider the QoS requirements of applications.

. For optimally solving the QADR problem, we present
how to formulate the QADR problem as an ILP
formulation. Considering the computational com-
plexity in solving the ILP formulation, we transform
the QADR problem to the MCMF problem to obtain
the polynomial-time optimal solution.

. The proposed replication algorithms can accommo-
date to a large-scale cloud computing system. We
utilize node combination techniques to suppress the
computational time of the QADR problem.

The rest of the paper is organized as follows: Section 2
introduces the preliminaries of this paper. Section 3
presents our data replication algorithms. Section 4 evaluates
the performance of the proposed algorithms. Finally,
Section 5 concludes the paper.

2 PRELIMINARIES

2.1 System Model

We refer to the architecture of the Hadoop distributed file
system (HDFS) [10] to design our replication algorithms.

The HDFS has many similarities with the proprietary
distributed file system: Google file system [16]. It consists
of a single NameNode and a set of DataNodes. The Name-
Node and DataNodes are deployed within a number of
racks, as shown in Fig. 1, each of which has an associated
rack number to represent in which rack it is located. The
NameNode mainly manages the file system namespace and
the locations of data blocks (the mapping of data blocks to
DataNodes). A file is split into one or more data blocks.
Then, these data blocks are dispersedly stored in Data-
Nodes. In Hadoop, applications are executed in DataNodes.
When the application would like to process a data block, it
acts as an HDFS client to send a block read (write) request
to the NameNode. The NameNode finds the corresponding
DataNode to process this read (write) request. Each
DataNode also periodically sends a heartbeat message to
the NameNode to represent that it is functioning properly.
In the HDFS architecture, there is also an Ethernet switch in
each rack to provide the node communication within the
rack (intrarack node communication). There are also some
aggregated Ethernet switches for providing the node
communication between racks (inter-rack node commu-
nication). For all the switches, a logical tree network
topology is formed among them because switches usually
adopt the common communication protocol: spanning tree
protocol (STP) [17].

2.2 Related Work

To tolerate failures in cloud computing systems, the
techniques of checkpoint and data replication have been
extensively used.

The checkpoint technique is used to tolerate the Name-
node failure. In [9], the NameNode periodically saves its file
system namespace as a persistent record called a check-
point. The checkpoint is stored in the disk of the Name-
Node. When the NameNode incurs a transient failure, the
state of the file system namespace can be restored using the
most recent checkpoint.

The data replication technique is used for the DataNode
to protect its stored data blocks against failure. In HDFS
[10], the default replica factor of a data block is 2. Whenever
a data block is written to the DataNode i, the original copy
of this data block is stored in the disk of the DataNode i.
Two replicas of this data block are stored in two DataNodes
whose rack numbers are different from that of the
DataNode i. This replica placement manner particularly
considers the possible power outage and switch failure in a

102 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 1. The architecture of the Hadoop distributed file system.

rack. In addition to data replication, the work of [11]
particularly discussed the problem of maintaining the
consistency of data replicas in the cloud computing system.
The lazy update method is used to separate the processes of
data replica updates and data accesses, which can improve
the throughput of data accesses and reduces response time.
Unlike the typical three-replica replication strategy, the
authors of [12] presented a cost-effective data reliability
management mechanism. The mechanism is based on
proactive replica checking to reduce the number of replicas
stored while meeting the data reliability requirement. It can
reduce the storage space consumption. From the above
literature, we can know that the data replication issue has
been investigated in cloud computing systems. However,
the QoS requirement of the application is not be concerned
in data replication.

The similar QADR problem has been discussed for
content distribution systems [15]. In the work, the authors
investigated how to place the replicas of each data object in
appropriate servers of the system. With the data object
replication, clients can access data objects from their
proximity servers. The authors also proved that the
concerned QADR problem is NP-complete. Two heuristic
algorithms, called l-Greedy-Insert and l-Greedy-Delete, were
proposed to gradually insert and remove the replicas of
each data object without violating the specified QoS
requirement, respectively. However, the proposed heuristic
algorithms in [15] take long execution time. To reduce the
execution time, the authors of [18] presented a new heuristic
QADR algorithm that is based on the idea of cover set. The
cover set of a server u is the set of servers that can serve the
requests from u within qðuÞ, where qðuÞ is the required
service quality requirement. By finding the cover set of each
server, the good QADR solution can be obtained.

The QADR problem has also been studied on data grid
systems [19], [20], [21]. The authors of [19] formulated the
QADR problem as a dynamical programming problem.
Then, a distributed replica placement algorithm was
proposed, which exploited the historical access records of
popular data files to compute replication locations de-
signed to satisfy QoS requirements. The proposed replica-
tion algorithm is based on a fully distributed dynamic
programming technique to avoid the limitations of the
centralized algorithm (e.g., reliability and performance
bottleneck). The authors of [20] addressed the replica
placement problem in tree-based mobile grid environments
to meet the QoS requirements of mobile users and load
balancing of replicas. The QoS requirements are specified
by the number of hops from the mobile user to the server
with replica. In addition to increasing data availability, the
addressed replica problem can improve data access
performance. To efficiently solve the replica problem, the
authors proposed a two-step solution that applies a
dynamic programming approach and a binary search
algorithm. The authors of [21] presented a dynamic replica
replacement strategy, called least value replacement (LVR),
which can satisfy QoS requirements and storage capacity
constraints in a data grid environment. The main feature of
LVR is that it can ascertain the importance of replicas in a
grid site. Whenever a grid site is full without available

storage space, the LVR can automatically decide on which

replica to be replaced based on information such as access

frequency and files future value.
The above replication algorithms of [15], [18], [19], [20],

[21] are unsuitable for solving our QADR problem. Our

QADR problem is discussed under a cloud computing

system. The number of replicas for a data block is fixed.

Based on the fixed replica factor, our QADR problem

attempts to minimize the data replication cost. Due to the

limited replication space of each node, our QADR problem

particularly considers the replication contention among

data blocks. The replication contention may cause some

data replicas that cannot meet the QoS requirements of

their corresponding applications. In such a case, a number

of QoS-violated data replicas are generated. Our QADR

problem also concerns how to minimize the number of

QoS-violated data replicas. In [15], [18], [19], [20], [21], the

problem of QoS violation minimization was not discussed

in data replication. For a server with limited replication

space, if there are many data object replicas to be placed in

this server, the replicas of some data objects cannot be

stored successfully. In such a case, the unsuccessful data

object replicas will be put in other servers without QoS

satisfaction. This problem is not handled in the above

previous work.

3 QoS-AWARE REPLICATION ALGORITHMS

In this section, we will present two replication algorithms

for solving the QADR problem in the cloud computing

system. Before elaborating the proposed algorithms, we

give some definitions for clarifying the QADR problem.

Definition 1. Given a cloud computing system with a set of

storage nodes S, these storage nodes can also run applications

in addition to storing data. The storage node functionality is

similar to the storage node in HDFS [10].

Definition 2. For a storage node r 2 S, if its running application

writes a data block b to the disk of r, a replication request will

be issued from r to replicate a number copies of b to the disks of

other nodes. In the cloud computing system, jSj is usually

large. It is very possible that there may have many concurrent

replication requests issued from different nodes at a certain

time instant. Due to space limitation, each node cannot store

too many data replicas from other nodes.

