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Abstract—In this paper an optimization problem to minimize
the energy drawn from the network grid by utilizing the
harvested energy and dynamic sleeping of the Small Base Stations
(SBSs) is presented. Due to the complexity of the optimization
problem, a new UEs’ movement prediction method is introduced
to provide future information for the model to apply an accurate
optimization problem. This method is based on a combined ap-
proach of Non-linear Autoregressive with External input (NARX)
and probabilistic Latent Semantic Analysis (pLSA) to provide
accurate prediction for multiple steps. Furthermore, extensive
simulation results are presented to show the effectiveness of our
approaches in comparison to the optimal results.

Index Terms—Energy Efficiency, 5G, Energy Harvesting, Mo-
bility Prediction, Deep Learning.

I. INTRODUCTION

Over the past few years the cellular mobile communication

technology has exponentially expanded from 2G with Small

Messaging Service (SMS) to the video streaming capabilities

of the 4G [1]. The main motivation behind this evolution

is the rise of the data demands, where the data is pre-

dicted to grow more in the near future to reach around 400
thousands PB per month [2]. Applications like Device-to-

Device (D2D)communications, Machine-to-Machine (M2M),

Internet of Things (IoT), Smart cities, Health care systems and

automation are emerging with needs of more robust Quality of

Service QoS and scalability. The legacy systems, unfortunately

are not capable of matching these new and growing demands.

Therefore, 5G includes new technologies that are able to

accommodate these new demands.

The SBS is a promising technology that is able to provide

high rates with low energy. The SBSs are introduced to solve

the problems that arise by the increasing demand for higher

data rates. Therefore, they are seen as an alternative to Macro

BSs (MBSs) for better coverage, quality of service (QoS) and

energy efficiency. However, due to the dense deployment of

SBSs, the network’s energy consumption will increase as the

SBSs number increases. Renewable Energy (RE) is one of the

clean energy sources in next generation networks to ease the

effect of climate change. Energy Harvesting is a promising

solution for minimizing the energy consumption of a BS. The

Harvested Energy (HE) could partially sustain the needs of

the BS and for the case of SBSs could be fully sustained by

HE [3].According to [4] the renewable energy has not been

fully exploited in cellular networks due to economical reasons.

However, with the dense deployment of the SBSs, installing

HE parts could provide the network with a reliable source of

energy.

Mobility prediction as part of the wireless networks design

has attracted attention from academia and industry. The main

concept of the mobility prediction is that giving the current

and previous locations for a unique UE, what will be the

next location or locations for that UE. Such predictions

help optimize the wireless networks resource allocation and

increase its performance. There are many research activities

done in predicting the UE mobility. Works [5], [6], are based

on Markov Chain, which is easy to implement but can suffer

from overfitting for low data. The authors of [7], [8], are

proposing mobility prediction based on Hidden Markov Model

(HMM), which is more accurate than Markov chain and is

able to find more complex relations between different patterns.

However, HMM requires a more complex structure and higher

computational capacity. The works of [9]- [13], apply the

Artificial Neural Network (ANN) to predict users’ mobility

by learning their inherent characteristics.

Authors of [5] investigated Markov chain to predict the

users movement in SBSs, specifically in Femto BSs, where

their results show the prediction accuracy is affected by the

regularity of the user’s movement. The authors used the

generated historical database for the users to discover mobility

pattern and improve the prediction performance. The authors

of [12] are using an enhanced Markov chain algorithm to

predict user mobility by introducing an algorithm that is

composed of two components: Global Prediction Algorithm

(GPA) and Local Prediction Algorithm (LPA). IF GPA fails

when the cell does not exist in the training database, then

LPA is used. In [6], the authors employed Markov chain user

prediction in proactive caching in anywhere in the network

rather than just at the edge. The authors discussed a system

where vehicles are connected to Roadside Units (RSU), can

be BSs or Access points (APs), to allow them to connect

to the internet backbone. In order to proactively cache data

into the RSUs, the authors presented a mobility prediction

based on Markov chain to predict the vehicle’s next RSU.

