
Understanding Configuration Issues in Storage Systems

Tabassum Mahmud Mai Zheng
Department of Electrical & Computer Engineering, Iowa State University

1 Motivation
Storage systems are complicated. They often consist of
multiple software modules and utility programs, each of
which may have a large set of configuration parameters.
For example, mke2fs has more than 80 parameters to
control the configuration states of Ext-family file sys-
tems [1]. Similarly, mdadm has more than 90 parameters
for configuring software RAID [2]. These diverse pa-
rameters and their combinations represent a huge space
of possible configuration states, which is almost impos-
sible to exhaust for effective testing.

Moreover, there are inherent dependencies among
storage software’s behaviors and configurations (e.g.,
e2fsck’s behavior may depend on an Ext4 feature which
is configured by mke2fs), which makes the correctness
of storage systems difficult to check or reason.

Great efforts have been made to address configuration-
related issues in storage systems or general programs [8,
5, 7, 4, 3]. For example, Carver [3] combines sampling
and a greedy algorithm to identify important parameters
for storage system tuning. While the methodology is ef-
fective for improving storage performance, it relies on a
large set of performance traces. Consequently, it cannot
not be directly applied to address configuration-related
correctness issues in storage systems.

As another example, Xu et.al. [8] investigates the con-
figuration requirements of 7 software systems/programs
and builds a tool to automatically infer the configura-
tion constraints. However, the tool only considers each
program individually, which is fundamentally limited for
identifying the complex dependencies exhibit in typical
storage systems.

Besides research prototypes, there are practical test
suites targeting different storage systems. For example,
xfstests includes more than 1400 test cases for Ext4,
XFS, and other file systems. Similar, e2fsprogs in-
cludes more than 370 test cases for the utility programs
of Ext-family file systems. Nevertheless, we find that the
configuration coverage of these state-of-the-art test suites

is surprisingly low. For example, based on our investiga-
tion, xfstests only covers 34.1% configuration param-
eters of Ext4 file system. Similarly, more than half of
the parameters of the file system utilities are not tested
by e2fsprogs. Such low coverage implies that a new
methodology for effectively testing configuration-related
issues in storage systems is much needed.

2 Our Approach
To address the challenge, we first conduct an empiri-
cal study on 56 configuration-related correctness issues
in storage systems to understand the bug patterns and
the relation of the bugs to the configuration parame-
ters. We find that among the 56 real bugs studied,
52 cases are related to the file system configurations
specified via mke2fs parameters, 18 cases are related
to the parameters of file system utilities (e.g., e2fsck,
resize2fs, e2freefrag), and 14 cases are related to
both. Moreover, we identify three general types of pa-
rameter dependencies that are critical for manifesting
the configuration-related bug cases: (1) self dependency,
where a parameter is dependent on a predefined set of
values of itself; (2) cross-parameter dependency, where
one parameter is dependent on another parameter of
the same program, and (3) cross-program dependency,
where one parameter or the behavior of one program is
dependent on a parameter of another program.

Based on the key findings, we are building a proto-
type based on the LLVM compiler infrastructure [6] to
analyze the parameter dependencies in storage systems
automatically. We extend the classic taint analysis to
identify the code paths that are related to configuration
parameters and derive the three types of dependencies
accordingly. Our preliminary results show that the ex-
tracted dependencies can help reduce the configuration
states for testing configuration-related issues efficiently
(e.g., eliminating irrelevant parameter combinations by
recognizing the dependencies).

1

References
[1] E2fsprogs: Ext2/3/4 Filesystem Utilities. http://e2fsprogs.

sourceforge.net/.

[2] mdadm - manage MD devices aka Linux Software RAID. https:
//man7.org/linux/man-pages/man8/mdadm.8.html.

[3] CAO, Z., KUENNING, G., AND ZADOK, E. Carver: Finding im-
portant parameters for storage system tuning. In 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20) (2020),
pp. 43–57.

[4] DAI, H., MURPHY, C., AND KAISER, G. E. Confu: Configu-
ration fuzzing testing framework for software vulnerability detec-
tion. In Security-Aware Systems Applications and Software Devel-
opment Methods. IGI Global, 2012, pp. 152–167.

[5] KELLER, L., UPADHYAYA, P., AND CANDEA, G. Conferr: A
tool for assessing resilience to human configuration errors. In 2008
IEEE International Conference on Dependable Systems and Net-
works With FTCS and DCC (DSN) (2008), IEEE, pp. 157–166.

[6] LATTNER, C., AND ADVE, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO
2004. (2004), IEEE, pp. 75–86.

[7] SUN, X., CHENG, R., CHEN, J., ANG, E., LEGUNSEN, O., AND
XU, T. Testing configuration changes in context to prevent produc-
tion failures. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20) (2020), pp. 735–751.