Definition 3. For a data block b, if it is replicated from node r to

node q, one data replica dr of b will be stored at q. A desired

access time T is specified for dr. In addition, dr is also

associated with a replication cost RC and an access time AC.

Definition 4. When the original copy of b cannot be read due to

data corruption, r attempts to retrieve the data replica dr from

q. If AC is greater than T , dr is one QoS-violated data replica.

Definition 5 (The QoS-aware data replication problem).

The main objective of the QADR problem is to find an optimal

replica placement strategy P , which can minimize both the

total replication cost of all data blocks and the total number of

QoS-violated data replicas.

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 103

3.1 Intuitive Method

3.1.1 Basic Idea and Assumptions

In Section 1, we have stated that a high-QoS application has

the stricter requirement in the response time of a data access

than a normal application. The high-QoS application should

take precedence over the low application to put its data

replicas on the high-performance storage nodes. By sorting

the QoS requirements of applications, if there is limited

replication space in the high-performance storage node, it

can first store the data replicas of high-QoS applications.

Thereafter, when the high-QoS application reads a corrupt

data replica, its QoS requirement can be continuously

supported by retrieving the data replica from a high-

performance node. Before describing the details of the

HQFR algorithm, we make the following assumptions:

. For convenience, it is assumed that a node runs one
application during a time interval. Only one file is
opened in the execution of the application. In
Hadoop, the file is divided into a number of data
blocks, each of which contains 64 MBytes. The data
block is a data access (replication) unit.

. As mentioned in Section 2.2, each data block in
HDFS has two default data replicas against data
corruption. In addition to the node failure, the
switch failure is additionally concerned. The switch
failure may cause that the data replicas in a rack
cannot be accessed by the nodes in other racks. The
switch failure is also regarded as the rack failure. For
considering the possible rack failure, the two
replicas of a data block and its original copy cannot
be all put in a single rack. According to this data
availability requirement, our proposed replication
algorithms also make each data block with two
replicas except the original copy. These two replicas
can be placed in the same rack or different racks, but
their associated rack numbers are different from that
of the original copy.

. Like [15], the QoS requirement of an application is
defined from the aspect of the request information,
such as the response time of a data object access. In
[15], it was explicitly stated that the data response
time can be specified in the form of service-level
agreements (SLAs). In this paper, the proposed
replication algorithms are mainly designed for
data-intensive applications. The main characteristic
of a data-intensive application is that it performs
most operations on the disk-resident data. In such a
case, the QoS requirement of a data-intensive
application can be defined as the access time to
retrieve a data block. The expected data access time
can also be specified in the SLA.

3.1.2 High-QoS First-Replication Algorithm

Table 1 lists the notations used in our replication algo-

rithms. The HQFR algorithm is given in Fig. 2, whose

operations are elaborated as follows.
When an application would like to write a data block, the

node executing the application would issue a replication

request for the data block. The information about the QoS

requirement of the application (the desired access time of

the data block) is also attached on the replication request to

generate a QoS-aware replication request.
Multiple QoS-aware replication requests may be issued

concurrently from a number of nodes. These concurrent

replication requests will be processed in a sequence based

on the ascending order of their associated access time. If the

replication request i has a higher QoS requirement than the

replication request j, the replication request i is associated

with a smaller access time than the replication request j. In

such a case, the HQFR algorithm will first process the

replication request i to store its corresponding data replicas.
When processing a QoS-aware replication request

from the requested node ri, it is required to find the

104 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

TABLE 1
Summary of Notations

correspondingly qualified nodes that satisfy the QoS
requirement of the running application in ri. It has been
known that the access time of a data block is used to
represent the QoS requirement of a data-intensive applica-
tion. Assumed that the QoS requirement of the running
application in ri is TqosðriÞ time units. If the node qj would
like to be one qualified node of ri, it needs to meet
the following two conditions:

. The nodes qj and ri cannot be located within the
same rack. This condition is for considering the
possible rack failure (see Section 2.2)

RðriÞ 6¼ RðqjÞ; ð1Þ

where R is the function to determine in which rack a
node is located (see Table 1).

. The data replica access time from qj to ri
(Taccessðri; qjÞ) needs to meet the TqosðriÞ constraint:

Taccessðri; qjÞ ¼ TdiskðqjÞ þ Tcommðri; qjÞ � TqosðriÞ;
ð2Þ

where TdiskðqjÞ is the disk access latency for retriev-
ing a data block replica from the disk of qj, and
Tcommðri; qjÞ is the network communication latency
for transmitting a data block replica from qj to ri.

Based on (2), we know that the data replica access time
consists of the disk access latency and network commu-
nication latency. In addition to the disk access time and
transmission time, the two latencies are dependent on the
disk workload and the network traffic load. These two load
parameters are dynamical, which are difficult to be
estimated precisely. The authors of [15] explicitly stated
that the server load and network load are not considered in
the estimation of the data replica access time because the
hardware resource addition can sufficiently provide the
capacity requirement of load. For involving the disk
workload and network load in the estimation of data
replica access time, a queuing model can be used to
estimate the two load parameters. Several queuing models
have been developed [22], which are also extensively used

to evaluate the performance of a computer system. For
example, in [23], the queuing model M=G=m=mþ r is used
to evaluate the performance of the cloud computing
system. Basically, the estimation of the data replica access
time is not the main issue of this paper. We focus on
developing QADR algorithms based on different data
replica access times between storage nodes.

According to the above two conditions, all the qualified
nodes with respect to the requested node ri can be found.
Then, rf qualified nodes are selected from all the qualified
nodes. These rf qualified nodes have smaller data replica
access time than other qualified nodes. Next, the data block
of ri will be, respectively, made one replica to be stored in
each of rf qualified nodes. These rf qualified nodes will also
update their, respectively, available replication space.

From the above-given operations, the replication cost of
the HQFR algorithm can be represented as the total storage
cost (time) taken by all the requested nodes to store their
respective data block replicas. Like [15] and [18], the
replication cost is represented as the sum of the storage
costs of all data block replicas, as follows:

X
8ri2Sr

X
8qj2Snri

Tstorageðri; qjÞ: ð3Þ

Tstorageðri; qjÞ is similar to Taccessðri; qjÞ. In (2), we have
clearly defined Taccessðri; qjÞ to be the sum of the network
communication latency and the disk access latency for
retrieving a data block replica from node qj to node ri.
Therefore, Tstorageðri; qjÞ includes the time to transmit a data
block replica from ri to node qj and the time to write the
data block replica to the disk of qj.

Intuitively, the requested nodes can concurrently store
their data block replicas. However, two or more requested
nodes may contend to place their data block replicas at the
same qualified node with a limited amount of replication
space. In such a case, a placement sequence is required to
be made for determining what requested nodes can place
their data block replicas in the qualified nodes, which is
given in Fig. 2.