In [14] the authors proposed a mobility prediction based on

Markov Chains to predict the users trajectory to minimize the

interruption time when the handover is triggered. In [15], the

authors combined the HMM with pLSA to improve the prob-

abilistic prediction performance. The authors implemented a

history-based Expectation Maximization algorithm and GPS

trajectory prediction to improve the performance. Their results

show successful prediction with as low as 2.2% inaccuracy.

However, none of the previous works investigated a multistep

prediction, which has a significant impact on the prediction

quality. Therefore, we present our work which developed to

produce a more accurate prediction in a multistep prediction.

The main contributions of this paper are summarized as

follows:

1) We formulate an optimization problem to minimize the



energy drawn from the network grid by utilizing the

harvested energy and dynamic sleeping of the SBSs. The

problem updates the UEs association with SBSs in every

time slot to accommodate the UEs new locations.

2) A new UEs locations prediction method is introduced

which employs a combined approach of Nonlinear Au-

toregressive with External input (NARX) and proba-

bilistic Latent Semantic Analysis (pLSA) to provide an

accurate multistep Neural Network prediction. A new

algorithm, Nonlinear AutoRegressive with external input

and probabilistic latent Semantic Analysis (NARSA), is

presented to show the details of the computation steps for

this new joint method.

3) Lastly, we evaluate the performance of our proposed

algorithm through an extensive simulation study to verify

its superior computational performance compared with

the optimal solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This paper considers a HetNet where several SBSs co-exist

in a designated area. The SBSs are deployed randomly which

provides high quality of service (QoS) for UEs.

Fig.(1) shows the architecture of the network where SBSs

are equipped with energy harvesting methods (solar panels for

example.) and are serving UEs under their coverage. Moreover,

every SBS is connected to the Smart Grid with a two way

connection.

Fig. 1: The system model topology.

A. Energy Harvesting Model For SBSs

Let f = 1, ..., F denote the set of the SBSs that are

randomly distributed in the macro cell coverage area of A,

while u = 1, ..., U and c = 1, ..., C denote the set of a

randomly distributed users covered by the SBSs and the set of

available resource blocks in the network, respectively. More-

over, we consider a time slotted system with fixed duration

τ , and n = 1, ..., N denotes the index of the slot number.

Furthermore, every user is assumed to be associated with only

one SBS.

The SBSs harvest energy from a renewable source (e.g.

wind, solar... etc), where the amount of harvested energy for

every SBS f and time slot n is denoted by hrf [n] and it

follows the truncated Gaussian distribution [10]. Moreover,

every SBS is equipped with a battery to store its harvested

energy with a maximum capacity of Bmax with battery

level at time slot n is B[n]. However, due to the stochastic

nature of energy harvesting, every BS is connected to a non-

renewable energy source to compensate for the renewable

energy shortage. In other words, every SBS is set to use the

energy from renewable sources first, and then request power

from the grid. However, the promising technology of Smart

grid which allows a two-way flow of power [11], can be used

here to transfer the harvested energy between SBSs, i.e., the

SBS with surplus harvested energy will transfer it to other

SBSs that suffer from renewable energy deficit. Therefore, at

the end of every time slot, the SBS will either transfer the

surplus of its harvested energy or request energy from other

SBSs to compensate its deficit. If the energy surplus of the

other SBSs cannot match the energy demand of the SBS with

the shortage, then the SBS will request a non-renewable energy

from the smart grid directly. Hence, every SBS is equipped

with two power sources: the non-renewable power from the

grid and the power from the renewable sources. Therefore, the

transmission power between user u and BS f using resource

block c, during the time slot n is: pcfu[n] = pcfu,g[n]+pcfu,r[n],
where pcfu,g[n] is the power drawn from the grid and pcfu,r[n]
is the power drawn from the renewable source (including the

energy transferred from other SBSs).

