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Abstract—Large-scale parallel file systems are of prime impor-
tance today. However, despite of the importance, their failure-
recovery capability is much less studied compared with local
storage systems. Recent studies on local storage systems have
exposed various vulnerabilities that could lead to data loss under
failure events, which raise the concern for parallel file systems
built on top of them.

This paper proposes a generic framework for testing the failure
handling of large-scale parallel file systems. The framework
captures all disk I/O commands on all storage nodes of the target
system to emulate realistic failure states, and checks if the target
system can recover to a consistent state without incurring data
loss. We have built a prototype for the Lustre file system. Our
preliminary results show that the framework is able to uncover
the internal I/O behavior of Lustre under different workloads and
failure conditions, which provides a solid foundation for further
analyzing the failure recovery of parallel file systems.

I. INTRODUCTION

Storage systems must handle failure events (e.g., device fail-
ures, crashes, power outages) gracefully, which is extremely
difficult to achieve in practice. A simple block device may con-
tain many thousands of lines of concurrent firmware [17], and
a local file system (e.g., ext4, XFS) usually consists of many
tens of thousands of lines of kernel-space code [11]. Given
such complexity, it is perhaps no surprise that many recent
studies have uncovered vulnerabilities at almost every layer
of the local storage stack (e.g., devices [36], [37], RAID [20],
drivers [27], block layer [37], local file systems [35], [24],
[22]), which may lead to data loss under various failure
events. This raises the concern for large-scale parallel file
systems (e.g., Lustre [5], Ceph [2]) building on top of the
local storage stack. In fact, in a recent power outage accident
happened at Texas Tech University HPCC (High Performance
Computing Center) [8], the Lustre file system suffered severe
data loss after experiencing two consecutive power outages.
Although many of the data are recovered eventually after
several weeks of manual efforts, there are still critical data
lost permanently, and the potential damage to the scientific
results are unmeasurable. As of today, it is still unclear where
the bug is exactly, let alone how to fix it.

One challenge for testing large-scale parallel file systems is
the complexity: adding a complex layer across many already-
complicated local storage systems makes analyzing the whole
system behavior difficult. Besides the complexity, another
challenge is how to generate the failure events (e.g., crashes or

power outages) in a systematic and controllable way. Manually
unplugging the power cord is simply impractical.

In this paper, we propose a generic framework for testing
the failure handling of large-scale parallel file systems. The
framework creates virtual devices to capture all I/O commands
in the target system, emulates realistic failure states on the
virtual devices, and checks if the system can gracefully recover
to a consistent state without data loss. More specifically, the
framework is based on the following observations and design
choices:

First, failure events may vary, but only the on-drive per-
sistent states would affect the recovery after rebooting. Thus,
we boil down the emulation of various failure events to the
states of individual devices. We create a virtual device on each
storage node and manipulate the I/O commands to emulate the
failure states under workloads.

Second, different parallel file systems have different internal
designs as well as different dependency on local file systems
(e.g., ext3/4 is the classic backend for Lustre/ldiskfs, while it
is not usable for Ceph OSD Daemons [2]). However, despite
of such discrepancy, we can always separate the target system
into a device layer and a host-side software layer. In other
words, by generating the failure states on virtual devices, we
enable testing different parallel file systems with little porting
effort.

Third, large-scale parallel file systems are inherently com-
plicated and difficult to configure. Thus, the framework must
minimize the disturbance to the local storage stack to avoid
unexpected issues. To this end, we make use of a remote
storage protocol to decouple the framework from the storage
nodes in the target system, which makes the deployment
simple in practice.

To demonstrate the feasibility, we have built a prototype for
the Lustre file system. The prototype maintains a virtual device
for every storage node in Lustre, and captures all disk I/O
commands to emulate realistic failure states. Our preliminary
results show that the framework is able to uncover the internal
I/O behavior of all Lustre nodes under different workloads and
different failure conditions, which provides a solid foundation
for further analyzing and improving the failure handling of
large-scale parallel file systems.



