
GRace: A Low-Overhead Mechanism for 
Detecting Data Races in GPU Programs

Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal

Dept. of Computer Science and Engineering
The Ohio State University



Dept. of Computer Science and Engineering

GPU Programming Gets Popular

§ Many domains are using GPUs for high performance  

2

GPU-accelerated Molecular Dynamics GPU-accelerated Seismic Imaging

§ Available in both high-end/low-end systems
§ 3 of the top 10 supercomputers were based on GPUs [Meuer+:10]
§ Many desktops and laptops are equipped with GPUs



Dept. of Computer Science and Engineering

§ A typical mistake

Data Races in GPU Programs

3

Result undeterminable!

1. __shared__  int s[];

2. int tid=threadIdx.x;

…

3. s[tid] = 3; //W

4. result[tid] = s[tid+1] * tid; //R
…

T31

R(s+31+1) Time

T32

W(s+32)

Case 1:

W(s+32)

T32

R(s+31+1)

T31
Case 2:

§ May lead to severe problems later
§ E.g. crash, hang, silent data corruption



Dept. of Computer Science and Engineering

§ In-experienced programmers
§ GPUs are accessible and affordable to developers that never used parallel 

machines in the past 

Why Data Races in GPU Programs

4

§ More and more complicated applications
§ E.g.  programs running on a cluster of GPUs involve other programming 

model like MPI (Message Passing Interfaces)  

§ Implicit kernel assumptions broken by kernel users
§ E.g. “max # of threads per block will be 256”,

“initialization values of the matrix should be within a certain range”,
Otherwise, may create overlapped memory indices among  different 
threads 



Dept. of Computer Science and Engineering

State-of-the-art Techniques

§ Data race detection for multithreaded CPU programs
§ Lockset [Savage+:97] [Choi+:02]
§ Happens-before [Dinning+:90] [Perkovic+:96] [Flanagan+:09] [Bond+:10]
§ Hybrid [O’Callahan+:03][Pozninansky+:03][Yu+:05]

5

False positives & State explosion L

False positives & Huge overhead L

Inapplicable or unnecessarily expensive in 
barrier-based GPU programs L

§ Data race detection for GPU programs
§ SMT(Satisfiability Modulo Theories)-based verification [Li+:10]

§ Dynamically tracking all shared-variable accesses [Boyer+:08]



Dept. of Computer Science and Engineering

Our Contributions

§ Statically-assisted dynamic approach
§ Simple static analysis significantly reduces overhead

6

Precise: no false positives in our evaluation 
Low-overhead: as low as 1.2x on real GPU

§ Exploiting GPU’s thread scheduling and execution model
§ Identify key difference between data race on GPU/CPU
§ Avoid false positives

§ Making full use of GPU’s memory hierarchy
§ Reduce overhead further



Dept. of Computer Science and Engineering

Outline

§ Motivation
§ What’s new in GPU programs
§ GRace
§ Evaluation
§ Conclusions 

7



Dept. of Computer Science and Engineering

Execution Model

8

SM n
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

Device  Memory

SM 1
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

…

SM 2
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

§ GPU architecture and SIMT(Single-Instruction Multiple-Thread)

§ Streaming Multiprocessors (SMs) execute blocks of threads
§ Threads inside a block use barrier for synchronization
§ A block of threads are further divided into groups called Warps

§ 32 threads per warp
§ Scheduling unit in SM

A Block of Threads

…
T0 T1 T2 … T31

…
Warps

Device  Memory



Dept. of Computer Science and Engineering

Two different types of data races between barriers
§ Intra-warp races

§ Threads within a warp can only cause data races by executing the same
instruction

§ Inter-warp races
§ Threads across different warps can have data races by executing the 

same or different instructions

Our Insights

9

Time
Inter-warp race Impossible!

