
All About Discovery!
New Mexico State University
nmsu.edu

™™

Understanding	the	Fault	Resilience	of	
File	System	Checkers

Om	Rameshwar	Gatla,	Mai	Zheng

New	Mexico	State	University

All About Discovery!
New Mexico State University
nmsu.edu

™™

Motivation

1

•Multiple	power	outages
•Recovery	procedure	was	interrupted
•Resulted	in	severe	data	loss

All About Discovery!
New Mexico State University
nmsu.edu

™™

Motivation
• Need	to	understand	the	behavior	of	local	checkers	
under	faults	first

2

All About Discovery!
New Mexico State University
nmsu.edu

™™

Motivation
• Need	to	understand	the	behavior	of	local	checkers	
under	faults	first

• Research	Question:
Does	running	the	checker	after	an	interrupted-check	
successfully	return	the	file	system	to	a	consistent	
state?	If	not,	what	goes	wrong?

2

All About Discovery!
New Mexico State University
nmsu.edu

™™

Related	Work
• Existing	work	for	improving	checkers

– E.g.:	ffsck[@FAST’13],	SWIFT[@EUROSYS’12],	SQCK[@OSDI’08]

3

All About Discovery!
New Mexico State University
nmsu.edu

™™

Related	Work
• Existing	work	for	improving	checkers

– E.g.:	ffsck[@FAST’13],	SWIFT[@EUROSYS’12],	SQCK[@OSDI’08]

• One	common	assumption	
– checkers	can	finish	without	interruption

3

All About Discovery!
New Mexico State University
nmsu.edu

™™

Related	Work
• Existing	work	for	improving	checkers

– E.g.:	ffsck[@FAST’13],	SWIFT[@EUROSYS’12],	SQCK[@OSDI’08]

• One	common	assumption	
– checkers	can	finish	without	interruption

3

We	study	behavior	of	checkers with	interruptions

All About Discovery!
New Mexico State University
nmsu.edu

™™

Challenges
• Challenge	#1:

How	to	generate	images	that	contain	corruptions	and	require	
complex	recovery?

• Challenge	#2:
How	to	interrupt	recovery	systematically?

• Difficult	to	simulate	system	crash	and	power	outages

4

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

• Generate	test	images that	contain	corruption:
– Method	#1:	Test	images	provided	by	developers	
– Method	#2:	Manipulate	metadata	using	file	system	debugger	
(e.g.,	debugfs,	xfs_db)

5

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology
• Develop	Fault	Injection	Module to	generate	faults	in	
a	systematic	and	controllable	way

6

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology
• Develop	Fault	Injection	Module to	generate	faults	in	
a	systematic	and	controllable	way
– Adopt	“clean	power	fault”	model[@OSDI’14]

• Clean	termination	of	I/O	stream
–No	reordering
– Lower	bound	of	failure	impact

– Customize	an	iSCSI	driver	to	record	&	replay	I/O	
commands

6

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

Replay

Record

Workload fault	injection	module

test	image

• Procedure to emulate clean power fault model

7

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

Replay
1

2

3

4

5

I/O	Block	Trace

Record

Workload

I/O	blocks
(block	size	is	
determined	by	
fault	injection	
granularity)

fault	injection	module

test	image

I/O	Commands

• Procedure to emulate clean power fault model

7

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

Replay
1

2

3

4

5

I/O	Block	Trace

Record
I/O	blocks
(block	size	is	
determined	by	
fault	injection	
granularity)

fault	injection	module

• Procedure to emulate clean power fault model

7

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

Replay
1

2

3

4

5

I/O	Block	Trace

Record
I/O	blocks
(block	size	is	
determined	by	
fault	injection	
granularity)

fault	injection	module

• Procedure to emulate clean power fault model

1 2

7

All About Discovery!
New Mexico State University
nmsu.edu

™™

test
image

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(1) copy

test
image

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(1) copy

test
image

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(3) reference image

(1) copy

test
image

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

(7) interrupted image(s)