II. BACKGROUND

A. Lustre File System

Lustre is one of the most popular parallel file systems
used in modern high performance computing (HPC) platforms.
Over half of the top 100 fastest supercomputers in the world
are using it; and it has dominated the market share of parallel
file systems deployed in HPC clusters [7]. Hence, its failure
handling is becoming more and more critical for both HPC
community and scientists. This trend can also be easily seen
from its recent releases (from 2.6), which significantly improve
the LFSCK (i.e., Lustre File System Checker [3]) functionality
to enhance the failure handling.

The overall architecture of Lustre mainly includes the
following components:

• Management Server (MGS) and Management Target
(MGT), which manage store the configuration informa-
tion for all Lustre file systems in a cluster. MGS can be
co-located with MDS.

• Metadata Server (MDS) and Metadata Target (MDT),
which store metadata in the Lustre file system. MDS
provides network request handling for one or more local
MDTs. There can be multiple MDSs and MDTs since
Lustre 2.4.

• Object Storage Server (OSS) and Object Storage Target
(OST), which store the actual data. The OSS provides
the file I/O service and the network request handling for
one or more local OSTs. User file data is stored in one
or more objects, and each object is stored on a separate
OST in a Lustre file system.

• Lustre Clients, which mount the Lustre file system for
running scientific applications. They usually run in login
nodes and compute nodes.

A typical deployment of Lustre file system usually includes
one dedicated MGS server, one or two dedicated MDS and
MDT server(s), two or more OSSs and OSTs, and a large
number of clients running on compute nodes. In this paper,
we build a Lustre file system with the typical setting for
experiments (Section IV).

B. Remote Storage Protocols

Remote storage protocols (e.g., NFS [28], Fibre Chan-
nel [26], iSCSI [4], NVMe/Fabric [1]) enable accessing remote
storage devices as local devices, either at the file level or at
the block level. In particular, iSCSI[4] is an IP-based protocol
allowing one machine (the initiator) to access remote block
storage through the internet, which makes it easy to deploy
on modern computer systems. To everything above the block
driver on the initiator, iSCSI is completely transparent. In other
words, file systems can be built on iSCSI devices without any
modification. In this work, we make use of the iSCSI protocol
to decouple our framework from the target system, which
enables testing different parallel file systems transparently.

III. DESIGN AND IMPLEMENTATION

A. Overview

Figure 1 shows the overview of our framework. There
are four major components: (1) the Virtual Device Manager
creates device files and mounts them to the Lustre nodes as
virtual devices via iSCSI, which enables capturing all disk I/O
commands in Lustre; (2) the Failure State Emulator emulates
the device states under certain workloads and failure events;
(3) the Data-Intensive Workloads exercises Lustre and gen-
erates I/O operations; (4) the Post-Failure Checker examines
the post-failure behavior of Lustre and checks its consistency
and data integrity. Note that although we use Lustre as an
example, the framework can be applied to other parallel file
systems by simply installing different software packages on
the virtual devices.

B. Virtual Device Manager

The persistent state of a parallel file system depends on the
I/O operations in the system. To capture all I/O operations in
Lustre, the Virtual Device Manger creates and maintains one
device file for each storage device used in Lustre. The device
files are mounted to the Lustre nodes as virtual devices via
iSCSI. From Lustre’s perspective, the virtual devices are just
ordinary disks. In other words, the framework is transparent
to the parallel file system.

All I/O operations in Lustre are eventually translated into
disk I/O commands, which are transferred to the Virtual
Device Manager. The Virtual Device Manager updates the
content of the backend device files according to the commands
received. Moreover, it also logs all commands in a command
history log. For each command, the log includes the Lustre
node ID (e.g., MDT or OST), the command details (e.g., type,
offset, length, timestamp), and the actual data transferred. This
fine-grained command-level information uncovers the internal
behavior of Lustre. Moreover, the command history is used by
the Failure State Emulator (Section III-C) to emulate various
failure states.

