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1 Motivation

Persistent memory (PM) technologies [2, 6, 10] are ex-
pected to provide durability similar to the flash mem-
ory with latencies comparable to DRAM. These unique
characteristics bring new challenges for system design.
Among others, PM-based systems have to carefully or-
der and persist writes to the memory so that the system
states are always recoverable upon failures. This is non-
trivial due to the subtle behavior of modern cache and
memory subsystem [7, 8].

To make PM easier to use, great efforts have been
made to optimize different layers/components of sys-
tems (e.g., file systems [5, 11, 12], libraries [4, 9],
databases [3]). These PM-aware systems generally in-
clude sophisticated designs to achieve high performance
while maintaining high recoverability. Nevertheless, the
evaluation of these systems is unbalanced: while vari-
ous benchmarks have been used to demonstrate the per-
formance gain (including the performance of recovery),
there is little measurement of the recoverability guaran-
tee, largely because of a lack of effective methodology.

2 Methodology

We believe the evaluation of PM systems should be com-
prehensive, i.e., not only measuring the performance but
also testing the recoverability. To this end, we design
a fault injection framework to systematically testing the
recoverability of PM systems, which includes four steps:
(1) record: we instrument the target system to captures
memory operations as well as instructions important for
recovery (e.g., clflush); (2) analysis: traces obtained
from the record phase are used to identify the most vul-
nerable points for fault injection (e.g., between a double
clflush); (3) replay: based on the trace recorded, we
replay the target system up to a specific execution point,
which essentially emulates the PM state of the system as
interrupted by a failure event; (4) recovery: we invoke
the recovery component of the target system and exam-

ine the recoverability. In addition, we define two types
faults based on the granularity:

• Macro Faults: faults that occur at the boundaries
of PM library functions (e.g., after a pmalloc fin-
ishes); this type of coarse-grained faults test the
application-level recovery protocol (i.e., assuming
the PM library functions are atomic)

• Micro Faults: faults that occur during PM library
functions (e.g., inside pmalloc); this type of fine-
grained faults test the PM management thoroughly.

3 Preliminary Results

Fault Type Description R?
Macro-1 after a transaction commit Y
Macro-2 within a transaction Y
Micro-1 in pmalloc (b/w two clflush) Y
Micro-2 in pmalloc (before any clflush) N

Table 1: Recoverability of N-Store under 4 faults. The
last column shows whether N-Store recovered sucessfully (Y)
or not (N).

We evaluate our preliminary prototype using N-
Store [3], which is a PM-aware database with a PM li-
brary. We use PIN [1] to record memory instructions
with timestamps, and identify the boundaries of func-
tions such as pmalloc. We save N-Store’s memory-
mapped PM file at each dynamic fault point and attempt
to restore from each stored PM file.

As shown in Table 1, we inject 2 macro faults and
2 micro faults. N-Store can successfully recover from
Macro-1, Macro-2 and Micro-1. However, we observe a
segmentation fault when recovering N-Store from Micro-
2, which may imply that the PM library is unable to re-
store the PM to a clean state. We are investigating the
root cause and studying whether other PM systems suf-
fer from similar issues.
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• Persistent Memory (PM) technologies offers durability similar to 
flash memory with latencies comparable to DRAM

Future Work

• Used N-Store as one case study
• Used Intel’s PIN to record memory instructions and identify 

boundaries of functions (ex.: pmalloc)
• Save memory-mapped file at each dynamic fault point and 

attempt to restore
• Injected 4 faults: Macro-1, Macro-2, Micro-1 and Micro-2
• N-Store successfully recovers from Macro-1, Macro-2 & Micro-1
• Segmentation fault occurs when recovering from Micro-2
• PM library was unable to restore PM to clean state

Fault Type Target Component
Recovery 

Successful?
Macro-1 Undo log of N-Store Yes
Macro-2 Undo log of N-Store Yes
Micro-1 pmemlib Yes
Micro-2 pmemlib No

Table 4: Experimental results from fault injection

Table 3: Description for each Macro and Micro faults

Various benchmarks have been used to demonstrate 
the performance gain, but there is 

little measurement of recoverability guarantee, 
largely because of a lack of effective methodology

• Various PM systems have been proposed , e.g.:
• NV-Heaps, Mnemosyne, DudeTM, NOVA, …
• designed for achieving high performance while maintaining 

consistency and high recoverability
• but the evaluation is unbalanced

Table 1: Characteristics of memory/storage technologies[1]

• A fault injection framework to systematically test recoverability
• Four steps:
• Record: instrument target system to capture memory 

operations, as well as recovery instructions (clflush)
• Analysis: identify most vulnerable points for fault injection
• Replay: replay target system up to a specific execution point
• Recovery: invoke recovery component of target system and 

examine recoverability

• Investigate the root cause of the segmentation fault
• Automate the framework
• Reduce the overhead of memory tracing
• Analyze more PM systems

Fault Type Description Level
Macro-1 after a transaction commit Application
Macro-2 within a transaction Application
Micro-1 in pmalloc (b/w two clflush) Library
Micro-2 in pmalloc (before any clflush) Library

DRAM PCM RRAM MRAM SSD HDD
Read Latency 60 ns 50 ns 100 ns 20 ns 25 µs 10 ms
Write Latency 60 ns 150 ns 100 ns 20 ns 300 µs 10 ms
Addressability Byte Byte Byte Byte Block Block
Volatile Yes No No No No No
Energy/bit access 2 pJ 2 pJ 100 pJ 0.02 pJ 10 nJ 0.1 J
Endurance >1016 1010 108 1015 105 >1016

Macro (M) Micro (m)
Faults that occur at the 

boundaries of PM lib functions
Faults that occur during 

PM lib functions 
Ex.: after pmalloc finishes Ex.: inside pmalloc

Coarse-grained fault to test 
application-level recovery 

protocol

Fine-grained fault to test PM 
management thoroughly

Table 2: Two types of faults

Figure 1: Overview of framework

• Two types of faults based on granularity: Macro and Micro
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