3.1.3 Time Complexity

Next, we analyze the time complexity of the HQFR
algorithm. The HQFR algorithm can be divided into two
parts: the arrangement of the replication request sequence
and the execution of each replication request. In the first
part, if the QoS requirement of a requested node is high, it
will be associated with a small access time to replicate its
corresponding data block. Its replication request is also
performed first and then that of the request node with the
lower QoS requirement. The first part follows the sorting
order of the associated access time to arrange the replication
sequence of request nodes (see line 1 of Fig. 2). It is known
that the time complexity of the sorting problem is
Oðn lognÞ. If there are jSrj requested nodes, the first part
will take OðjSrj log jSrjÞ. By following the given replication
request sequence, the second part alternatively performs the
QoS-aware replication request of each requested node. In
this part, it first takes OðjSjÞ to find the correspondingly
qualified nodes of a requested node. Then, it selects rf best
qualified nodes to store the data block replica. For all jSrj

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 105

Fig. 2. The high-QoS first-replication algorithm.

requested nodes, their replication requests can be done in
OðjSrkSjÞ. Overall, the time complexity of the entire HQFR
algorithm is OðjSrj log jSrjÞ þOðjSrkSjÞ. If jSrj is close to jSj,
this time complexity will be OðjSj2Þ.

Although the HQFR replication algorithm can easily
solve the QADR problem in polynomial time, it may not
achieve the two minimum objectives of the QADR problem.
An example is given in Fig. 3. For convenience, Fig. 3
considers the cloud computing system with 10 datanodes
located within five racks. Each rack has two datanodes. At a
time instant, five concurrent QoS-aware replication requests
are concurrently issued from requested nodes n3, n5, n7, n9,
and n10. Based on the HQFR algorithm, the replication
request sequence is arranged as n3, n5, n7, n9, and n10.

Then, we model the relationship between the requested
nodes and their correspondingly qualified nodes as a
weighted bipartite graph, as shown in Fig. 4. In this figure
the weighed value on a bipartite edge denotes the data
replica storage cost of a requested-qualified node pair. The
five requested nodes r1, r2, r3, r4, and r5 correspond to the
datanodes n3, n5, n7, n9, and n10 in Fig. 3, respectively. For
the seven qualified nodes q1, q2, q3, q4, q5, q6, and q7 they
correspond to the datanodes n1, n2, n3, n4, n5, n6, and n7 in
Fig. 3, respectively. Based on (1) and (2), the qualified nodes
of the requested node r1 are the nodes q1, q2, q5, q6, and q7. In
Fig. 4, the requested node r1 has links with these qualified
nodes. According to the given replication request sequence
of the HQFR algorithm (r1, r2, r3, r4, r5), the requested
nodes r1 and r2 are prior to the requested node r3 to
perform the QoS-aware replication requests. From Fig. 4,
we can also see that q1 and q2 are the qualified nodes of all
the requested nodes. Since the replication requests of the

requested nodes r1 and r2 are first executed, the replication

spaces of q1 and q2 are fully occupied by the requested

nodes r1 and r2. This will cause that the requested nodes r3

and r5 cannot find a sufficient number of qualified nodes (rf
qualified nodes) to store the replicas of their data blocks.

The QoS-aware replication requests of r3 and r5 cannot be

performed successfully. Note that rf in Fig. 4 is set to 2.
However, if the replication request sequence is (r3, r4, r1,

r2, r5) rather than (r1, r2, r3, r4, r5), all the requested nodes
can perform their QoS-aware replication requests success-
fully. In such a situation, the minimum replication cost is
860. From the weighted bipartite graph of Fig. 4, we can see
that the requested nodes r1 and r2 can place their data block
replicas in the qualified nodes q5 and q6, as well as the
qualified nodes q3 and q4, respectively. In such replica
placement, the requested nodes r3 and r5 can successfully
perform their QoS-aware data replication by placing their
data block replicas in the qualified nodes q1 and q2, as well
as the qualified nodes q5 and q7, respectively.

From the above violation example, we know that the
HQFR algorithm can easily cause the requested nodes to
contend some qualified nodes. If these qualified nodes have
not enough storage space for data block replicas, the
minimum objectives of the QADR problem will not be
achieved. In a cloud computing system, many applications
may simultaneously execute. As a result, there are many
requested nodes to issue their replication requests concur-
rently. The above replication contention case easily occurs.
Instead of the HQFR algorithm, we will propose a new
replication algorithm to ensure the two minimum objectives
of the QADR problem.

106 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 3. An example to demonstrate a QADR problem. (a) A small-scale cloud system example. (b) The replica access time between any two nodes in

the cloud system example.

Fig. 4. The weighted bipartite graph corresponding to a QADR problem. (a) The constructed bipartite graph. (b) The weight of each bipartite edge.

3.2 Optimal Replica Placement

3.2.1 ILP Formulation

The optimal solution of the QADR problem can be obtained
using integer linear programming. The ILP is a well-known
technique used to solve the optimal problems with the
following characteristics: a linear objective function, a
number of linear constraints, and an integer solution set
[24]. Given an instance P of the QADR problem, the
corresponding ILP formulation can be expressed as (4) to
(9). The used notations can be found in Table 1. In the given
ILP formulation, the data replica placement can be obtained
based on the binary variables x and y. If xðri; qjÞ is 1, the
node qj stores one data block replica of the requested node
ri. If yðri; qjÞ is also 1, the corresponding data block replica
is one QoS-violated replica.

Minimize
X
8ri2Sr

X

8qj2SnRðriÞ
xðri; qjÞ � Tstorageðri; qjÞ

0
B@

1
CA

þ
X
8ri2Sr

X

8qj2SnRðriÞ
yðri; qjÞ � k

0
B@

1
CA;

ð4Þ

subject to 8ri 2 Sr;
X

8qj2SnRðriÞ
xðri; qjÞ ¼ rf ; ð5Þ

8qj 2 S;
X
8ri2Sr

xðri; qjÞ � aðqjÞ; ð6Þ

8ri 2 Sr ^ 8qj 2 Sqri ; yðri; qjÞ ¼ xðri; qjÞ; ð7Þ

8ri 2 Sr ^ 8qj 2 Sqri ; yðri; qjÞ ¼ 0; ð8Þ

8ri 2 Sr ^ 8qj 2 SnRðriÞ; xðri; qjÞ; yðri; qjÞ 2 f0; 1g: ð9Þ

Based on (4), there are two minimum terms in the
objective function of the ILP formulation. The first mini-
mum term is the total replication cost of all data replicas,
and the second minimum term is the number of QoS-
violated data replicas. The second minimum term is prior to
the first minimum term. The coefficient k is used to ensure
that the number of QoS-violated data replicas will be first
minimized. The reason will be explained later. In the ILP
formulation, if the requested node ri puts one data block
replica in the node qj, this event is recorded by setting 1 in
xðri; qjÞ. However, if the replica is a QoS-violated data block
replica, yðri; qjÞ will also be set as 1. By adding up all the
values of y, the total number of QoS-violated data replicas
can be obtained. This number is expected to be as small as
possible by associating with a constant coefficient
k ¼ max8ri2Sr^8qj2SfTstorageðri; qjÞg þ 1. With the setting of
k, each yðri; qjÞ has a larger coefficient than each xðri; qjÞ. It
is also known that the values of xðri; qjÞ and yðri; qjÞ are
either 0 or 1. Under the minimization requirement of (4), the
given ILP formulation avoids setting 1 to each yðri; qjÞ. Note
that the value of each yðri; qjÞ is also dependent on (7) and
(8) in addition to (4). From the above description, we can

know that the ILP formulation will first minimize the
number of QoS-violated data replicas. Then, it minimizes
the total replication cost of all data replicas.

