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1 Motivation

Persistent memory (PM) technologies [2, |6l [10] are ex-
pected to provide durability similar to the flash mem-
ory with latencies comparable to DRAM. These unique
characteristics bring new challenges for system design.
Among others, PM-based systems have to carefully or-
der and persist writes to the memory so that the system
states are always recoverable upon failures. This is non-
trivial due to the subtle behavior of modern cache and
memory subsystem [[7, [8]].

To make PM easier to use, great efforts have been
made to optimize different layers/components of sys-
tems (e.g., file systems [5, [11, [12f], libraries [4} 9],
databases [3]]). These PM-aware systems generally in-
clude sophisticated designs to achieve high performance
while maintaining high recoverability. Nevertheless, the
evaluation of these systems is unbalanced: while vari-
ous benchmarks have been used to demonstrate the per-
formance gain (including the performance of recovery),
there is little measurement of the recoverability guaran-
tee, largely because of a lack of effective methodology.

2 Methodology

We believe the evaluation of PM systems should be com-
prehensive, i.e., not only measuring the performance but
also testing the recoverability. To this end, we design
a fault injection framework to systematically testing the
recoverability of PM systems, which includes four steps:
(1) record: we instrument the target system to captures
memory operations as well as instructions important for
recovery (e.g., c1flush); (2) analysis: traces obtained
from the record phase are used to identify the most vul-
nerable points for fault injection (e.g., between a double
clflush); (3) replay: based on the trace recorded, we
replay the target system up to a specific execution point,
which essentially emulates the PM state of the system as
interrupted by a failure event; (4) recovery: we invoke
the recovery component of the target system and exam-
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ine the recoverability. In addition, we define two types
faults based on the granularity:

e Macro Faults: faults that occur at the boundaries
of PM library functions (e.g., after a pmalloc fin-
ishes); this type of coarse-grained faults test the
application-level recovery protocol (i.e., assuming
the PM library functions are atomic)

e Micro Faults: faults that occur during PM library
functions (e.g., inside pmalloc); this type of fine-
grained faults test the PM management thoroughly.

3 Preliminary Results

Fault Type | Description | R?
Macro-1 after a transaction commit Y
Macro-2 within a transaction Y
Micro-1 in pmalloc (b/w two clflush) Y
Micro-2 | in pmalloc (before any c1flush) | N

Table 1: Recoverability of N-Store under 4 faults. The
last column shows whether N-Store recovered sucessfully (Y)
or not (N).

We evaluate our preliminary prototype using N-
Store [3]], which is a PM-aware database with a PM li-
brary. We use PIN [1] to record memory instructions
with timestamps, and identify the boundaries of func-
tions such as pmalloc. We save N-Store’s memory-
mapped PM file at each dynamic fault point and attempt
to restore from each stored PM file.

As shown in Table [I| we inject 2 macro faults and
2 micro faults. N-Store can successfully recover from
Macro-1, Macro-2 and Micro-1. However, we observe a
segmentation fault when recovering N-Store from Micro-
2, which may imply that the PM library is unable to re-
store the PM to a clean state. We are investigating the
root cause and studying whether other PM systems suf-
fer from similar issues.
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| Motivation

* Persistent Memory (PM) technologies offers durability similar to
flash memory with latencies comparable to DRAM

DRAM PCM RRAM MRAM SSD HDD
Read Latency 60ns [50ns |100ns (20ns |25 us |10 ms
Write Latency 60 ns (150 ns [100ns (20ns 300 ps |10 ms
Addressability Byte |Byte |Byte |Byte Block |[Block

Volatile Yes No No No No No
100 pJ 10.02 pJ (10nJ (0.1
>1016 1010 108 101> 10° >1016

Energy/bit access 2 pJ |2 pJ
Endurance
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Table 1: Characteristics of memory/storage technologies[1]

* Various PM systems have been proposed, e.g.:
* NV-Heaps, Mnemosyne, DudeTM, NOVA, ...
* designed for achieving high performance while maintaining
consistency and high recoverability
* but the evaluation is unbalanced

Various benchmarks have been used to demonstrate
the performance gain, but there is

little measurement of recoverability guarantee,
largely because of a lack of effective methodology

| Methodology
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Figure 1: Overview of framework

* A fault injection framework to systematically test recoverability
* Four steps:
* Record: instrument target system to capture memory
operations, as well as recovery instructions (clflush)
* Analysis: identify most vulnerable points for fault injection
* Replay: replay target system up to a specific execution point
* Recovery: invoke recovery component of target system and
examine recoverability
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* Two types of faults based on granularity: Macro and Micro

Macro (M) Micro (m)

Faults that occur at the Faults that occur during
boundaries of PM lib functions PM lib functions

Ex.: inside pmalloc

Ex.: after pmalloc finishes

Fine-grained fault to test PM
management thoroughly

Coarse-grained fault to test
application-level recovery
protocol

Table 2: Two types of faults

| Experimental Results

 Used N-Store as one case study

* Used Intel’s PIN to record memory instructions and identify
boundaries of functions (ex.: pmalloc)

* Save memory-mapped file at each dynamic fault point and
attempt to restore

* |Injected 4 faults: Macro-1, Macro-2, Micro-1 and Micro-2

* N-Store successfully recovers from Macro-1, Macro-2 & Micro-1

 Segmentation fault occurs when recovering from Micro-2
* PM library was unable to restore PM to clean state

Fault Type Description Level
Macro-1 after a transaction commit Application
Macro-2  |within a transaction Application
Micro-1 in pmalloc (b/w two clflush) Library
Micro-2 in pmalloc (before any clflush) |Library

Table 3: Description for each Macro and Micro faults

Fault Type Target Component Recovery
Successful?
Macro-1 Undo log of N-Store Yes
Macro-2 Undo log of N-Store Yes
Micro-1 pmemlib Yes
Micro-2 pmemlib No

Table 4: Experimental results from fault injection

| Future Work

* Investigate the root cause of the segmentation fault
 Automate the framework

 Reduce the overhead of memory tracing

* Analyze more PM systems
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