T30

R(s+32)

Warp 0
T31 T32

W(s+32)

Warp 1
T33

No  Intra-warp race

1. __shared__  int s[];
2. int tid=threadIdx.x;

…
3. s[tid] = 3; //W
4. result[tid] = s[tid+1] * tid; //R

…

T30

R(s+32)

Warp 0
T31 T32

W(s+32)

Warp 1
T33 T30

W(s+31)

Warp 0
T31

R(s+31)



Dept. of Computer Science and Engineering

Memory Hierarchy

§ Memory constraints

10

SM 1
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

SM n
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

…

Device  Memory

Fast but 
small(16KB)

Large (4GB) but
slow (100x)

SM 2
Scheduler

Core Core

Core Core

Core Core

Core Core

Shared Memory

§ Performance-critical
§ Frequently accessed variables are usually stored in shared memory
§ Dynamic tool should also try to use shared memory whenever possible



Dept. of Computer Science and Engineering

Outline

§ Motivation
§ What’s new in GPU programs
§ GRace
§ Evaluation
§ Conclusions 

11



Dept. of Computer Science and Engineering

GRace: Design Overview

§ Statically-assisted dynamic analysis

12

Dynamic
Checker

Static 
Analyzer

Annotated 
GPU Code

Statically 
Detected Bug

Dynamically 
Detected Bug

Execute the 
code

Original 
GPU Code



Dept. of Computer Science and Engineering

Simple Static Analysis Helps A Lot

§ Observation I: 
§ Many conflicts can be easily determined by static technique

13

tid: 0 ~ 511

W(s[tid]): (s+0) ~ (s+511)

R(s[tid+1]): (s+1) ~ (s+512)

Overlapped!

❶Statically detect certain data races &

❷Prune memory access pairs that cannot be involved in data races

1. __shared__  int s[];

2. int tid=threadIdx.x;

…

3. s[tid] = 3; //W

4. result[tid] = s[tid+1] * tid; //R

…



Dept. of Computer Science and Engineering

Static analysis can help in other ways

§ How about this…  

14

1. __shared__ float s[];

…

2. for(r=0; …; …)

3. {  …

4. for(c=0; …; …)

5. {  …

6. temp = s[input[c]];//R
8.     }

9. }y

§ Observation III:  
§ Some accesses are tid-invariant

§ Observation II:  
§ Some accesses are loop-invariant

R(s+input[c]) is irrelevant to r

R(s+input[c]) is irrelevant to tid

❸Further reduce runtime overhead by identifying 

loop-invariant & tid-invariant accesses 

Don’t need to monitor in every r iteration

Don’t need to monitor in every thread



Dept. of Computer Science and Engineering

Static Analyzer: Workflow 

15

pairs of mem accesses

statically 
determinable

?gen_constraints
(tid, iter_id, addr)

add_params
(tid, iter_id, max_tid, max_iter)

soln_set 
empty?

Y

Y N

❷No 
race

N

❸Mark loop-invariant 
& tid-invariant

Dynamic Checker❶Race 
detected!

check_loop_invariant
(addr, iter_id)

check_tid_invariant(addr)
Linear constraint solver

don’t need to 
monitor

Mark as 
monitor at runtime



Dept. of Computer Science and Engineering

GRace: Design Overview

§ Statically-assisted dynamic analysis

16

Dynamic
Checker

Static 
Analyzer

Annotated 
GPU Code

Statically 
Detected Bug

Dynamically 
Detected Bug

Execute the 
code

Original 
GPU Code



Dept. of Computer Science and Engineering

Dynamic Checker

17

Check Intra-warp 
data races

Intra-warp 
Checker

GRace-stmt

GRace-addr

Reminder:
§ Intra-warp races: caused by threads within a warp 
§ Inter-warp races: caused by threads across different warps

Check Inter-warp data races:
Two design choices with diff. trade-offs



Dept. of Computer Science and Engineering

Intra-warp Race Detection

§ Check conflicts among the threads within a warp
§ Perform detection immediately after each monitored memory access

18

❸If W, check conflicts
in parallel

Fast & ScalablewarpTable (for each warp)

❶record 
access type

R/W

❷record 
addresses

Address 0

Address 1

Address 2

Address 3

…

Address 31

T0

T1

T2

T3

…

T31

… Recyclable and small 
enough to reside in 
Shared Memory



Dept. of Computer Science and Engineering

Dynamic Checker

19

Check Intra-warp 
data races in 

Shared Memory

Intra-warp 
Checker

GRace-stmt

GRace-addr

Reminder:
§ Intra-warp races: caused by threads within a warp 
§ Inter-warp races: caused by threads across different warps

Check Inter-warp data races:
Two design choices with diff. trade-offs



Dept. of Computer Science and Engineering

GRace-stmt: Inter-warp Race Detection I

§ Check conflicts among the threads from different warps
§ After each monitored mem. access, record info. to BlockStmtTable
§ At synchronization call, check conflicts between diff. warps

20

Accurate diagnostic info.