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

(7) interrupted image(s)

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

(7) interrupted image(s)

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

(7) interrupted image(s)

(8) fsck

Methodology

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test
image

fault injection module

(5) copy

(6) replay

partial commands

(7) interrupted image(s)

(8) fsck

Methodology

(9) repaired image(s)

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial commands

fault injection module

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test
image

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial commands

fault injection module

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test
image

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial commands

fault injection module

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test
image

8

• Workflow:

All About Discovery!
New Mexico State University
nmsu.edu

™™

Experimental	Results
• Two	case	studies

– e2fsck: checker	for	Ext	2/3/4	File	Systems
– xfs_repair: checker	for	XFS	File	System

9

All About Discovery!
New Mexico State University
nmsu.edu

™™

Experimental	Results
• Two	case	studies

– e2fsck: checker	for	Ext	2/3/4	File	Systems
– xfs_repair: checker	for	XFS	File	System

• Observed	4	types	of	corruptions:

9

Un-mountable
File	Content	
Corruption

Misplacement
of	Files Others

All About Discovery!
New Mexico State University
nmsu.edu

™™

Experimental	Results
• Two	case	studies

– e2fsck: checker	for	Ext	2/3/4	File	Systems
– xfs_repair: checker	for	XFS	File	System

• Observed	4	types	of	corruptions:

9

Un-mountable
File	Content	
Corruption

Misplacement
of	Files Others

Cannot	be	fixed	by	another	run	of	fsck

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

• Used	175	test	images	from	e2fsprogs

• Block	size	of	all	images	is	1KB

• Fault	injected	at	two	granularities:	512B	and	4KB

10

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

11

(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial commands

fault injection module

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test
image

RECAP

1 test image many interrupted/repaired images

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

Fault	Injection	
Granularities

Number	of	images	reporting	corruption

Test	Images Repaired	Images

512	B 34 240

4	KB 17 37
Table	2:	Number	 of	test	 images	 and	repaired	 images	 reporting	 corruption	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study:	e2fsck

12

Fault	Injection	
Granularities

Total	number	of	Test	
Images

Total	number	of	
repaired	images

512	B 175 25,062

4	KB 175 3,915
Table	1:	Number	 of	test	 images	 and	repaired	 images	 generated	

under	two	fault	 injection	 granularities

Fault	Injection	
Granularities

Number	of	images	reporting	corruption

Test	Images Repaired	Images

512	B 34 240

4	KB 17 37
Table	2:	Number	 of	test	 images	 and	repaired	 images	 reporting	 corruption	

under	two	fault	 injection	 granularities

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study	:	e2fsck

13

Corruption	Types 512	B 4	KB

Un-mountable 41 3

File	Content	 Corruption 107 10

Misplacement	 of	files 82 23

Others 10 1

Total 240 37

Table	3:	Classification	of	corruptions	observed	
on	repaired	images

All About Discovery!
New Mexico State University
nmsu.edu

™™

Case	Study	:	e2fsck

13

Corruption	Types 512	B 4	KB

Un-mountable 41 3

File	Content	 Corruption 107 10

Misplacement	 of	files 82 23

Others 10 1

Total 240 37

Table	3:	Classification	of	corruptions	observed	
on	repaired	images

All About Discovery!
New Mexico State University
nmsu.edu

™™

Is	it	solely	caused	by	
asynchronous	writes?

14

• Existing	implementation	uses	asynchronous	updates
– most	updates	are	buffered	in	memory
– flush	them	only	at	the	end	of	last	pass

• Does	not	guarantee	ordering	and	atomicity

All About Discovery!
New Mexico State University
nmsu.edu

™™

Is	it	solely	caused	by	
asynchronous	writes?