Let λf [n] and µf [n] denote the amount of the harvested

energy the BS f is injecting into or receiving from the smart

grid at the end of slot n, respectively. Then the amount of the

harvested energy that is transferred into the smart grid equals

the harvested energy that is drawn from the smart grid, where

η is the transfer efficiency.

µf [n] = ηλf [n] (1)

Therefore, at time slot i = 1 the battery will be zero, and at
the end of every slot i = 1, 2, ...N the battery storage will be
the sum of the harvested energy subtracting the transmission
power and the transferred energy 0 ≤ Bf [i] ≤ Bmax, where
Bf [i] is defined as:

Bf [i] =
i

∑

n=2

hrf [n]−
i

∑

n=1

U
∑

u=1

p
c
uf,r[n]τ −

i
∑

n=1

λf [n] (2)

B. User Association and Achievable Rate

Let xc
uf [n] be a binary indicator that is equal to 1 if user

u and SBS f are associated using resource block c in n, or 0

otherwise. Also, let zfu[n] be a binary indicator that is equal

to 1 if user u is associated with SBS f in n, or 0 otherwise.

yf [n] indicates the SBS on/off status, where yf [n] = 0 if the

SBS is OFF during the time slot n and yf [n] = 1 if the SBS is

ON. However, a deactivated SBS will keep harvesting energy

and injecting it into the smart grid to serve other active SBSs.

The time-varying distance between the f th SBS and the uth

user can be expressed as follow:

duf [n] = ||lu[n]− lf || ∀u ∈ U, ∀f ∈ F (3)

where the lu[n] is the x − y coordinates for the location of

the user at time slot n, and the fixed location of the SBS,

respectively. It follows from (3) that the channel power gain

can be modeled as:

|hc
uf [n]|

2 =
β0

dαuf [n]
=

β0

||lu[n]− lf ||α
(4)



where β0 denotes the channel gain at the reference distance

of d0 = 1m, and α is the path loss exponent. Moreover, the

interference at a user u which is associated with SBS f from

all other SBSs at a time slot n will be:

I
c
uf [n] =

U
∑

j 6=u

F
∑

i6=f

p
c
ji[n]|h

c
ui[n]|

2
, (5)

Then, the signal to interference and noise ratio SINR for every
user is:

γ
c
uf [n] =

pcuf [n]|h
c
uf [n]|

2

Icuf [n] + ωN0
, (6)

where hc
uf [n] denotes the channel gain from SBS f to user

u using resource block c at time slot n, ω is the available
bandwidth for every channel, and N0 is the channel noise
spectral density which is assumed to be Additive White
Gaussian Noise AWGN, and ωN0 is the noise variance σ2.
Thus, the data rate for every user using a single channel during
a time slot is as follow:

R
c
uf [n] = ω log(1 + γ

c
uf [n]) (7)

However, Eq.7 is non-convex, in which Taylor Expansion is
used to linearize it to get the following:

R̂
c
uf [n] = ω log(

U
∑

u

F
∑

f

p
c
uf [n]|h

c
uf [n]|

2 + ωN0)− R̂Ty (8)

where R̂Ty is the first-order Taylor approximation around

point (pc0ji[n]), and is as follows:

R̂Ty , ωlog(
U
∑

j 6=u

F
∑

i6=f

p
c
0ji[n]|h

c
ui[n]|

2 + ωN0)

+
U
∑

j 6=u

F
∑

i6=f

|hc
ui[n]|

2

ln(2)pc0ji[n]|h
c
ui[n]|

2 + ωN0
(pcji[n]− p

c
0ji[n])

(9)