BlockStmtTable in Device Memory (for all warps)

Write &
check 

in parallel

stmt#   WarpID R/W
stmt#   WarpID R/W
… …              …

Addr0     Addr1    Addr2  …         Addr31
Addr0     Addr1    Addr2 …         Addr31
… …            …             … …

T0 T1 T31…T2

…
WarpTable0 WarpTable1

Check conflicts if 
warpIDs diff.



Dept. of Computer Science and Engineering

one-to-one 
mapping

Shared Memory

global tables for all Warps within the Block

rBlockShmMap wBlockShmMap

21

rWarpShmMap0 wWarpShmMap0

local tables for Warp-0

(in Device Mem.)

rWarpShmMapN wWarpShmMapN

local tables for Warp-N

…

R

1

GRace-addr: Inter-warp Race Detection II

1

1

1

1

Simple & Scalable

§ Check conflicts among the threads from different warps
§ After each monitored mem access, update corresponding counters

§ At  synchronization call, infer races based on local/global counters

1

2

W

Warp-0: RWarp-0: WWarp-N: R

Check
in parallel

…

R



Dept. of Computer Science and Engineering

Outline

§ Motivation
§ What’s new in GPU programs
§ GRace

§ Static analyzer 
§ Dynamic checker

§ Evaluation
§ Conclusions

22



Dept. of Computer Science and Engineering

Methodology

§ Hardware
§ GPU: NVIDIA Tesla C1060

§ 240 cores (30�8), 1.296GHz

§ 16KB shared memory per SM

§ 4GB device memory

§ CPU: AMD Opteron 2.6GHz  �2
§ 8GB main memory 

§ Software
§ Linux kernel 2.6.18

§ CUDA SDK 3.0

§ PipLib (Linear constraint solver)

§ Applications
§ co-cluster, em, scan

23



Dept. of Computer Science and Engineering

Overall Effectiveness

24

§ Accurately report races in three applications 

§ No false positives reported

Apps
GRace(W/-stmt) GRace(W/-addr)

R-Stmt# R-Mem# R-Thd# FP# R-Mem# R-Wp# FP#

co-cluster 1 10 1,310,720 0 10 8 0

em 14 384 22,023 0 384 3 0

scan 3 pairs of racing statements are detected by Static Analyzer

R-Stmt: pairs of conflicting accesses
R-Mem: memory addresses invoked in data races
R-Thd: pairs of racing threads
R-Wp: pairs of racing warps
FP: false positive
RP: race number reported by B-tool

Apps B-tool

RP# FP#

co-cluster 1 0

em 200,445 45,870

scan Error



Dept. of Computer Science and Engineering

Runtime Overhead

25

§ GRace(W/-addr): very modest 
§ GRace(W/-stmt): higher overhead with diagnostic info. , but 

still faster than previous tool

1.0E+0

1.0E+2

1.0E+4

1.0E+6

1.0E+8

co-cluster em

Ke
rn

el
 E

xe
cu

tio
n 

Ti
m

e 
(m

s)

Native GRace(-stmt)
GRace(-addr) B-tool

Where is it?

Is there any data 
race in my kernel?

GRace-addr can answer quickly

GRace-stmt can tell exactly

1.2x
19x

103,850x



Dept. of Computer Science and Engineering

Benefits from Static Analysis

26

§ Simple static analysis can significantly reduce overhead

Apps
Without

Static Analyzer
With 

Static Analyzer

Stmt MemAcc Stmt MemAcc

co-cluster 10,524,416 10,524,416 41,216 41,216

em 19,070,976 54,460,416 20,736 10,044

Stmt: statements

MemAcc: memory access

Execution # of monitored statements and memory accesses



Dept. of Computer Science and Engineering

Conclusions and Future Work

§ Conclusions
§ Statically-assisted dynamic analysis
§ Architecture-based approach: Intra/Inter–warp race detection 
§ Precise and Low-overhead

§ Future work
§ Detect races in device memory
§ Rank races

27

Thanks!