Based on the given replication factor rf , each requested
node stores rf data block replicas in rf storage nodes,
respectively. These storage nodes cannot have the same
rack number as the requested node to meet the rack
constraint mentioned in Section 3.1. (5) expresses the
possible storage nodes of a requested node. (6) denotes
that each node cannot store too many data block replicas to
exceed the capacity of its replication space. Due to the
replication contention and limited replication space, the
requested node ri may put one data block replica in a
nonqualified node qj. In such a case, the generated data
replica in node qj is a QoS-violated data replica. In addition
to xðri; qjÞ, this QoS-violated replication event is particularly
recorded in yðri; qjÞ (see (7)). (8) is used to represent that it is
impossible for the requested node ri to generate a QoS-
violated data replica in each of its qualified nodes because
these qualified nodes can meet the QoS requirement.
Therefore, each corresponding yðri; qjÞ is set to 0. Based
on (7) and (8), the total number of QoS-violated data
replicas can be easily counted by finding the value of each
yðri; qjÞ with 1. The final constraint in (9) is given for
enhancing data availability. A node can only store at most
one data replica from a requested node.

In the above ILP formation, there are jSrj � jSj binary
variables in x and y. In the cloud computing system, the
number of nodes jSj is usually large. Solving ILP is well
known to be time consuming [25]. If jSrj or jSj is large, the
above ILP formulation will take much computational time
to obtain the optimal solution of the QADR problem.

3.2.2 Optimal Solution with Efficient Computational Time

The optimal solution of the QADR problem can be obtained
in a more efficient manner. Instead of mapping to an ILP
formulation, we transform the QADR problem to the
minimum-cost maximum-flow problem. The problem
transformation is also beneficial in minimizing the replica-
tion cost of QoS-violated data replicas. The MCMF problem
is a variation of the well-known minimum-cost flow
problem, which is defined as follows: Given a network
flow graph G with two special nodes, source node s and
sink node t, what is the minimum total transmission cost to
send an amount of flow f from s to t as much as possible?
Each edge ði; jÞ on G has an associated cost cði; jÞ and an
attached capacity uði; jÞ. The associated cost indicates the
required cost for sending one flow unit via the edge ði; jÞ.
The attached capacity denotes the maximum amount of
flow that can be transmitted via the edge. If a subflow fs is
transmitted via edge ði; jÞ, the amount of this subflow
fsði; jÞ must be less than or equal to uði; jÞðfsði; jÞ � uði; jÞÞ.
The transmission cost of the subflow fs on edge ði; jÞ is
fsði; jÞ � cði; jÞ.

There have been several polynomial-time MCMF algo-
rithms [26], [27], [28]. After transforming the QADR
problem to the MCMF problem, one of the existing MCMF
algorithms can be applied to obtain the optimal solution of
the QADR problem in polynomial time.

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 107

Theorem 1. For the QADR problem, its two minimum objectives

(the minimum total replication cost and the minimum number

of QoS-violated data replicas) can be achieved in polynomial

time by transforming it to the MCMF problem.

Proof. In the following proof, we first demonstrate that the

QADR problem can be reduced (transformed) to the

MCMF problem in polynomial time. Then, we show that

the solution of the MCMF problem can be used to

represent the optimal solution of the QADR problem.

The notations used in this proof can be referred to in

Table 1. Let P and Q be the instances of the QADR and

MCMF problems, respectively. In the QADR problem,

the replication relationship between requested nodes

and qualified nodes can be modeled as a weighted

bipartite graph (see Fig. 4). For instance P , it has a

correspondingly weighted bipartite graph (WBGP).
Based on WBGP , we further construct a network flow

graph (NFGQ) to represent instance Q. A source node s
and a sink node t are added on two sides of WBGP to
connect with each of its requested nodes and each of its
qualified nodes, respectively. The edges on NFGQ can be
divided into three types: source edges, bipartite edges,
and sink edges. The source edges connect source node s
with each requested node. The bipartite edges originally
exist on WBGP that connect requested nodes and
qualified nodes. For the sink edges, they connect each
qualified node with the sink node. Finally, a flow f is
given, which will be transmitted from s to t of NFGQ. By
setting appropriate (capacity, cost) values on the edges of
NFGQ and the amount of flow on f , the instance Q can
be a graphic representation as NFGQ. The value settings
will be discussed later.

By adding a source node and a sink node, the graphic
representation of the instances P ðWBGP Þ can be
extended to that of the instance QðNFGQÞ in polynomial
time. An example is given in Fig. 5 that extends the
WBGP of Fig. 4. The graph extension implies that
instance P can be reduced (transformed) to instance Q in
polynomial time. Next, we need to show that the optimal
solution of instance P can be derived by solving the
MCMF solution of instance Q.

If the replication factor of a data block is rf , each
requested node needs to place rf data replicas at the
disks of rf storage nodes. In instance P , one data replica
is corresponding to one flow unit in instance Q. To let the
source node transmit rf flow units to each requested

node, the (capacity, cost) on each source edge is set to
ðrf ; 1Þ. The amount of flow f entering the source node is
set to

Pjsrj
i¼1 rf ¼ jSrj � rf . After receiving rf flow units, a

requested node selects rf qualified nodes with smaller
transmission costs than others. Then, the requested node
distributes the received flow to these qualified nodes.
A qualified node can only receive one flow unit from a
requested node. The (capacity, cost) on a bipartite edge
ðri; qjÞ is set to ð1; Tstorageðri; qjÞÞ, where Tstorageðri; qjÞ is
the original weight value on the bipartite edge ðri; qjÞ of
WBGP . This weight value can represent the transmission
cost of one flow unit on the edge ðri; qjÞ of NFGQ. To
consider the amount of available replication space in a
qualified node, the (capacity, cost) on the sink edge ðqj; tÞ
is set to ðaðqjÞ; 1Þ. With this capacity setting, even if a
qualified node connects with many requested nodes, the
total amount of flow entering this qualified node is not
larger than aðqjÞ.

According to NFGQ, if one or more flow units cannot
be successfully transmitted from s to t, this represents
that some requested nodes cannot put their data block
replicas in appropriately qualified nodes. In such a case,
these data replicas will be stored in unqualified (QoS-
violated) nodes, called QoS-violated data replicas. It has
been known that the MCMF solution of NFGQ can
transmit maximum amount of flow from s to t.
Therefore, the amount of unsuccessful flow from s to t
can be minimized. From the perspective of the instance
P , the number of QoS-violated data replicas can be
minimized. In addition to maximizing the amount of
transmitted flow, the MCMF solution can also give the
minimum total transmission cost. By following the
MCMF solution of NFGQ to place data replicas of
instance P , the minimum total replication cost of
instance P can be obtained.