C. Problem Formulation

In this section, an optimization problem, which minimizes
the non-renewable energy consumption of the transmission
power for a cooperative heterogenous network is formulated.
The formulated problem evaluates users association, sleeping
strategy and energy minimization within a single optimization
problem. The problem can be stated as follows: given the
number of users and SBSs, the problem will solve the user
association, sleeping strategy and power consumption, at every
time slot. The optimization problem can be mathematically
state as below:

Problem P̃ :

Minimize
T

F,U,N,C
∑

f,u,n,c=1

p
c
fu,g[n]τ +

F
∑

f=1

Ebyf [n]

subject to

C1 : Rmin
u ≤

F
∑

f=1

C
∑

c=1

x
c
fu[n]R̂

c
fu[n] ∀u,∀n

C2 :

U
∑

u=1

C
∑

c=1

p
c
fu,r[n]τ ≤ Bf [n− 1] + µf [n] ∀f,∀n,

C3 : Bf [n] ≤ Bmax ∀f,∀n,

C4 :

F
∑

f=1

n
∑

i=1

µf [i] =

F
∑

f=1

n
∑

i=1

ηλf [i] ∀n

C5 :
U
∑

u=1

C
∑

c=1

p
c
fu[n] ≤ P

max
f ∀f,∀n

C6 :

U
∑

u=1

x
c
fu[n] ≤ 1 ∀f,∀c,∀n

C7 :

F
∑

f=1

zuf [n] = 1 ∀u∀n

C8 :

∑C

c=1 x
c
uf [n]

#ofUs
≤ zuf [n] ≤

C
∑

c=1

x
c
uf [n], ∀ f,∀u,∀n

C9 :

∑U

u=1 zuf [n]

#ofSBSs
≤ yf [n] ≤

U
∑

u=1

zuf [n], ∀f,∀n

where T = {pcuf [n], λf [n], µf [n], yf [n], zuf [n], x
c
uf [n]}.

Constraint (C1) represents the QoS for every user. The con-

straints from (C2) to (C5) are dealing with energy transfer

and cooperation between SBSs. Constraint (C2) represents the

energy consumption causality where the BS cannot use energy

more than what is available. Constraint (C3) limits the battery

capacity. Constraint (C4) is for energy conservation, where

the total injected energy into the smart grid equals the total

received energy by all BSs. Constraint (C5) limits the max-

imum allowed transmission power for every BS. Constraints

from (C6) to (C9) are dealing with the UEs association and

SBSs sleeping strategy.

Problem P̃ is an Mixed Integer NonLinear Problem

(MINLP) which is too complex due to the coupling of the

binary and continuous variables. Moreover, due to the dynamic

nature of UEs movement, where each UE is expected to move

in every time slot which causes the system to update its

association and sleeping strategy accordingly, problem P̃ is

required to be solved every time slot to match the changes.

One solution for this problem is to predict the future location

of the UEs and solve the problem according to the predicted

location of each UE. Therefore, a user mobility prediction

approach is introduced , where the UEs’ movements are

predicted for the next N slots. This will help simplify the

problem where it will be solved for the next N predicted time

slots instead of every slot.

III. PREDICTION MODEL FOR USER MOBILITY

In this section we investigate two approaches to predict the

UEs’ future mobility pattern and location. First, we solely

apply Nonlinear Autoregressive (NAR) method to predict

each UE individually. Second, a joint approach to predict

the UEs’ future mobility pattern and location by exploiting

ANN Nonlinear Autoregressive with External input (NARX)

and probabilistic Latent Semantic Analysis (pLSA) to provide

an accurate multistep Neural Network prediction. This joint

approach leverages ANN NARX outstanding results in time

series prediction tasks and the (pLSA) ability in detecting

hidden patterns between different UEs.

A. Nonlinear Autoregressive (NAR) Time Series Prediction

The Nonlinear Autoregressive (NAR) are types of Neural

Networks that are used to forecast samples framed in a one-



dimensional time series. NAR networks is used to predict the

value of certain time series data by using the past data. The

following equation shows how NAR networks work:

y(n) = f(y(n− 1), y(n− 2), ..., y(n− d)) (10)

where the function f is unknown and the neural network is

used to approximate. This equation describes how NAR works

in predicting the future values of y. In every step, NAR uses

the past d values of y to predict the future data point in series

y.