C. Failure State Emulator

To study the failure handling of the target system, it is
necessary to generate the failure events in a systematic and
controllable way. The Failure State Emulator achieves this by
manipulating the virtual devices and I/O commands, and emu-
lates the failure state of each individual device. Specifically, we
emulate the following four failure modes, which represents a
wide range of real-world failure scenarios [9], [10], [23], [29],
[31], [20], [21], [35], [36]:

(1) Whole device failure. This is the case when a device
becomes invisible to the Lustre, which can be caused by
various reasons including controller failure, firmware bugs,
accumulation of sector errors, etc [36], [37], [20], [21]. Thanks
to the clear design of decoupling the framework from Lustre
via virtual devices, we can simply log out virtual devices
to emulate the failure. More specifically, we use the logout
command in the iSCSI protocol (Section II-B) to disconnect



Fig. 1: Framework overview. There are four major components: (1) Virtual Device Manager mounts virtual devices to the
Lustre nodes via iSCSI; (2) Failure State Emulator emulates the device states under certain workloads and failure events; (3)
Data-Intensive Workloads exercises Lustre and generates I/O operations; (4) Post-Failure Checker examines the post-failure
behavior of Lustre and checks its consistency and data integrity.

the backing device files to the Lustre nodes, which makes the
devices invisible to Lustre immediately.

(2) Clean termination of writes. This emulates a simplified
power outage event: all writes before the outage are visible on
the device, while all writes after the event are lost. Although
simple, this failure mode represents a conservative lower-
bound of the failure impact (i.e., easiest to recover from), and
has been used to uncover surprising reliability vulnerabilities
in matured enterprise storage systems [35]. Since the Virtual
Device Manager (Section III-B) has logged all commands
during the workload, we can replay partial commands in
the command history log to a virtual device to emulate the
termination of the write stream.

(3) Reordering of writes. This is a more aggressive failure
mode which commits writes to the device in an order different
from the issuing order of the I/O requests, which may be
caused by the buffering and parallelism on local storage stack
under crashes or power outages [34], [36], [24]. Because
all commands are recorded in the command history log,
we can reorder the commands in the log and replay the
(reordered) command sequence to generate the failure device
state. Moreover, because the synchronization commands (e.g.,
SCSI command code 0x35) are also part of the command
history, we can honor the write barriers when reordering.

(4) Corruption of device blocks. This is a severe failure mode
which may be caused by various reasons including hardware
failures or firmware bugs [10], [36]. We emulate the effect by
injecting random bits to the device files.

Note that these four failure modes are not exclusive, i.e., we
can combine multiple modes (e.g., reordering and corruption)
on one virtual device simultaneously. Moreover, we can emu-
late different failure modes on different devices, which creates
a more challenging state for Lustre to recover from.

Workload Description
Montage/m101 astronomical image mosaic engine

cp copy a file into Lustre
tar decompress a file on Lustre
rm delete a file from Lustre

TABLE I: Workloads ran on Lustre.

D. Data-Intensive Workloads

Data-intensive workloads are used to exercise the Lustre
file system and generate I/O operations, which is necessary to
age the system and bring it to a state that may be difficult to
recover from if failure events happen. The workloads can be
either unmodified HPC applications, or customized programs
for triggering corner cases based on the domain knowledge
of the target system. The I/O operations during the workload
are transferred to the Virtual Device Manager as described in
Section III-B.

E. Post-Failure Checker

The Post-Failure Checker examines the post-failure behavior
of the system and checks if it can recover to a consistent
state without data loss. For checking Lustre, we make use of
LFSCK [3]. Note that other file systems also come with default
checkers (e.g., CephFS fsck [14]). Besides, we can also embed
self-checking information (e.g., checksum) in the data written
to the devices to verify the data integrity [36], [37], or use
simple data manipulation tools to examine the behavior (See
Section IV-B).