From the above description, we can obviously know
that the two minimum objectives of the QADR problem
can be achieved in polynomial time by transforming
the QADR problem to the MCMF problem. Theorem 1
is proven. tu

Based on Theorem 1, we can design the optimal QADR
algorithm with polynomial time by observing the amount of
flow leaving each requested node. As shown in lines 10-22
of Fig. 6, if the requested node ri cannot completely send
out its incoming flow, it will have QoS-violated data
replicas. In such a case, the unqualified nodes with respect

108 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 5. The flow graph corresponding to a QADR problem. (a) The constructed flow graph. (b) The pair (capacity, cost) on each flow edge.

to the requested node ri are required to be found for storing
the QoS-violated data replicas of ri. Then, the requested
node ri and its correspondingly unqualified nodes are
collected in Sur and Suq, respectively. To also minimize the
total QoS-violated replication cost of all requested nodes,
the MCMF problem transformation is performed again by
modeling a new network flow graph based on the sets Sur
and Suq. The optimal placement of all QoS-violated data
replicas can be made by following the obtained MCMF
solution (see lines 19-22 of Fig. 6).

3.3 Scalable Replication Issue

The computational complexity of the QADR problem is
strongly dependent on how many requested and qualified
nodes are involved in solving the problem. The numbers
of requested and qualified nodes (jSrj and jSqj) are related
to the number of nodes (jSj) in a cloud computing system.
In the cloud computing system, jSj is usually large.
Moreover, if most of nodes concurrently execute the
applications with low-QoS requirements, jSrj and jSqj will
be very close to jSj. Due to possibly large values for jSrj
and jSqj, the scalable replication issue needs to be
concerned in solving the QADR problem. If not, large
computational time will be incurred.

For avoiding large computational time, we utilize the
rack-based combination and equivalent state combination
to combine appropriately requested and qualified nodes in
the original network flow graph. By performing the above
two node combination techniques, the network flow graph
can be reduced without taking large computational time in
solving the corresponding QADR problem.

The basic idea of the rack-based combination is as follows:
As stated in Section 2.1, nodes are deployed within a number
of racks in a cloud computing system. The group-based

management architecture is adopted by some cloud manage-
ment literature [29], [30], [31]. The nodes are classified into a
number of groups (racks). In a group, if all nodes have similar
CPU and disk performance, there are few performance
categories after classifying the performance capabilities of
nodes within a group. This also means that the group
capability can be easily characterized. In such a case, the
management system can quickly and systemically find
the group with enough capability to handle a service request.
Next, one of the nodes in the group is designated to handle
such service request. With the above management manner,
the nodes with similar CPU and disk performance are usually
deployed in the same rack. These nodes are also connected
with each other using similar bandwidth via the switch of
the rack. Based on this node deployment manner, if two or
more requested nodes are located in the same rack, they are
suitable to be combined as a requested rack node. Similarly,
the qualified nodes in the same rack are also combined as a
qualified rack node. In addition to combining requested
and qualified nodes based on the rack unit, the following
equations are used to model the relationships between the
requested rack nodes and the qualified rack nodes on the
reduced flow graph. For a requested rack node rrm, the total
number of replication requests is

jS rrmj; ð10Þ

where S rrm is the set of requested nodes in rrm (see
Table 1). Each requested node issues one replication request
at each time. The cardinality of S rrm can be used to
represent the total number of replication requests in rrm.

The QoS requirement of rrm is

min
8ri2S rrm

TqosðriÞ; ð11Þ

where TqosðriÞ has been known to be the QoS requirement of
the request node ri. For all the requested nodes in rrm, they
may have different QoS requirements. It has been men-
tioned that the QoS requirement is represented as the
desired access time of a data block (see Section 3.1). In (11),
the smallest access time is used to represent the QoS
requirement of rrm. This is for conveniently finding the
correspondingly qualified nodes of rrm. If the qualified
node qj can meet the QoS requirement of rrm, it must satisfy
the QoS requirements of all requested nodes in rrm.

For a qualified rack node qrn, the size of its replication
space is the sum of the replication space of each qualified
node in qrn, as follows:

X
8qj2S qrn

aðqjÞ; ð12Þ

where S qrn and aðqjÞ are known to be the set of qualified
nodes in qrn and the available replication space of a
qualified node qj, respectively (see Table 1).

The storage cost of qrn with respect to rrm is

max
8ri2S rrm^8qj2S qrn

Tstorageðri; qjÞ; ð13Þ

where Tstorageðri; qjÞ has been defined to be the storage cost
to store one data replica from ri to qj. There are different
requested nodes and qualified nodes in rrm and qrn,

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 109

Fig. 6. The optimal replica placement algorithm.

respectively. Among all the requested and qualified node
pairs between rrm and qrn, the maximum storage cost is
used to represent the storage cost of qrn with respect to rrm.
In (13), the maximum storage cost is for easily determining
whether there is a link between rrm and qrn on the reduced
flow graph. If the storage cost of qrn can meet the QoS
requirement of rrm, there is a link between rrm and qrn. This
also represents that if a node in rrm reads a corrupt data
block, it can retrieve the data block replica from a node in
qrn with the QoS satisfaction.

Fig. 7 illustrates the reduced network flow graph
(RNFG) after executing the rack-based combination on
the network flow graph of Fig. 5. In addition to combining
requested and qualified nodes, it is also required to
combine the replication requests, replication space, and
storage costs based on the above equations. From Fig. 7, we
can see that the requested nodes r4 and r5 in Fig. 5 are
combined as the requested rack node rr4. The qualified
nodes q1 and q2 are combined as the qualified rack node qr1.
The total number of replication requests in rr4 is 2 (1þ 1).
The total size of the replication space in qr1 is 4 (2þ 2). The
storage cost of qr1 with respect to rr4 is 110 (max {105, 110,
105, 110}).

For the basic idea of the equivalent state combination, it
is inspired as follows: In the reduced network flow graph,
two or more requested rack nodes may have the same
service state, i.e., they own the same qualified rack node
set. These requested rack nodes can be further combined as
a single requested rack node. Similarly, we can also

combine two or more qualified rack nodes in the reduced
network flow graph if they have the same request state,
i.e., they are corresponding to the same requested rack
node set. By applying the equivalent state combination in
Fig. 7, the numbers of requested and qualified rack nodes
can be further reduced, as shown in Fig. 8. Compared to
the original network flow graph, there are fewer nodes
in the reduced network flow graph. The existing poly-
nomial-time MCMF algorithm can take less computational
time on the reduced network flow graph. However, in the
reduced flow graph, a node practically represents a group
of nodes by performing the rack-based combination and
equivalent state combination on the original network flow
graph. It cannot guarantee that the optimal solution of the
QADR problem can be obtained from the MCMF solution
of the reduced network flow graph.

To represent the solution of the QADR problem, the
MCMF solution of the reduced flow graph is required to
be further processed. In the node combination techniques,
the QoS requirement of a requested rack node and the
storage cost of a qualified rack node have been defined in
(11) and (13), respectively. In the two equations, the
minimum and maximum functions are used to choose the
minimum QoS requirement and maximum storage cost.
With these two equations, if there is a link between the
requested rack node rrm and the qualified rack node qrn on
the reduced flow graph, it means that each qualified node in
qrn can store the data replica of a requested node in rrm
under the capacity constraint of the qualified node. This

110 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 7. The reduced flow graph after the rack-based combination. (a) The reduced flow graph. (b) The pair (capacity, cost) on each flow edge.

Fig. 8. The reduced flow graph after the equivalent state combination. (a) The reduced flow graph. (b) The pair (capacity, cost) on each flow edge.

property will simplify the refinement process of the data
replica placement.

