


# Understanding SSD Reliability in Large-Scale Cloud Systems

| Erci Xu    |  |
|------------|--|
| Ohio State |  |
| University |  |

Mai Zheng Iowa State University Feng Qin Ohio State University Yikang Xu Aliyun Alibaba Jiesheng Wu Aliyun Alibaba

# Flash-Memory-Based Solid-Stata Drives is popular in today's DC



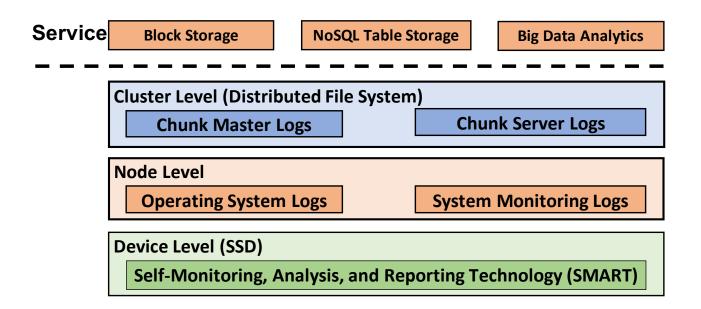
- Enterprises and Individuals are increasingly use SSD as storage media
- 2018 Q1: 45.46 million units
- Estimated Enterprise SSDs: 30 million units in 2018, up from 20 million units in 2016

Estimate of Shipments of hard and solid state disk (HDD/SSD) drives worldwide https://www.statista.com/statistics/285474/hdds-and-ssds-in-pcs-global-shipments-2012-2017/

#### SSD Reliability Concerns

- Wear out issue
  - Limited Life Cycles

- Complex failure modes
  - Program/Erase Error
- Sensitive to environment
  - NAND in heated environment


# Previous Large Scale SSD Studies

- Reveal important aspects of flash-based drives in the field
  - Life Curve
    - Not Bathtub
  - Uncorrectable Errors are popular
    - Program/Erase Error
    - NAND in heated environment

SSD Reliability in the Cloud Systems are more than the device

- 1. Architecture Overview
- 2. Human Errors
- 3. Service Imbalance
- 4. Transmission Errors
- 5. Conclusions & Future Works

#### Architecture Overview



#### SSD Fleet in Our Research

| Model       | Capacity | Lith. | Age    | Rationale |
|-------------|----------|-------|--------|-----------|
| 1- <b>B</b> | 480GB    | 20nm  | 2-3yrs | Baseline  |
| 1- <b>C</b> | 800GB    | 20nm  | 2-3yrs | Capacity  |
| 1- <b>L</b> | 480GB    | 16nm  | 1-2yrs | Lith.     |
| 2- <b>V</b> | 480GB    | 20nm  | 2-3yrs | Vendor    |
| 3-V         | 480GB    | 20nm  | 1-2yrs | Vendor    |

Table 1: **SSD Models**. *Lith.*: *Lithography; Each model is named as (Vendor id)-Rationale.* 

# Targeting different cloud products to achieve general findings

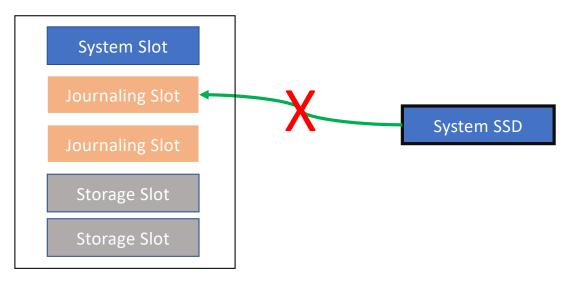
| Service  | Model       | Setup    | Function    |
|----------|-------------|----------|-------------|
| Block    | 1-B,1-C,1-L | Hybrid   | Journaling  |
|          | 2-V,3-V     | Multiple | Persistence |
| NoSQL    | 1-B,1-L     | Hybrid   | Journaling  |
|          | 2-V,3-V     | Multiple | Persistence |
| Big Data | 1-B,1-C,2-V | Single   | Temporary   |

Table 2: Service Workloads. **Hy**: Hybrid Setup, **Mul**: Multiple Setup, **Pers**: Persistent storage, **Jour**: Journaling, **Temp**: Temporarily storing intermediate data.

