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GPU Programming Gets Popular

§ Many domains are using GPUs for high performance  
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GPU-accelerated Molecular Dynamics GPU-accelerated Seismic Imaging

§ Available in both high-end/low-end systems
§ 3 of the top 10 supercomputers were based on GPUs [Meuer+:10]
§ Many desktops and laptops are equipped with GPUs
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§ A typical mistake

Data Races in GPU Programs
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Result undeterminable!

1. __shared__  int s[];

2. int tid=threadIdx.x;

…

3. s[tid] = 3; //W

4. result[tid] = s[tid+1] * tid; //R
…

T31

R(s+31+1) Time

T32

W(s+32)

Case 1:

W(s+32)

T32

R(s+31+1)

T31
Case 2:

§ May lead to severe problems later
§ E.g. crash, hang, silent data corruption



Dept. of Computer Science and Engineering

§ In-experienced programmers
§ GPUs are accessible and affordable to developers that never used parallel 

machines in the past 

Why Data Races in GPU Programs
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§ More and more complicated applications
§ E.g.  programs running on a cluster of GPUs involve other programming 

model like MPI (Message Passing Interfaces)  

§ Implicit kernel assumptions broken by kernel users
§ E.g. “max # of threads per block will be 256”,

“initialization values of the matrix should be within a certain range”,
Otherwise, may create overlapped memory indices among  different 
threads 
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State-of-the-art Techniques

§ Data race detection for multithreaded CPU programs
§ Lockset [Savage+:97] [Choi+:02]
§ Happens-before [Dinning+:90] [Perkovic+:96] [Flanagan+:09] [Bond+:10]
§ Hybrid [O’Callahan+:03][Pozninansky+:03][Yu+:05]
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False positives & State explosion L

False positives & Huge overhead L

Inapplicable or unnecessarily expensive in 
barrier-based GPU programs L

§ Data race detection for GPU programs
§ SMT(Satisfiability Modulo Theories)-based verification [Li+:10]

§ Dynamically tracking all shared-variable accesses [Boyer+:08]
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Our Contributions

§ Statically-assisted dynamic approach
§ Simple static analysis significantly reduces overhead
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Precise: no false positives in our evaluation 
Low-overhead: as low as 1.2x on real GPU

§ Exploiting GPU’s thread scheduling and execution model
§ Identify key difference between data race on GPU/CPU
§ Avoid false positives

§ Making full use of GPU’s memory hierarchy
§ Reduce overhead further
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Outline

§ Motivation
§ What’s new in GPU programs
§ GRace
§ Evaluation
§ Conclusions 
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Execution Model
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SM n
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

Device  Memory

SM 1
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

…

SM 2
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

§ GPU architecture and SIMT(Single-Instruction Multiple-Thread)

§ Streaming Multiprocessors (SMs) execute blocks of threads
§ Threads inside a block use barrier for synchronization
§ A block of threads are further divided into groups called Warps

§ 32 threads per warp
§ Scheduling unit in SM

A Block of Threads

…
T0 T1 T2 … T31

…
Warps

Device  Memory
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Two different types of data races between barriers
§ Intra-warp races

§ Threads within a warp can only cause data races by executing the same
instruction

§ Inter-warp races
§ Threads across different warps can have data races by executing the 

same or different instructions

Our Insights
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Time
Inter-warp race Impossible!

T30

R(s+32)

Warp 0
T31 T32

W(s+32)

Warp 1
T33

No  Intra-warp race

1. __shared__  int s[];
2. int tid=threadIdx.x;

…
3. s[tid] = 3; //W
4. result[tid] = s[tid+1] * tid; //R

…

T30

R(s+32)

Warp 0
T31 T32

W(s+32)

Warp 1
T33 T30

W(s+31)

Warp 0
T31

R(s+31)
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Memory Hierarchy

§ Memory constraints
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SM 1
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

SM n
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

…

Device  Memory

Fast but 
small(16KB)

Large (4GB) but
slow (100x)

SM 2
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

§ Performance-critical
§ Frequently accessed variables are usually stored in shared memory
§ Dynamic tool should also try to use shared memory whenever possible
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Outline

§ Motivation
§ What’s new in GPU programs
§ GRace
§ Evaluation
§ Conclusions 
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GRace: Design Overview

§ Statically-assisted dynamic analysis
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Dynamic
Checker

Static 
Analyzer

Annotated 
GPU Code

Statically 
Detected Bug

Dynamically 
Detected Bug

Execute the 
code

Original 
GPU Code
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Simple Static Analysis Helps A Lot

§ Observation I: 
§ Many conflicts can be easily determined by static technique
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tid: 0 ~ 511

W(s[tid]): (s+0) ~ (s+511)

R(s[tid+1]): (s+1) ~ (s+512)

Overlapped!

❶Statically detect certain data races &

❷Prune memory access pairs that cannot be involved in data races

1. __shared__  int s[];

2. int tid=threadIdx.x;

…

3. s[tid] = 3; //W

4. result[tid] = s[tid+1] * tid; //R

…
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Static analysis can help in other ways

§ How about this…  
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1. __shared__ float s[];

…

2. for(r=0; …; …)

3. {  …

4. for(c=0; …; …)

5. {  …

6. temp = s[input[c]];//R
8.     }

9. }y

§ Observation III:  
§ Some accesses are tid-invariant

§ Observation II:  
§ Some accesses are loop-invariant

R(s+input[c]) is irrelevant to r

R(s+input[c]) is irrelevant to tid

❸Further reduce runtime overhead by identifying 

loop-invariant & tid-invariant accesses 

Don’t need to monitor in every r iteration

Don’t need to monitor in every thread
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Static Analyzer: Workflow 
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pairs of mem accesses

statically 
determinable

?gen_constraints
(tid, iter_id, addr)

add_params
(tid, iter_id, max_tid, max_iter)

soln_set 
empty?

