
On Fault Resilience of File System Checkers

Om Rameshwar Gatla Mai Zheng
Computer Science Department, New Mexico State University

Abstract

File system checkers serve as the last line of defense to
recover a corrupted file system back to a consistent state.
In this position paper, we study the behavior of file sys-
tem checkers under emulated faults. We answer two im-
portant questions: instead of fixing the original corrup-
tion, will an interrupted checker cause more severe dam-
age? If so, can the additional damage be fixed by the ex-
isting checker? Our preliminary results show that there
are vulnerabilities in popular file system checkers which
could lead to unrecoverable data loss under faults.

1 Motivation

Despite of various protection techniques [19, 12, 10, 18,
6], file systems may still become corrupted for various
reasons including power outages, system crashes, hard-
ware failures, software bugs, etc [15, 16, 9, 5, 14, 20, 17].
Thus, most file systems come with a checker to serve as
the last line of defense to recover the corrupted file sys-
tem back to a healthy state [15, 2, 11, 1, 3].

Due to such importance, abundant work has been done
to improve file system checkers in terms of both perfor-
mance and reliability [15, 13, 8]. Complementary to the
existing efforts, in this paper we study the behavior of
file system checkers under faults. This is motivated by a
recent accident happened at the High Performance Com-
puting Center (HPCC) in Texas [7, 4], where the Lustre
file system suffered severe data loss after experiencing
two consecutive power outages: the first one triggered
the Lustre checker (i.e., LFSCK [2]) after restarting the
cluster, while the second one interrupted LFSCK and led
to the final downtime. Since Lustre is built on top of a
variant of Ext4 and LFSCK relies on the local file system
checker, the overall checking and recovery procedure is
complicated. As one step to pinpoint the vulnerabilities
and build robust file system checkers, we perform a com-
prehensive study on the fault resilience of e2fsck [1],
the default checker for the widely used Ext2/Ext3/Ext4
file systems.

Corruption Types Percentage
unmountable 0.57%

file content corruption 2.85%
misplacement of files 6.28%

others 0.57%
Table 1: Four types of unrecoverable corruption incurred by
an interrupted e2fsck; the percentage is defined as the number
of occurrences divided by the total number of test images.

2 Methodology

We build a fault-injection framework for e2fsck based
on a record-and-replay tool [20]. The developers of Ext-
series file systems maintain a set of corrupted file sys-
tem images for regression testing [1], which we utilize
as the input to our framework to trigger the file system
checker. We record the I/O traffic during the execution
of the checker, and replay partial I/O blocks to emulate
the effect of an interrupted checker on the file system im-
age. Moreover, after generating the interrupted state, we
re-run the checker again without any fault injection. This
is to verify that whether the corruption introduced by the
interrupted checker can be recovered or not.

3 Preliminary Results

We have evaluated e2fsck 1.43.1 using our prototype.
175 test images from e2fsprogs [1] were used as in-
puts. To emulate faults on storage systems with different
atomic block sizes, we inject faults in two granularities:
after each 512B or 4KB block. Table 1 summarizes the
results under 4KB granularity. We classify the new cor-
ruptions observed into four types: (1) unmountable; (2)
file content corruption; (3) misplacement of files; (4) oth-

ers (e.g., showing “???” after an ls command). Note
that all these corruptions were observed after running the
checker again without interruption, which means they
cannot be recovered by the exiting checker. We believe
our study can raise the awareness of the reliability vul-
nerabilities and will serve as a foundation for building
fault-resilient checkers for file systems.

1

4 Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant Number
1566554.

References

[1] E2fsprogs: Ext2/3/4 Filesystem Utilities. http://e2fsprogs.
sourceforge.net/.

[2] LFSCK: an online file system checker for Lustre. https://github.
com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt.

[3] XFS File System Utilities. https://access.redhat.com/
documentation/en-US/Red Hat Enterprise Linux/6/html/
Storage Administration Guide/xfsothers.html.

[4] Texas Tech University HPCC Power Outage Event. Email An-
nouncement by HPCC at 8:50:17 AM CST on Monday January
11, 2016.

[5] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., GOODSON, G. R., AND
SCHROEDER, B. An analysis of data corruption in the
storage stack. Trans. Storage 4, 3 (Nov. 2008), 8:1–8:28.

[6] BAIRAVASUNDARAM, L. N., SUNDARARAMAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Tolerating
file-system mistakes with envyfs. In Proceedings of the 2009

Conference on USENIX Annual Technical Conference (Berkeley,
CA, USA, 2009), USENIX’09, USENIX Association, pp. 7–7.