IV. PRELIMINARY RESULTS

We have built a prototype of the framework for the Lustre
file system. A cluster of seven virtual machines (VMs) were
created for the experiments. All VMs were installed with
CentOS 7. We built a Lustre file system (version 2.8) on five
VMs, including one MGS/MGT node, one MDS/MDT node,
and three OSS/OST nodes. Every node was equipped with
one virtual device. The sixth VM was used for hosting the



Lustre build cp tar rm Montage/m101
Nodes Lustre s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

MGS/MGT 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MDS/MDT 5 0.1 5 0.2 6 0.4 6 0.5 6 0.6 6 0.7 6 1 6 1

OSS/OST #1 8 0 14 0 14 28 14 66 14 66 18 66 18 94 56 94
OSS/OST #2 8 15 14 15 14 43 14 81 14 81 19 81 19 109 19 110
OSS/OST #3 8 0 16 0 16 24 16 24 17 24 21 24 21 49 58 49

TABLE II: Numbers of bytes (MB) written to different Lustre nodes during the building of Lustre and under different workloads.
Montage/m101 is split into twelve steps (i.e., s1 to s12) to show the fine-grained write pattern.

Virtual Device Manager and the Failure State Emulator, while
the last VM was used as a client for launching workloads and
LFSCK. The Virtual Device Manager was built on top of the
Linux SCSI target framework [4].

We first ran a set of workloads to uncover the internal
I/O pattern of Lustre during normal operations (i.e., without
failures). Table I summarizes the workloads. As shown in the
table, we ran the m101 from Montage [6] as the primary
data-intensive workload to generate I/O operations on Lustre.
Also, we ran a set of commonly used Linux data manipulating
tools (cp, tar, rm) as micro benchmarks on Lustre. As of this
writing, the framework has been able to log the command
history of all writes on all nodes, including the commands
incurred by building Lustre. We discuss the write pattern of
these workloads logged by the framework in Section IV-A.

In addition, as an initial step to examine the failure handling
of Lustre, we emulated the whole device failure on the
MDS/MDT node, and ran LFSCK and a set of simple metadata
update operations to check the post-failure behavior of Lustre.
We discuss our observations in Section IV-B.

In the current prototype, we only log the history of write
commands, which are essential for determining the failure
states of devices. It is straightforward to extend to log all types
of commands if more complete I/O information is desired.

A. Internal Pattern of Writes on Lustre Nodes without Failure

We ran the workloads in Table I to uncover the internal
pattern of writes on all Lustre nodes at the disk command
level. Table II summarizes the bytes written (in MB) to each
node under the workloads as well as during the building of
Lustre. We can see that MGT was written only during the
building of Lustre (i.e., 3 MB), and none of the workloads
changed the state of MGT later. This verifies that MGT only
stores the configuration information of the file system. On the
other hand, MDT was updated during cp, tar, rm, and every
step of Montage/m101. This is because the workloads created,
extended, and/or deleted files, which incurred updates to the
metadata (e.g., creating/removing inodes) stored on MDT.

Figure 2 further shows the accumulated number of bytes
written to different nodes during the workloads. We can see
that the metadata updates (i.e., the MDS/MDT line) were
orders of magnitude smaller than the user data written to
OSSs/OSTs. Moreover, while the user data increased rapidly
on OSSs/OSTs, the increase of metadata was very slow (i.e.,
the MDS/MDT line is almost flat). This observation confirms
that Lustre is efficient in terms of metadata management.

B. Post-Failure Behavior

To study the behavior of Lustre under failures, we emulated
a whole device failure (Section III-C) by logging out the
virtual device on the MDS/MDT node. We then ran a set of
metadata update operations as well as LFSCK to examine the
post-failure behavior.

Table III summarizes our observations. Interestingly, despite
of missing the MDT device, some operations still “completed”.
For example, the lfs setstripe command, which sets the striping
pattern of a Lustre file, finished without errors. Similarly, we
used dd to create a new file and wrote 800MB data to it. The
operation “completed” successfully, and we did observe writes
on one OST device (we used the default stripe count 1). Since
these operations must update the metadata, and there was no
actual device on MDS/MDT, we suspected that Lustre buffered
the updates in memory instead of committing them to the MDT
device synchronously. We verified this by issuing dd command
with the sync option, which enforces synchronous commit on
every write. The command reported I/O errors immediately. In
other words, Lustre was unaware of the missing of the MDT
device until a synchronous commit to it.