For example, in Fig. 8, the MCMF solution of the reduced
network flow graph determines that the amount of the flow
from the requested rack node rr1 to the qualified rack node
qr3 is 6. The requested rack node rr1 consists of the nodes r1,
r4, and r5 on the original network flow graph. For
the qualified rack node qr3, it is formed by combining the
qualified nodes q5, q6, and q7. Therefore, in Fig. 8, the
requested nodes r1 in rr1 can send one data block replica to
the qualified nodes q5 and q6 in qr3. For the requested nodes
r4 in rr1, its data block is replicated in the qualified nodes q1

and q2 in qr1. Finally, in rr1, the two data block replicas of
the requested nodes r5 are stored in the qualified nodes q5

and q7 in qr3. The above replica placement considers the
capacity constraint of each qualified node.

4 PERFORMANCE EVALUATION

We used MatLab [32] to evaluate the performance of the
proposed replication algorithms in a large-scale cloud
computing system. Our simulation experiments were
conducted by assuming that there are 3,500 nodes in a
cloud computing system. The HDFS cluster at Yahoo!
includes about 3,500 nodes [10].

4.1 Simulation Environment

In simulation experiments, we adopt a tree structure to be
the network topology of the referred cloud computing
system. As explicitly stated in Section 2.1, the switches of
the cloud computing system usually use the STP protocol.
The STP protocol can form a logical tree network topology
among switches to provide the intrarack and inter-rack
node communication. To simulate the tree network
topology, the rack (group) formation and node distribution
are done as follows: We assume that there are 100 racks in
the cloud computing system, and each rack is equipped
with one switch. The 100 racks are randomly distributed
over a 1;000� 1;000 unit square plane. A rack occupies a
10� 10 subsquare plane. For any two racks, there is no
intersection area in their corresponding subsquare planes.
Among the 100 racks, one is specified as the central rack to
organize all other racks as a tree topology with the height
about 10. After forming the 100 racks with the tree structure
connectivity, 3,500 nodes are randomly deployed within the
100 racks. For two nodes in the same rack, their locations
are within the occupied subsquare plane of the rack.

Based on the generated network topology, the simulation
experiments were performed over the following parameter
settings. In each node, the available replication space is
represented as the maximum number of data block replicas
allowed to be stored. It is set by randomly selecting a
number from the data block interval of [0, 50]. Similarly, a
QoS interval is also used to set the QoS requirement of an
application in the node ri. The lower bound of the QoS
interval is the time to access a data block from the local disk
of ri. The upper bound is the largest access time for ri to
retrieve a data block replica from another node. Next, a
random number is selected from the setting QoS interval to
be the QoS requirement of the application.

In a simulation run, we randomly specify 2,500 nodes to
execute data-intensive applications, not all 3,500 nodes. Due
to running the data-intensive applications, the 2,500 nodes
frequently need to write data to their disks. As a result,
there are many requested nodes that issue replication
requests concurrently. The numbers of request nodes are
assumed to be 500, 1,000, 1,500, 2,000, and 2,500. For the
settings of the disk access latency and communication
latency, we consider the dynamical workloads in the disk
queue and communication link queue in addition to the
given performance values of Table 2. The details are
described as follows.

For the settings of the disk access latency and commu-
nication latency, we refer to commercial disk and switch
equipment [33], [34], [35], [36]. The used disk access time
and switch transmission rates in simulation experiments are
given in Table 2. In addition, we also consider the
dynamical workloads in the disk queue and switch link
queue. Whenever one or more requested nodes concur-
rently issue their replication requests, there have been a
random number of ongoing block read-write operations
between multiple node pairs. For an ongoing block read-
write operation between node i and node j, it is executed as
follows: First, node i reads a data bock from its disk, and
then transmits the data block to node j. After receiving the
data block, node j writes the data block into its disk. The
number of ongoing block read-write operations is randomly
set within [0, 50]. Due to the ongoing block read-write
operations, there have been a certain number of workloads
in the disk queue and switch link queue before issuing
replication requests.

After the above simulation parameter settings, 50 simu-
lation runs are performed. The simulation results give the
mean of 50 simulation runs.

4.2 Simulation Results

To solve the QADR problem, we have proposed the HQFR
algorithm and the optimal algorithm by transforming the
QADR problem into the MCMF problem. Here, the optimal
algorithm is also called the MCMF replication (MCMFR)
algorithm. For considering the computational time of the
MCMFR algorithm, the node combination techniques are
also applied in the algorithm. The new MCMFR algorithm
is named as the C_MCMFR algorithm. In this section, we
will demonstrate the performance results of the HQFR,
MCMFR, and C_MCMFR algorithm. In addition to these
three algorithms, the random and Hadoop replication
algorithms were also evaluated in simulation experiments.
The random replication algorithm randomly places the
replicas of a data block at any nodes.

Fig. 9 shows the total replication costs for different
numbers of requested nodes from 500 to 2,500. In Fig. 9a,
the cloud computing system is configured with nine ð3� 3Þ

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 111

TABLE 2
Disk Access Time and Transmission Rates

for a Data Block (64 Mbytes)

The performance values refer to [33], [34], [35], [36].

different types of device heterogeneity using the first three
disk access time and transmission rates of Table 2. In Fig. 9b,
all performance values of Table 2 are used to generate device
heterogeneity with 36 ð6� 6Þ different types. As seen from
Figs. 9a and 9b, the total replication costs of all algorithms
increase with the number of requested nodes. The total
replication cost has been defined in (3). The replication factor
rf is set to 2. Basically, the Hadoop replication algorithm
adopts the random manner to place the replicas of a data
block, but it additionally considers the possible rack failure.
Therefore, the total replication cost of the Hadoop replication
algorithm is similar to that of the random replication
algorithm. Both algorithms do not take the QoS requirements
of applications into data replication. These two algorithms
have larger replication costs than the proposed replication
algorithms. From Figs. 9a and 9b, we can also see that if the
device performance is more diverse, our replication algo-
rithms can reduce more replication costs than the Hadoop
and random algorithms. As shown in Fig. 9a, the total
replication cost of the Hadoop replication algorithm is about
2.47 times that of the MCMFR algorithm. However, in Fig. 9b,
the total replication cost ratio between these two replication
algorithms is about 3.79:1. For the proposed replication
algorithms, the MCMFR algorithm can reduce the total
replication cost of the HQFR algorithm by about 29 and 44
percent in Figs. 9a and 9b, respectively. Although the
C_MCMFR algorithm reduces the computational time, it
cannot minimize the replication cost. In the C_MCMFR
algorithm, the QoS-violated data replicas are stored by
randomly selecting a storage node from an unqualified rack
node. However, the MCMFR algorithm also minimizes the
total replication cost of QoS-violated data replicas in addition
to the QoS-satisfied data replicas (see lines 19-22 of Fig. 6).
Therefore, the MCMFR algorithm has a smaller total
replication cost than the C_MCMFR algorithm. Compared
to the MCMFR algorithm, it increases 21 and 36 percent of
replication cost in Figs. 9a and 9b, respectively.