#### Targeting representative services with different functionalities and avoiding biased results from different workloads

# Datasets in Our Research: Errors and Failures

| Level                                         | Event               | Definition                                           | Freq. |
|-----------------------------------------------|---------------------|------------------------------------------------------|-------|
| Buffer IO Error                               |                     | A failed read/write from file system to SSD          |       |
|                                               | Media Error         | Software detected actual data corruption             |       |
| Node File System Unmountable                  |                     | Unable to load the file system on a SSD              |       |
|                                               | Drive Missing       | OS unable to find a plugged SSD                      |       |
| Wrong Slot                                    |                     | SSD has been plugged to the Wrong SATA slot          |       |
|                                               | Host Read           | Total amount of LBA read from the SSD                |       |
|                                               | Host Write          | Total amount of LBA write from the SSD               |       |
|                                               | Program Error       | Total # of errors in NAND write operations           |       |
| Device Raw Bit Error Rate<br>End-to-End Error |                     | Total bits corrupted divided by total bits read      |       |
|                                               |                     | Total # of parity check failures between interfaces  |       |
|                                               | Uncorrectable Error | Total # of data corruption beyond ECC's ability      |       |
|                                               | UDMA CRC Error      | Total # of CRC check failures during Ultra-DMA(UDMA) |       |


Table 3: Events Collected in the Target Storage System. *Freq.: Frequency, event logs can be updated daily ("Daily") or upon new events ("Event");* 

Including Node level failure to build correlation and understand impact

- 1. Architecture Overview
- 2. Human Errors
- 3. Service Imbalance
- 4. Transmission Errors
- 5. Conclusions & Future Works

#### Human Errors

- Observation: Over 20% of OS-level error events are caused by incorrect manual operations
- Cause: Wrong Slot is a dominant cause. A SSD is plugged into an incorrect slot.



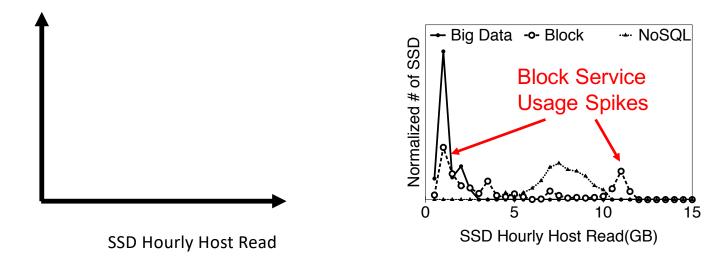
# Wrong Slot

- Root cause: the device is mapped to the SATA slot in 1-to-1 fashion
- Possible solutions: adding an indirect translation layer between file system mounting points and hardware slots
- Drawbacks:
  - 1. Global scale changes
  - 2. Kernel Level Modifications

### Wrong Slot: Our Solution

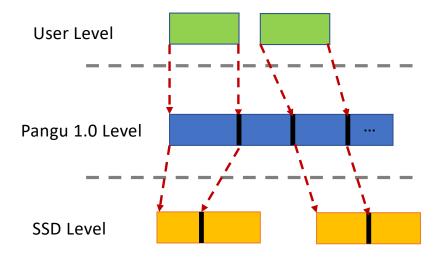
- OIOP: One Interface One Purpose
- New interfaces, such as M.2 and U.2
- We switch the mapping from mounting-to-SATA to mounting-tointerface
- Example: In the hybrid setup, the system drive is plugged to the M.2 interface while storage SSDs still use the SATA interface

- 1. Architecture Overview
- 2. Human Errors
- 3. Service Imbalance
- 4. Transmission Errors
- 5. Conclusions & Future Works


#### Service Imbalance

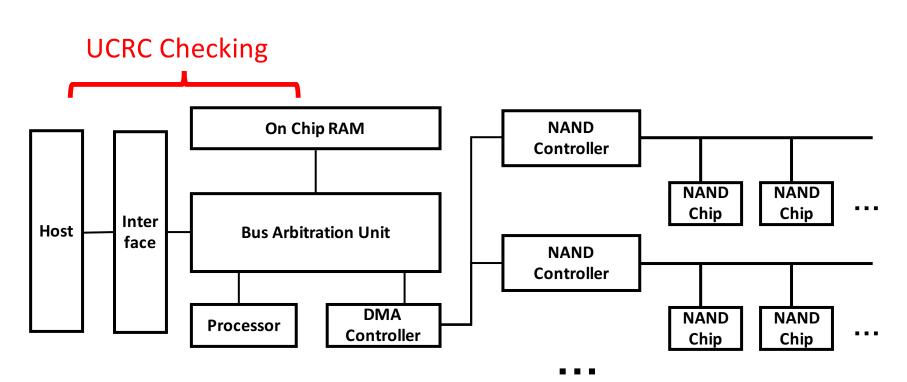
 Observation: Certain cloud services may cause unbalanced usage of SSDs

|       |         | Host Read | Host Write |
|-------|---------|-----------|------------|
| Avg.  | Block   | 7.69GB    | 6.56GB     |
| Value | BigData | 1.57GB    | 1.22GB     |
| /Hour | NoSQL   | 6.10GB    | 5.28GB     |
| CV    | Block   | 35.5%     | 24.9%      |
|       | BigData | 1.8%      | 3.7%       |
|       | NoSQL   | 3.2%      | 6.2%       |


Table 5: Host Read and Host Write Comparison between Services. CV: Coefficient of Variance, the ratio of standard deviation to mean. Block storage service has much higher CV which indicates the usage among SSD is not well balanced