Moreover, we ran LFSCK on the post-failure Lustre. Sur-
prisingly, LFSCK completed without reporting the missing
device. This behavior implies that in some scenarios (e.g.,
the entire MDT file-system structure is cached in memory),
LFSCK may only check the in-memory state of Lustre without
actually verifying the persistent storage. In the case of sudden
device failure where the in-memory representation of the
file system information is still available temporarily, LFSCK
cannot detect the device failure immediately.

Our initial experiments on the post-failure behavior of Lus-
tre have uncovered a potential vulnerability: the 800MB data
written via the first dd command was committed successfully
from the user’s perspective, while the corresponding metadata
updates was not durable at all (because there was no MDT
device). Moreover, the LFSCK failed to detect the missing
device immediately. In the case of the entire system failure
(e.g., the accident happened at Texas Tech HPCC [8]), the
data may be permanently lost.

V. RELATED WORK

Existing methods for testing storage systems mainly include
model checking [34], [18], formal methods [12], and automatic
testing [36], [35], [24], [22]. While these techniques are
effective for testing local storage systems, applying them to
large-scale systems remain challenging. For example, model
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nodes during the workloads.

Operation Description Error?
lfs setstripe set striping pattern No
dd-nosync create & extend a Lustre file No
dd-sync create & extend a Lustre file Yes
LFSCK check & repair Lustre No

TABLE III: Operations ran on Lustre after a whole device
failure on the MDS/MDT node. dd-nosync means using dd to
create and extend a Lustre file with default buffering; dd-sync
means enforcing synchronous writes on the dd command. The
last column shows whether the operation reported error or not.

checking still faces the state explosion problem despite of
various path reduction optimizations [33], [18], and turning
the target system into a controllable model is a non-trivial
task. Similarly, formally verifying the behavior of a large-
scale system like Lustre is almost impossible in practice. As
for automatic testing, the cases are more complicated due to
the diverse testing methodologies. But generally, most of the
testing frameworks are closely tied to the OS kernel, which
makes them difficult to integrate with large-scale parallel file
systems.

Besides, many studies have examined the bugs or failure
behaviors of storage software and/or hardware (e.g., hard
disks [13], [10], [9], [23], [29], [31], RAID [21], [20], flash-
based SSDs [15], [16], [32], [36], [30], local file systems [25],
[34], [19], databases and key-value stores [35], [24]). Gener-
ally, these studies provide valuable information for emulating
realistic failure modes in our framework.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and prototyped a generic framework for
testing the failure handling of large-scale parallel file systems.
The framework captures disk I/O commands on all storage
nodes via virtual devices, emulates realistic failure states
on the virtual devices, and checks the post-failure behavior
of the target system. Our preliminary results on Lustre file
system have uncovered its internal behaviors towards various
workloads under both normal and failure conditions, which

provides a solid foundation for further studying the failure
handling of large-scale parallel file systems.

Although effective, the current prototype can only emulate
one single device failure. Also, the operations we used to
examine the post-failure behaviors of Lustre are relatively
simple, which may not expose some potentially complicated
defects. In the future, we would like to implement more failure
modes (e.g., clean termination of writes, reordering or writes,
corruption) and design more effective post-failure checking
operations. Also, we plan to apply the failure modes to
multiple nodes in the parallel file system to emulate large-scale
accidence, which is more realistic in data centers. Moreover,
we will explore the failure handling of other parallel file
systems (e.g., Ceph, PVFS) besides Lustre. Eventually, based
on the defects exposed by our testing framework, we would
like to explore novel mechanisms to enhance the resilience of
large-scale parallel file systems.
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