Fig. 10 shows the comparison of the average recovery
time for a corrupt data block. If the requested node ri
cannot read a data block from its disk due to data
corruption, how much time is taken by ri to retrieve one
replica of the data bock from another node? In Figs. 10a and
10b, the MCMFR algorithm has the smallest average
recovery time, which can improve the average recovery
time of the Hadoop algorithm by about 71 and 79 percent,
respectively. From Figs. 10a and 10b, we also see that the
average recovery time increases with the number of
requested nodes in the proposed replication algorithms.
The replication contention probability shows an upward
growth trend with increasing number of requested nodes.
Due to the limited replication space in a qualified node, a
qualified node may not serve the replication requests from
all its correspondingly requested nodes. As a result, some
requested nodes cannot select their best qualified nodes to
store their data block replicas. Later, if such a requested
node reads a corrupt data block, it may take more time to
retrieve the data block replica.

Unlike Fig. 10, the average recovery time shown in Fig. 11
is at different data corrupt rates. However, the average
recovery time is also measured based on the unit of a corrupt
data block. In Figs. 11a and 11b, the numbers of requested
nodes are set as 1,000 and 2,000, respectively. The device
heterogeneity is fixed with six types. When a failure occurs in
the disk of a node, data blocks in the disk are not all corrupt.
Different corrupt rates from 10 to 90 percent, respectively, are
assumed. For the corrupt rate 10 percent, it denotes that if a
failure occurs, 10 percent of data blocks are corrupt. From
Fig. 11, we can see that the MCMFR algorithm still has the
smallest average recovery time. Its recovery time is about one-
fifth of the recovery time of the Hadoop algorithm.

Fig. 12 shows the recovery time in the worst case. The
worst recovery time denotes the largest access time to
retrieve only one failure-free data replica, which is
measured by accumulating the access time of all data block
replicas. As shown in Figs. 12a and 12b, the MCMF
algorithm can decrease 71 and 21 percent of the worst

112 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 9. Total replication cost under various device performance. (a) Nine types, (b) 36 types.

Fig. 10. Average recovery time under various device performance. (a) Nine types, (b) 36 types.

recovery time of the Hadoop algorithm, respectively.
Compared to the HQFR algorithm, the reduction ratio of
the worst recovery time is about 30 and 45 percent in
Figs. 12a and 12b, respectively.

Fig. 13 shows the comparison of the QoS violation ratios
in the above concerned algorithms. The QoS violation ratio
is defined as follows:

The total number of QoS� violated data block replicas

The total number of data block replicas
:

ð14Þ

In the Hadoop and random algorithms, the QoS requirement
of an application is not considered in the data replication. In
Figs. 13a and 13b, the QoS violation ratios of these two
algorithms are approximately 50 and 28 percent, respectively.
The QoS requirement is considered in the proposed replica-
tion algorithms. As mentioned in Section 3.2, the QoS-
violated data replicas are generated due to the limited
replication space of a node. In addition to minimizing the
replication cost, the MCMFR algorithm can also minimize
the number of QoS-violated data replicas. Compared to the
HQFR and C_MCMFR algorithms, the MCMFR algorithm
can reduce at least 78 and 67 percent of QoS-violated data
replicas. Note that the main advantage of the C_MCMFR
algorithm is in reducing the computation time of the QADR
problem.

Concerning the scalable replication issue, we have utilized
the rack-based and equivalent-state combination techniques
to reduce the execution time in solving the QADR problem.
To enhance this characteristic, we perform the execution time
comparison among different replication algorithms, as
shown in Fig. 14. The Hadoop and random algorithms take
less execution time. Basically, these two algorithms randomly
place data block replicas. By considering the QoS requirement
in the data replication, the proposed replication algorithms
are found take more execution time. Based on the given
operation codes in Figs. 2 and 6, the HQFR and MCMFR
algorithms do not perform complicated operations. Com-
pared to the Hadoop algorithm, the execution time of the
HQFR algorithm increases at least 1.24 times. The execution
time of the MCMFR algorithm is about 6.4 times that of the
HQFR algorithm. However, if the rack-based combination
and the equivalent-state combination techniques are applied
in the MCMFR algorithm, the execution time of solving the
QADR problem can be reduced significantly. This can be
obviously seen from the execution time of the C_MCMFR
algorithm in Fig. 14. It is about 1.26 times that of the HQFR
algorithm. From Fig. 14, we can also observe that the
execution time of the C_MCMFR algorithm does not show a
linear increase with varying number of requested nodes. The
reason is explained as follows: Using the rack-based and
equivalent-state combination techniques, the requested and

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 113

Fig. 11. Average recovery time under different corrupt rates: (a) 1,000 requested nodes, (b) 2,000 requested nodes.

Fig. 12. The worst recovery time of the four replication algorithms. (a) Nine types, (b) 36 types.

Fig. 13. The numbers of QoS-violated data blocks under various device performance. (a) Nine types, (b) 36 types.

qualified nodes can be, respectively, combined as a smaller
number of group nodes. In simulation experiments, the
number of formed group nodes is at most 100 because there
are 100 racks in the referred cloud computing system.
Therefore, the execution time of the C_MCMFR algorithm
cannot be large even if there are a large number of requested
(qualified) nodes.

5 CONCLUSIONS AND FUTURE WORK

We have investigated the QoS-aware data replication
problem in cloud computing systems. To solve the QADR
problem, the device heterogeneity is also considered in
addition to the QoS requirements of applications. Two
replication algorithms have been proposed. In the first
algorithm, we adopt the intuitive idea of high-QoS first-
replication to perform the QoS-aware data replication.
However, this greedy algorithm cannot achieve the optimal
solution to the QADR problem. The data replication cost
and the number of QoS-aware data replicas cannot be
minimized. In the second algorithm, we optimally solve
the QADR problem in polynomial time by transforming
the QADR problem to the MCMF problem. We also give
the proof about the problem transformation (see Theorem
1). To make the proposed replication algorithms accom-
modate to a large-scale cloud computing system, we also
present node combination techniques to handle the scalable
replication issue of the QADR problem. The simulation
results showed that the proposed replication algorithms
can efficiently perform the QoS-aware data replication in
cloud computing systems.

In the future, we plan to implement the proposed QADR
algorithms in a real cloud computing platform. Moreover,
the replication algorithms will also be extended to concern
energy consumption. It is known that there are many storage
nodes in a cloud computing system. The energy consump-
tion is also an important metric for green cloud computing.

ACKNOWLEDGMENTS

This research was supported by the National Science
Council, Taiwan, R.O.C, under Grant NSC 102-2221-E-030-
010-MY3.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” Technical Report UCB/EECS-2009-28, Dept. of EECS,
California Univ., Berkeley, Feb. 2009.

[2] M. Creeger, “Cloud Computing: An Overview,” Queue, vol. 7,
no. 5, pp. 2:3-2:4, June 2009.

[3] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
“Cloud Computing: Distributed Internet Computing for IT and
Scientific Research,” IEEE Internet Computing, vol. 13, no. 5, pp. 10-
13, Sept. 2009.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the fifth Utility,”
Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616,
June 2009.

[5] Apache Hadoop Project, http://hadoop.apache.org, 2013.
[6] K.V. Vishwanath and N. Nagappan, “Characterizing Cloud

Computing Hardware Reliability,” Proc. ACM Symp. Cloud
Computing, pp. 193-204, June 2010.

[7] E. Pinheiro, W.-D. Weber, and L.A. Barroso, “Failure Trends in a
Large Disk Drive Population,” Proc. Fifth USENIX Conf. File and
Storage Technologies, pp. 17-28, Feb. 2007.