[8] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T., YUAN,
D., ZHOU, Y., AND PASUPATHY, S. Do not blame users for mis-
configurations. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (2013), pp. 244–259.

2

 http://e2fsprogs.sourceforge.net/
 http://e2fsprogs.sourceforge.net/
https://man7.org/linux/man-pages/man8/mdadm.8.html
https://man7.org/linux/man-pages/man8/mdadm.8.html

Understanding Configuration Issues in Storage Systems
Tabassum Mahmud, Mai Zheng

Department of Electrical and Computer Engineering
Iowa State University

Motivation Our Approach

Preliminary Results

• Storage systems have many configuration parameters
• Complex software layers with multiple programs
• e.g., applications, file systems, software RAID, ...

• Each program having huge number of parameters
• e.g., mke2fs has 85 parameters, mdadm has 95 parameters

• Configuration dependencies among programs
• Impractical to exhaust all configuration states for testing
• e.g., Ext4 has 85 parameters representing over 1037 configuration

states [2]
• Leads to the possibility of configuration issues in the programs

Acknowledgements
• This work was supported in part by NSF under grant CNS-

1943204. Any opinions, findings, and conclusions
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF.

• We thank Om Rameshwar Gatla, Duo Zhang, Nidhi Dalvi
and Haolun Ping from Data Storage Lab for their
invaluable discussions and efforts.

References
[1] Xu, Tianyin, "Do not blame users for misconfigurations." (SOSP),

2013.
[2] Cao, Zhen, "Carver: Finding important parameters for storage

system tuning." (FAST). 2020.
[3] Keller, Lorenzo, "ConfErr: A tool for assessing resilience to

human configuration errors." (DSN), 2008.
[4] Lattner, Chris, "LLVM: A compilation framework for lifelong

program analysis & transformation." (CGO), 2004.

• Research Prototypes [1], [2], [3]
• They may miss many configuration states
• Do not check cross-program relationships
• Only cover performance related configurations
• Rely on profiling traces, which might not be available

• Practical Test suites (xfstests, e2fsprogs, etc.)
• They may miss many configuration states

Study Bug Patches of Storage Systems
● To identify configuration bug patterns and classify them

● Self, Cross-parameter and Cross-program dependency

Following extracted dependencies
● Drive deeply into the code and check for unexpected

behavior

Need to minimize the configuration states for effective testing!

Program
Name

of
Bugs

Related to FS
config.

Parameters

Related to FS
Utility

Parameters

Related to
Both

e2fsck 36 34 (94.4%) 5 (13.9%) 3 (8.3%)
resize2fs 17 15 (88.2%) 13 (76.5%) 11 (64.7%)

e2freefrag 3 3 (100%) - -
Table 2: Characterization of Existing Configuration Bugs

Test Suite Target Program # of Param. Coverage
xfstests Ext4 FS 85 29 (34.1%)

e2fsprogs e2fsck 35 6 (17.1%)
e2fsprogs resize2fs 15 7 (46.7%)
Table 1: Coverage of Configuration parameters in Existing Test
Suites

Program
Name

Self
Dependency

Cross-param.
Dependency

Cross-program
Dependency

mke2fs 26 29 -
e2fsck 4 10 -

resize2fs - 3 8
Table 3: Manually Derived Configuration Dependency

Future Work

Are existing work enough?

Understanding the configuration dependencies

• Fully implement automated configuration dependency
analyzer
• Evaluate the prototype on more storage systems

• Taint Analysis to automatically identify the dependencies
• Based on LLVM compiler infrastructure [4]
• Each configuration is tainted and the taint trace is recorded
• The traces are further used to identify the dependencies

● Automatically identify the configuration dependencies
• Using inter-procedural Taint Analysis
• The analysis is context-sensitive and field-sensitive

● Generate critical configuration states based on the dependency
• Minimizing the number of configuration states

Violating extracted dependencies
● Whether the system handles the violation gracefully

Automated Configuration Dependency Analyzer

CConsistent
FS image

CInconsistent
FS image

…

Group 0-6:
Free_blocks=8192

Group 7:
has_superblock=True
free_blocks=7933

Superblock:
Sparse_super2=True

Group 0-6:
Free_blocks=8192

Group 7:
has_superblock=False
free_blocks=7934

Group 8:
has_superblock=True
free_blocks=7933

Step III:
Group 7 free_blocks count
is wrong

resize2fs ./img size

Step I:
Create a file system with
sparse_super2 feature
enabled

Example

Step II:
Increase the size of the
file system

Superblock:
Sparse_super2=True

…

● We studied 56 existing configuration bugs and derived 3 major types
of critical dependency

● Manually extracted these 3 types of dependency from source code
● Developing an automated tool to extract the dependencies

	Motivation
	Our Approach