Y

Y N

❷No 
race

N

❸Mark loop-invariant 
& tid-invariant

Dynamic Checker❶Race 
detected!

check_loop_invariant
(addr, iter_id)

check_tid_invariant(addr)
Linear constraint solver

don’t need to 
monitor

Mark as 
monitor at runtime



Dept. of Computer Science and Engineering

GRace: Design Overview

§ Statically-assisted dynamic analysis
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Dynamic
Checker

Static 
Analyzer

Annotated 
GPU Code

Statically 
Detected Bug

Dynamically 
Detected Bug

Execute the 
code

Original 
GPU Code
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Dynamic Checker

17

Check Intra-warp 
data races

Intra-warp 
Checker

GRace-stmt

GRace-addr

Reminder:
§ Intra-warp races: caused by threads within a warp 
§ Inter-warp races: caused by threads across different warps

Check Inter-warp data races:
Two design choices with diff. trade-offs
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Intra-warp Race Detection

§ Check conflicts among the threads within a warp
§ Perform detection immediately after each monitored memory access
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❸If W, check conflicts
in parallel

Fast & ScalablewarpTable (for each warp)

❶record 
access type

R/W

❷record 
addresses

Address 0

Address 1

Address 2

Address 3

…

Address 31

T0

T1

T2

T3

…

T31

… Recyclable and small 
enough to reside in 
Shared Memory
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Dynamic Checker
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Check Intra-warp 
data races in 

Shared Memory

Intra-warp 
Checker

GRace-stmt

GRace-addr

Reminder:
§ Intra-warp races: caused by threads within a warp 
§ Inter-warp races: caused by threads across different warps

Check Inter-warp data races:
Two design choices with diff. trade-offs
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GRace-stmt: Inter-warp Race Detection I

§ Check conflicts among the threads from different warps
§ After each monitored mem. access, record info. to BlockStmtTable
§ At synchronization call, check conflicts between diff. warps
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Accurate diagnostic info.

BlockStmtTable in Device Memory (for all warps)

Write &
check 

in parallel

stmt#   WarpID R/W
stmt#   WarpID R/W
… …              …

Addr0     Addr1    Addr2  …         Addr31
Addr0     Addr1    Addr2 …         Addr31
… …            …             … …

T0 T1 T31…T2

…
WarpTable0 WarpTable1

Check conflicts if 
warpIDs diff.
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one-to-one 
mapping

Shared Memory

global tables for all Warps within the Block

rBlockShmMap wBlockShmMap
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rWarpShmMap0 wWarpShmMap0

local tables for Warp-0

(in Device Mem.)

rWarpShmMapN wWarpShmMapN

local tables for Warp-N

…

R

1

GRace-addr: Inter-warp Race Detection II

1

1

1

1

Simple & Scalable

§ Check conflicts among the threads from different warps
§ After each monitored mem access, update corresponding counters

§ At  synchronization call, infer races based on local/global counters

1

2

W

Warp-0: RWarp-0: WWarp-N: R

Check
in parallel

…

R



Dept. of Computer Science and Engineering

Outline

§ Motivation
§ What’s new in GPU programs
§ GRace

§ Static analyzer 
§ Dynamic checker

§ Evaluation
§ Conclusions
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Methodology

§ Hardware
§ GPU: NVIDIA Tesla C1060

§ 240 cores (30�8), 1.296GHz

§ 16KB shared memory per SM

§ 4GB device memory

§ CPU: AMD Opteron 2.6GHz  �2
§ 8GB main memory 

§ Software
§ Linux kernel 2.6.18

§ CUDA SDK 3.0

§ PipLib (Linear constraint solver)

§ Applications
§ co-cluster, em, scan
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Overall Effectiveness
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§ Accurately report races in three applications 

§ No false positives reported

Apps
GRace(W/-stmt) GRace(W/-addr)

R-Stmt# R-Mem# R-Thd# FP# R-Mem# R-Wp# FP#

co-cluster 1 10 1,310,720 0 10 8 0

em 14 384 22,023 0 384 3 0

scan 3 pairs of racing statements are detected by Static Analyzer

R-Stmt: pairs of conflicting accesses
R-Mem: memory addresses invoked in data races
R-Thd: pairs of racing threads
R-Wp: pairs of racing warps
FP: false positive
RP: race number reported by B-tool

Apps B-tool

RP# FP#

co-cluster 1 0

em 200,445 45,870

scan Error
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Runtime Overhead
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§ GRace(W/-addr): very modest 
§ GRace(W/-stmt): higher overhead with diagnostic info. , but 

still faster than previous tool
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Native GRace(-stmt)
GRace(-addr) B-tool

Where is it?

Is there any data 
race in my kernel?

GRace-addr can answer quickly

GRace-stmt can tell exactly

1.2x
19x

103,850x
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Benefits from Static Analysis
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§ Simple static analysis can significantly reduce overhead

Apps
Without

Static Analyzer
With 

Static Analyzer

Stmt MemAcc Stmt MemAcc

co-cluster 10,524,416 10,524,416 41,216 41,216

em 19,070,976 54,460,416 20,736 10,044

Stmt: statements

MemAcc: memory access

Execution # of monitored statements and memory accesses
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Conclusions and Future Work

§ Conclusions
§ Statically-assisted dynamic analysis
§ Architecture-based approach: Intra/Inter–warp race detection 
§ Precise and Low-overhead

§ Future work
§ Detect races in device memory
§ Rank races
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Thanks!