The advantage of NAR is its simple structure and requires

less computation time. However, for multistep prediction

where the predicted output ŷ(n) is used to predict future re-

sults, the error will adds up in every step which is accumulated

to produce inaccurate results. Therefore, NARX is better in

predicting future works since it relies not only on the data but

on other external set of correlated data.

B. Nonlinear Autoregressive with External input (NARX) Time

Series Prediction

In many applications, there are an important correlation

between the predicted time series and some other external data.

Some stock exchange prices are correlated with certain times

of the years, e.g., Apple stock price after the holidays. The

following equation shows how NARX networks work:

y(n) = h(y(n−1), y(n−2), ..., y(n−d), k(n−1), ..., k(n−d)) (11)

Similar to NAR networks, NARX predicts the future of y

according to the past d values, where for every one future

prediction NARX will employ the past data to make its

prediction. However, NARX includes the external data set

k(n) to approximate the function h.

NAR is simpler to perform and requires less computation

power. However, NARX can have better performance, spe-

cially when there is strong correlation between the predicted

data and the external data. Therefore, in the following section

a statistical method is employed to detect the correlation

between different data sets to use them in performing the

prediction.

C. probabilistic Latent Semantic Analysis (pLSA)

pLSA was originally introduced to derive a representation

of the observed variables in terms of certain hidden variables

[16]. pLSA is a statistical technique used for the analysis of

co-occurrence data which is based on a mixture decomposi-

tion derived from a latent class model. Mobile UEs usually

follow daily movement patterns, e.g., some UEs use public

transportation daily, others drive to business districts. Thus,

pLSA is used in this work to reveal the hidden patterns that

each UE is using and employ this pattern as an external data,

i.e., k(n) in the previous section, to provide more accurate

predictions.
Let us associate an unobserved class variable mk ∈

m1,m2, ...,mK with each observation, where the observation
is the user’s movement from one location to another. Moreover,

let us denote the user’s location at time slot n to be equal to
l[n] ∈ A, where, A is a predefined area. The user’s movement
from location a to location b is denoted by la[n] → lb[n].
Here, we are considering the direction of the user’s movement
without considering the traveled distance. Thus, we denote
L[n] as the direction of the movement during time n. Hence,
the probability of the movement toward direction L[n] is:

P (L[n]) =
Number of movements toward direction L[n]

Total number of movements
(12)

Moreover, every observed data item is a pair of data
(u,L[n]). Therefore, the joint probability of the observed data
will be:

P (u,L[n]) =
K
∑

k=1

P (u)P (mk|u)P (L[n]|mk) (13)

where parameter mk ∈ [m1,m2, ...,mK] denotes the mobility

class, and the probability that a user u is following mobility

class mk at any given time, is defined as P (mk|u). Moreover,

the probability of the direction of movement given the mobility

class mk is P (L[n]|mk), while P (u) = m(u,L[n])
∑

U

u=1
m(u,L[n])

denotes the probability that u made a movement, where

m(u,L[n]) is the number of times UE u made a movement.

However, the two probabilities P (L[n]|mk) and P (mk|u)
cannot be calculated analytically, since the classes mk are

unknown. The Expectation Maximization (EM) algorithm is

a well-known algorithm that is used to compute Maximum

Likelihood Estimates (MLE) [17]. The EM algorithm consist

of two consecutive steps: an expectation step, followed by

a maximization step. The first step: the expectation (E) step

where posterior probabilities are calculated for the latent

variables, based on the current estimates of the parameters.

The second step the Maximization (M) step where param-

eters are updated to maximize the expected complete data

log-likelihood, which depends on the posterior probabilities

computed in the E step.