# Service Imbalance: Further Breakdown

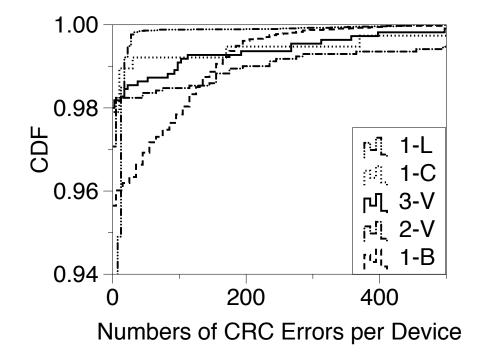



- Each dot in the line equals the cumulative count of SSDs that have hourly host read (or write) amount falls into a range along the X axis, with a step of 0.5GB/hr and starting from 0.5.
- The majority of SSDs under both NoSQL and Big Data Analytics services have similar values (i.e., one major spike in the corresponding curve).
- On the other hand, the SSDs under the block storage service shows diverse values (i.e., two spikes far apart) as marked in the figure. The distribution of host write is similar.

### Service Imbalance: Further Breakdown

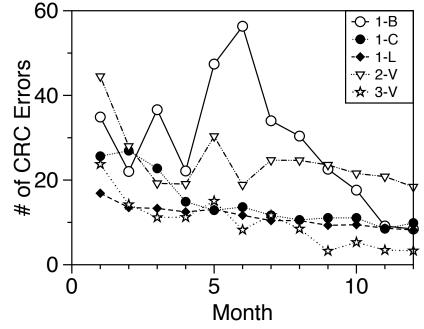


- Pangu 1.0 Data Layout for Block storage
  - In-place updates
- User can generate imbalance of workload to SSDs
- 15%-20% of SSDs have higher workload


- 1. Architecture Overview
- 2. Human Errors
- 3. Service Imbalance
- 4. Transmission Errors
- 5. Conclusions & Future Works

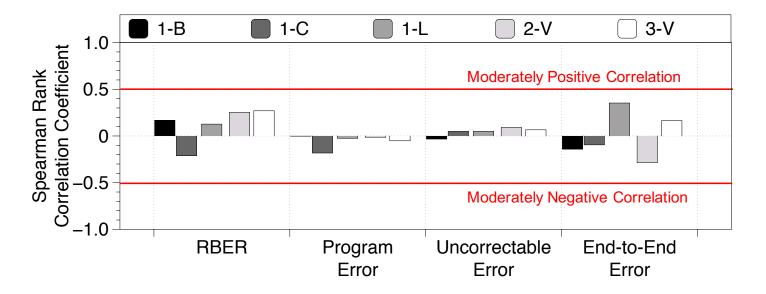


**Transmission Error** 


Transmission Error occurs when data fails to pass the CRC checking after SSD-to-Host transmission and would trigger an automatic retry.

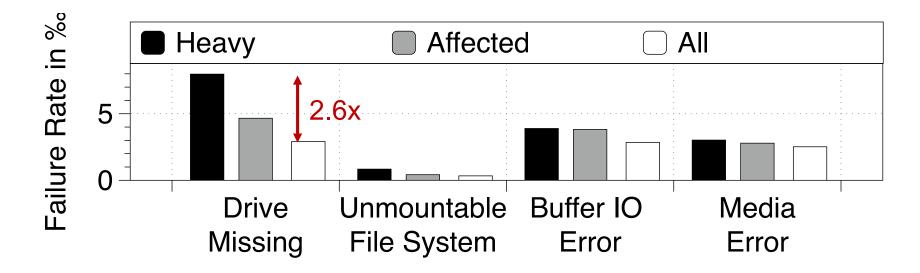
### Transmission Error: CRC Errors by SSD Model




Observation: CRC errors are concentrated around 6% of all drives

#### Transmission Error: CRC Errors with Age




- Observation: errors are stably generated
- The biased distribution and stable generation indicate there can be non-transient factors behind the generation of CRC errors

# Transmission Errors: CRC Errors vs. Other Errors



- Results: SPCC results with device level events
- Observation: UCRC errors not correlated with device-level errors. UCRC is an independent type of errors

### Transmission Errors: CRC Errors vs. Failures



- Results: Failure rate results with OS-level error events
- Observation: UCRC error can lead to a higher rate of OS-level error events

- 1. Architecture Overview
- 2. Human Errors
- 3. Service Imbalance
- 4. Transmission Errors
- 5. Conclusions & Future Works

# Field Study Summary

- SSD failure is more than just data errors
- Human Error
  - Issue: Wrong Slot Plugging
  - Root Cause: 1-to-1 fashion mapping
- Service Imbalance
  - Issue: 15-20% of SSDs have higher workload
  - Root cause: in-place update
- Impact of Transmission Errors
  - Issue: UCRC error is not necessarily benign in the long run
  - Root cause: UCRC error is a useful indicator for faulty interconnection





# Thank You! Q&A

# Understanding SSD Reliability in Large-Scale Cloud Systems

Erci Xu

Ohio State University Feng

Mai Zheng

Iowa State

University

Feng Qin

Ohio State University Yikang Xu

Aliyun Alibaba Jiesheng Wu

Aliyun Alibaba