15

• We	change	the	code	to	enforce	synchronous	writes
– Method	1: Add	O_SYNC flag
– Method	2: Invoke	ext2fs_flush() to	flush	
changes	after	each	pass	(5	passes	in	total)

All About Discovery!
New Mexico State University
nmsu.edu

™™

Enforcing	Synchronous	Writes

16

• Surprisingly,	the	results	are	worse:

All About Discovery!
New Mexico State University
nmsu.edu

™™

Enforcing	Synchronous	Writes

16

Fault	Injection	
Granularities

Number	of	images	reporting	corruption

Test	Images Repaired	Images

512	B 34 240

4	KB 17 37
Table	4:	Number	 of	test	 images	 and	repaired	 images	 reporting	 corruption	

under	two	fault	 injection	 granularities

• Surprisingly,	the	results	are	worse:

BEFORE

All About Discovery!
New Mexico State University
nmsu.edu

™™

Enforcing	Synchronous	Writes

16

Synchronization
Methods

Number	of	images	reporting	corruption

Test	Images Repaired	Images

Sync	each	write 45 223

Sync	after	each	pass 45 243
Table	5: Number	 of	test	 images	 and	repaired	 images	 reporting	

corruption	after	enforcing	synchronous	 updates.

Fault	Injection	
Granularities

Number	of	images	reporting	corruption

Test	Images Repaired	Images

512	B 34 240

4	KB 17 37
Table	4:	Number	 of	test	 images	 and	repaired	 images	 reporting	 corruption	

under	two	fault	 injection	 granularities

• Surprisingly,	the	results	are	worse:

BEFORE

AFTER

All About Discovery!
New Mexico State University
nmsu.edu

™™

There	is	strong	dependency	 among	
updates/passes

16

All About Discovery!
New Mexico State University
nmsu.edu

™™

Can	Undo	Log	Handle	Interruptions?

17

• Undo	log	feature	in	e2fsprogs utilities
– E.g.:	e2fsck,	debugfs,	mke2fs,	etc.

All About Discovery!
New Mexico State University
nmsu.edu

™™

Can	Undo	Log	Handle	Interruptions?

17

• Undo	log	feature	in	e2fsprogs utilities
– E.g.:	e2fsck,	debugfs,	mke2fs,	etc.

• Records	data	block	that	is	being	updated	into	a	log
– To	undo	the	changes	made	(if	necessary)

All About Discovery!
New Mexico State University
nmsu.edu

™™

Can	Undo	Log	Handle	Interruptions?

18

• Modify	the	existing	fault-injection	framework	to	test	
e2fsck with	undo	log	enabled:
– Add	another	block	device	for	undo	log
– Add	record	&	replay	for	undo	log

All About Discovery!
New Mexico State University
nmsu.edu

™™

Can	Undo	Log	Handle	Interruptions?

18

• Modify	the	existing	fault-injection	framework	to	test	
e2fsck with	undo	log	enabled:
– Add	another	block	device	for	undo	log
– Add	record	&	replay	for	undo	log

• Surprisingly	the	results	are	similar:
– No	ordering	of	writes	b/w	undo	log	and	block	device

All About Discovery!
New Mexico State University
nmsu.edu

™™

• Methodology	to	study	the	behavior	of	file	system	
checker	under	emulated	faults

• Does	running	the	checker	after	an	interrupted-check	
successfully	return	the	file	system	to	a	consistent	
state?		NO

• If	not,	what	goes	wrong?
– Strong	dependencies	among	updates/passes,	resulting	in	
severe	corruption	under	faults

19

Conclusion

Make	Recovery	Procedures	
Resilient	to	Faults

All About Discovery!
New Mexico State University
nmsu.edu

™™

• Build	a	resilient	file	system	checker

• Port	this	methodology	to	other	procedures
– E.g.,	system	updates,	etc.

19

Future	work

All About Discovery!
New Mexico State University
nmsu.edu

™™

THANK	YOU

All About Discovery!
New Mexico State University
nmsu.edu

™™

THANK	YOU
QUESTIONS?