In our model the classes mk ∈ M = {m1,m2, ...,mK}
are unobserved and unknown, which can only be estimated

using the EM algorithm. Applying the EM algorithm to the

pLSA model as in [16] introduces the two steps as follows:

The expectation (E) step the Bayes’ estimator is calculated for

the latent variables, based on the current values of P (mk|u)
and P (L[n]|mk). The Maximization (M) step is used to update

the parameters to maximize the expected complete data log-

likelihood, which depends on the P (mk|u) and P (L[n]|mk)
equations that are computed in the E step.

In the Expectation step, we use Bayes’ estimator to calculate

the posterior probabilities based on the current estimates of the

parameters. The Bayes’ estimator is as follows:

P (mk|u,L[n]) =
P (L[n]|mk, u)P (mk|u)∑

m∈M
P (L[n]|mk, u)P (mk|u)

(14)

In the Maximization step, the expectation of the complete
data log-likelihood E[L] is maximized as follow:

E[L] =

U
∑

u=1

∑

L[n]

m(u,L[n])∗

K
∑

k=1

P (mk|u,L[n])log
[

P (L[n]|mk, u)P (mk|u)
]

(15)



where m(u,L[n]) indicates the number of times the user
moved according to direction L[n] during time slot n. Then,
the following two re-estimation equations are used in the M-
step:

P (L[n]|mk) =

∑

u
m(u,L[n])P (mk|u,L[n])

∑N

n=1

∑

u m(u,L[n])P (mk|u,L[n])
(16)

P (mk|u) =

∑

u

∑N

n=1 m(u,L[n])P (mk|u,L[n])
∑N

n=1

∑

u m(u,L[n])
(17)

After evaluating Eqs. (16) and (17) each UE will be assigned

to the class with the highest probability, which it will share

with other UEs where they share a common pattern. Let us

denote αu
k as the UE u that belongs to class k and Ωk as the

group that contains all UEs that belong to class k. Lets denote

α∗
k as the UE that has the highest probability in class k.

In the prediction stage using NARX network, every group

Ωk will choose the UE that has the highest probability in

P (mk|u,L[n]) as the external data k(n) for predicting the

movement of every UE in that Group. This ensures the external

data that is used in NARX has a strong correlation with all of

its associates.

Algorithm 1 UEs’ Movement Prediction using NARSA.

1: Input: u;L[n];K; ǫ
2: Initialize P 0(mk|u);P

0(L[n])|mk); ∆←∞;i← 1
3: while ∆ ≥ ǫ do

4: Compute P [i](mk|u,L[n]) in (14) using P [i−1](mk|u)
and P [i−1](L[n])|mk);

5: Update P [i](mk|u), P
[i](L[n])|mk) using (16), (17);

6: Compute the expectation E[L][i] in (15);

7: ∆ = |E[L][i] − E[L][i−1]|;
8: i← i+ 1;

9: end while

10: Output: P(mk|u), P(L[n])|mk),αk,α∗
k,Ωk.

11: for k=1:K do

12: k(n)← α∗
k

13: for ∀ UE ∈ Ωk do

14: y(n)← αu
k

15: Train NARX Network by estimating Eq.11

16: end for

17: end for

18: Output: ŷ(n)

Algorithm 1: NARSA is constructed of two parts: The first

is the EM algorithm, and the second is the NARX network

training. First we initialize the probabilities of P (L[n])|mk)
and P (mk|u[n]) with random initial values, then the algorithm

will alternate between the Expectation and maximization parts

i.e., between Eq.(14) and Eqs.(16) and (17). In every step

E[L][i] is calculated using eq.(15), and compared to E[L][i−1].