[7] CAO, J., WANG, S., DAI, D., ZHENG, M., AND CHEN, Y. A
generic framework for testing parallel file systems. In Proceed-

ings of the 1st Joint International Workshop on Parallel Data

Storage & Data Intensive Scalable Computing Systems (Piscat-
away, NJ, USA, 2016), PDSW-DISCS ’16, IEEE Press, pp. 49–
54.

[8] CARREIRA, J. A. C. M., RODRIGUES, R., CANDEA, G., AND
MAJUMDAR, R. Scalable testing of file system checkers. In Pro-

ceedings of the 7th ACM European Conference on Computer Sys-

tems (New York, NY, USA, 2012), EuroSys ’12, ACM, pp. 239–
252.

[9] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using crash hoare
logic for certifying the fscq file system. In Proceedings of the

25th Symposium on Operating Systems Principles (New York,
NY, USA, 2015), SOSP ’15, ACM, pp. 18–37.

[10] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Consistency Without Ordering.
In Proceedings of the 10th Conference on File and Storage Tech-

nologies (FAST’12) (San Jose, California, February 2012).

[11] FARNUM, G. CephFS fsck: distributed file system check-
ing. http://events.linuxfoundation.org/sites/events/files/slides/
Vault%20CephFS%20fsck.pdf.

[12] GANGER, G. R., MCKUSICK, M. K., SOULES, C. A., AND
PATT, Y. N. Soft updates: a solution to the metadata update
problem in file systems. ACM Transactions on Computer Systems

(TOCS) 18, 2 (2000), 127–153.

[13] GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Sqck: A declarative file system
checker. In Proceedings of the 8th USENIX Conference on Oper-

ating Systems Design and Implementation (Berkeley, CA, USA,
2008), OSDI’08, USENIX Association, pp. 131–146.

[14] LU, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND LU, S. A study of linux file system evolution. In Presented

as part of the 11th USENIX Conference on File and Storage Tech-

nologies (FAST 13) (San Jose, CA, 2013), USENIX, pp. 31–44.

[15] MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. ffsck: The fast file system checker.
In Presented as part of the 11th USENIX Conference on File and

Storage Technologies (FAST 13) (San Jose, CA, 2013), USENIX,
pp. 1–15.

[16] MIN, C., KASHYAP, S., LEE, B., SONG, C., AND KIM, T.
Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th Symposium on Operat-

ing Systems Principles (New York, NY, USA, 2015), SOSP ’15,
ACM, pp. 361–377.

[17] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-
KISWANY, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. All file systems are not created equal: On
the complexity of crafting crash-consistent applications. In Pro-

ceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’14) (October 2014).

[18] STEIN, C. A., HOWARD, J. H., AND SELTZER, M. I. Uni-
fying file system protection. In Proceedings of the General

Track: 2001 USENIX Annual Technical Conference (Berkeley,
CA, USA, 2001), USENIX Association, pp. 79–90.

[19] TWEEDIE, S. C. Journaling the linux ext2fs filesystem. In In Lin-

uxExpo?98: Proceedings of The 4th Annual Linux Expo (1998).

[20] ZHENG, M., TUCEK, J., HUANG, D., QIN, F., LILLIBRIDGE,
M., YANG, E. S., ZHAO, B. W., AND SINGH, S. Torturing
databases for fun and profit. In 11th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 14) (Broom-
field, CO, 2014), USENIX Association, pp. 449–464.

2

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html

On	Fault	Resilience	of	File	System	Checkers
Om	Rameshwar	Gatla,	Mai	Zheng;	New	Mexico	State	University

Motivation
• Two	consecutive	power	outages	 happened	 at	High	
Performance	Computing	Center	(HPCC)	in	Texas	 in	2016

• One	 triggered	the	Lustre file	system	checker	(LFSCK)	
on	restart,	another	 interrupted	LFSCK
• Resulted	in	severe	 data	loss

• Checking	and	recovery	 in	Lustre-like	systems	 is	complicated
• LFSCK	relies	on	local	checkers
• need	 a	systematic	testing&	analyzing methodology	