[8] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You?” Proc. Fifth
USENIX Conf. File and Storage Technologies, pp. 1-16, Feb. 2007.

[9] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop High
Availability through Metadata Replication,” Proc. First Int’l
Workshop Cloud Data Manage, pp. 37-44, 2009.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” Proc. IEEE 26th Symp. Mass Storage
Systems and Technologies (MSST), pp. 1-10, June 2010.

[11] A. Gao and L. Diao, “Lazy Update Propagation for Data
Replication in Cloud Computing,” Proc. Fifth Int’l Conf. Pervasive
Computing and Applications (ICPCA), pp. 250-254, Dec. 2010.

[12] W. Li, Y. Yang, J. Chen, and D. Yuan, “A Cost-Effective
Mechanism for Cloud Data Reliability Management Based on
Proactive Replica Checking,” Proc. IEEE/ACM 12th Int’l Symp.
Cluster, Cloud and Grid Computing (CCGrid), pp. 564-571, May 2012.

[13] C.N. Reddy, “A CIM (Common Information Model) Based
Management Model for Clouds,” Proc. IEEE Int’l Conf. Cloud
Computing in Emerging Markets (CCEM), pp. 1-5, Oct. 2012.

[14] Amazon EC2. http://aws.amazon.com/ec2/, 2013.
[15] X. Tang and J. Xu, “QoS-Aware Replica Placement for Content

Distribution,” IEEE Trans. Parallel and Distributed Systems, vol. 16,
no. 10, pp. 921-932, Oct. 2005.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles,
vol. 37, no. 5, pp. 29-43, Dec. 2003.

[17] IEEE Standard for Local and Metropolitan Area Networks: Media
Access Control (MAC) Bridges, IEEE 802.1D Std., 2004.

[18] M. Shorfuzzaman, P. Graham, and R. Eskicioglu, “QoS-Aware
Distributed Replica Placement in Hierarchical Data Grids,” Proc.
IEEE Int’l Conf. Advanced Information Networking and Applications,
pp. 291-299, Mar. 2011.

[19] H. Wang, P. Liu, and J.-J. Wu, “A QoS-Aware Heuristic Algorithm
for Replica Placement,” Proc. IEEE/ACM Seventh Int’l Conf. Grid
Computing, pp. 96-103, Sept. 2006.

[20] X. Fu, R. Wang, Y. Wang, and S. Deng, “A Replica Placement
Algorithm in Mobile Grid Environments,” Proc. Int’l Conf.
Embedded Software and Systems (ICESS ’09), pp. 601-606, May 2009.

[21] A.M. Soosai, A. Abdullah, M. Othman, R. Latip, M.N. Sulaiman,
and H. Ibrahim, “Dynamic Replica Replacement Strategy in Data
Grid,” Proc. Eighth Int’l Conf. Computing Technology and Information
Management (ICCM), pp. 578-584, Apr. 2012.

114 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1, NO. 1, JANUARY-JUNE 2013

Fig. 14. Execution time of the four replication algorithms. (a) Nine types, (b) 36 types.

[22] D. Gross and C.M. Harris, Fundamentals of Queueing Theory, third
ed. John Wiley & Sons, 1998.

[23] H. Khazaei and J.M.V.B. Mii, “Performance Analysis of Cloud
Computing Centers Using M/G/m/m+r Queuing Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 5, pp. 936-943,
May 2012.

[24] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical
Programming. Addison-Wesley, 1977.

[25] S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani, Algorithms.
McGraw-Hill, 2008.

[26] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory,
Algorithms, and Applications, first ed. Prentice Hall, Feb. 1993.

[27] P.T. Sokkalingam, R.K. Ahuja, and J.B. Orlin, “New Polynomial-
Time Cycle-Canceling Algorithms for Minimum-Cost Flows,”
Networks, vol. 36, no. 1, pp. 53-63, June 2000.

[28] C.-X. Xu, “A Simple Solution to Maximum Flow at Minimum
Cost,” Proc. Second Int’l Conf. Information Eng. and Computer Science
(ICIECS ’10), pp. 1-4, Dec. 2010.

[29] W. Lin and D. Qi, “Research on Resource Self-Organizing Model
for Cloud Computing,” Proc. Int’l Conf. Internet Technology and
Applications, pp. 1-5, Aug. 2010.

[30] A. Voulodimos, S. Gogouvitis, N. Mavrogeorgi, R. Talyansky, D.
Kyriazis, S. Koutsoutos, V. Alexandrou, E. Kolodner, P. Brand,
and T. Varvarigou, “A Unified Management Model for Data
Intensive Storage Clouds,” Proc. First Int’l Symp. Network Cloud
Computing and Applications, pp. 69-72, Nov. 2011.

[31] L. Xu and J. Yang, “A Management Platform for Eucalyptus-Based
IaaS,” Proc. IEEE Int’l Conf. Cloud Computing and Intelligence
Systems, pp. 193-197, Sept. 2011.

[32] MathWorks - MATLAB and Simulink for Technical Computing,
http://www.mathworks.com, 2013.

[33] Speed Considerations, http://www.seagate.com/www/en-us/
support/before_you_buy/speed_considerations, 2013.

[34] Hard Disk Performance, Quality and Reliability, http://
www.pcguide.com/ref/hdd/perf/index.htm, 2013.

[35] Latency on a Switched Ethernet Network, http://www.
ruggedcom.com/pdfs/application_notes/latency_on_a_
switched_ethernet_network.pdf, 2013.

[36] T. Shanley, InfiniBand Network Architecture, first ed. Addison-
Wesley, 2002.

Jenn-Wei Lin received the MS degree
in computer and information science from
National Chiao Tung University, Hsinchu,
Taiwan, in 1993, and the PhD degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1999. He is a full
professor at the Department of Computer
Science and Information Engineering, Fu Jen
Catholic University, Taiwan. He was a re-
searcher at Chunghwa Telecom Co., Ltd.,

Taoyuan, Taiwan from 1993 to 2001. His current research interests
include cloud computing, mobile computing and networks, distributed
systems, and fault-tolerant computing.

Chien-Hung Chen received the BS degree in
computer science and information engineering
from the Chung Hua University, Taiwan, in
2008, and the MS degree in computer science
and information engineering from Fu Jen
Catholic University, Taiwan, in 2012. He is
currently working toward the PhD degree at the
Department of Electrical Engineering, National
Taiwan University. His research interests in-
clude cloud computing, mobile networks, and

fault-tolerant computing.

J. Morris Chang received the PhD degree in
computer engineering from North Carolina State
University. He is an associate professor at Iowa
State University. His industry experience in-
cludes positions at Texas Instruments, Micro-
electronic Center of North Carolina, and AT&T
Bell Laboratories. He received the University
Excellence in Teaching Award at Illinois Institute
of Technology in 1999. His research interests
include cyber security, wireless networks, and

embedded computer system. Currently, he is a handling editor of
Journal of Microprocessors and Microsystems and the Middleware &
Wireless Networks subject area editor of IEEE IT Professional. He is a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIN ET AL.: QOS-AWARE DATA REPLICATION FOR DATA-INTENSIVE APPLICATIONS IN CLOUD COMPUTING SYSTEMS 115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