Run	e2fsck	on
test	image

Record	I/O	
commands	
by	e2fsck

Replay	I/O	
commands	with	
interruption	 at	
specified	I/O	

blocks

Rerun	e2fsck	
again	without	
interruption

Methodology

Preliminary	Results

Corruption	Type
Percentage

4 KB 512	B

Un-mountable 0.57% 11.42%

File	content	corruption 2.85% 5.14%

Misplacement	of	files 6.28% 5.14%

Others 0.57% 0.57%

• Use	 175	test	images	from	e2fsprogs
• Two	granularities	for	fault	injection:	every	4KB	or	512B
• 17	images	 cannot	be	recovered	 completely	with	fault	injection	size	of	4KB	
• 34	images	 cannot	be	recovered	 completely	with	fault	injection	size	of	512B

Will	an	interrupted	checker	cause	more	damage	to	the	FS?	If	so,	
can	the	additional	damage	be	fixed	by	the	existing	checker?

(a) 512B																																(b)	4KB

Figure	 1.	Distribution	of	symptoms	among	all	faults	
leading	to	unrecoverable	 corruptionTable	 1.	Four	types	of	corruption	observed	and	the	

corresponding	percentages	 among	all		test	images

Next	Step
• Evaluate	more	file	system	 checkers	or	repair	utilities
• Build	a	robust	file	system	checker	(rfsck)	which	is	resilient	to	faults

All About Discovery!
New Mexico State University
nmsu.edu

™™

On Fault Resilience of
File System Checkers

Om Rameshwar Gatla, Mai Zheng
New Mexico State University

All About Discovery!
New Mexico State University
nmsu.edu

™™

Motivation and Background
• Two power outages
• Interrupted the recovery process
• Resulted in severe data loss

All About Discovery!
New Mexico State University
nmsu.edu

™™

Research Questions
• Question 1:

Will an interrupted checker cause more damage to the file
system?

• Question 2:
Can the additional damage be fixed by the existing checker?

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

• Large scale file systems rely on local file systems. So we start
from local file system checkers
– e2fsck, file system checker for ext2, ext3 and ext4

• Use test images from e2fsprogs to trigger e2fsck

• Build a fault injection tool based on Linux SCSI target
framework [1] to interrupt e2fsck

[1]: Zheng, Mai, et al. "Torturing Databases for Fun and Profit." OSDI. Vol. 14. 2014.

All About Discovery!
New Mexico State University
nmsu.edu

™™

Methodology

Workload:
e2fsck

Replayer

SCSI
Commands

One Corrupted Image
From e2fsprogs

Run
e2fsck

Compare
data for

corruptionRecorder

Copy

Clean Image

Un-clean Image(s)

Copy

All About Discovery!
New Mexico State University
nmsu.edu

™™

Preliminary Results
• Used 175 test images from e2fsprogs

– two fault injection granularities: 512 B and 4 KB

• Four types of corruptions observed:
– cannot be fixed by e2fsck

Un-mountable File Content
Corruption

Misplacement
of Files

Others

Fault injection Granularity # of test images reported corruption
512 B 34
4 KB 17

All About Discovery!
New Mexico State University
nmsu.edu

™™

Preliminary Results

Workload:
e2fsck

Replayer

SCSI
Commands

One Corrupted Image
From e2fsprogs

Run
e2fsck

Compare
data for

corruptionRecorder

Clean Image

Un-clean image-1
Un-clean image-2

Un-clean image-3

RECAP

All About Discovery!
New Mexico State University
nmsu.edu

™™

Preliminary Results

• % of un-clean images reporting
corruption

Fault Injection
Granularity

of test images
reporting corruption

Total no. of un-
clean images

generated

% of un-clean
images reporting

corruption
512 B 34 4058 5.91%
4 KB 17 298 12.41%

All About Discovery!
New Mexico State University
nmsu.edu

™™

On going Work

• Evaluate other file system checkers
– xfs_repair for XFS,
– btrfs check -–repair for btrfs

• Study the correlation b/w local checkers and
checkers of large scale file systems
– e2fsck and LFSCK (Lustre File System Checker)

• Build a resilient file system checker (r-fsck)

All About Discovery!
New Mexico State University
nmsu.edu

™™

Conclusion

• Does interrupting checker
cause more damage?

• Can the existing checker fix
this damage?

YES

NO

Raise awareness to make recovery
procedure resilient to faults

All About Discovery!
New Mexico State University
nmsu.edu

™™

Conclusion

• Does interrupting checker
cause more damage?

• Can the existing checker fix
this damage?

YES

NO

Raise awareness to make recovery
procedure resilient to faults

THANK YOU!

	Motivation
	Methodology
	Preliminary Results
	Acknowledgments