If the difference is less than ∆ the algorithm will stop and

P(mk|u), P(L[n])|mk) will be the local optimal values and

α∗
k is computed. Otherwise the algorithm will repeat the

previous two steps again. At the second part, NARSA will

employ the results from EM to feed NARX network the

external data and train it to predict ŷ(n). However, since the

Table I: Simulation Parameters

Parameter Value Parameter Value

Pmax 4 watts Rmin 1 Mbps

N0 −174 dbm/Hz ω 5 MHz

Bmax 600 Joules τ 10s

η 0.9 Eb 20 Joules

EM is nonconvex, the algorithm is repeated with different

initials multiple times to find the maximum value for E[L].

IV. SIMULATION RESULTS

In this section we evaluate the performance of algorithm
1, on the Mobile Data Challenge (MDC) data set [18] and
[19]. DMC data contains GPS traces for both pedestrians and
vehicular from Lake Geneva region in Switzerland. The data
is gathered from participants using GPS where their locations
are recorded every 10 seconds for over one year of time. The
data is processed to improve their quality, i.e., some outliers
are removed. Figures 2 and 3 evaluate the performance of
Algorithm 1 to predict UEs’ movements and compare it with
NAR method. The system parameters are listed in Table I
unless stated otherwise.

Fig.2 shows the comparison between NAR and NARX. In
this figure we use an ANN with three layers, the first is the
input layer, the second is the hidden layer and the third is
the output layer. The hidden layer consists of 10 neurons with
Tanh function. In this part we applied a delay of 4 steps, i.e.,
d = 4. Moreover, 10 UEs are used from DMC data set with
mk = 3 classes. One UE data from every class is used as an
external data in NARX, while NAR system does not require
external data. Moreover, 2000 data pairs are used to train
the network, with 70% for training, 15% for validation and
15% for testing purposes. The figure shows the accumulated
error percentage of both NAR and NARX systems. As shown
in the figure NAR predicts the next two steps with very
accurate prediction, however, after the fifth prediction NAR
accumulated error, which is defined as how far the prediction
is compared to the actual location, increases rapidly. On the
other hand, NARX kept a relatively accurate prediction until
the tenth step with error percentage of around 10%. This is
understandable since the external data has a strong correlation
with the input data that is being predicted.
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Fig. 2: Comparison between NARX and NAR for 11 Steps.

With the same setting as in Fig. 2, Fig. 3 show the

probability of success as the number of prediction increases.

In this figure we also compare NAR with NARX, and as the

figure depicts both approaches start with high probability of

success but as the number of prediction steps increases the



performance of NAR decreases rapidly, while the performance

of NARX decreases slowly. This is understandable since the

highly correlated external input that is used in NARX helped

sustaining the prediction for more steps.
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Fig. 3: The probability of success as the prediction steps increases.

Fig 4 shows the change of power consumption due to the

prediction inaccuracy. In this figure we solved problem (P̃)

according to the actual locations and predicted locations of

both NAR and NARX. We used 8 SBSs that are placed

to cover the area of the future movement of 1 UE. First

the problem was solved according to the actual locations in

order to decide the user association in every time slot n.

Then, using this association we changed the UEs locations

according to the prediction to calculate the consumed power.

The figure shows how the inaccurate prediction affected the

energy consumption in both NAR and NARX. In NAR, after

the fifth step the assigned SBS to the UE cannot maintain the

communication since it used the maximum allowed power,

which is represented by the straight red line. On the other

hand, NARX has a more accurate prediction of the system

that kept the UE associated with SBS until the tenth step.
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Fig. 4: Consumed Power Due to Prediction Error.

V. CONCLUSIONS

In this paper, an optimization problem is formulated to min-

imize the energy drawn from the network grid, with updating

the UEs association with SBSs in every time slot instead

of keeping the association stationary. A new UEs’ prediction

method is introduced that is based on a combined approach

of Non-linear Autoregressive with External input(NARX) and

probabilistic Latent semantic Analysis (pLSA) to provide

accurate prediction for longer times. Moreover, a new algo-

rithm NARSA is presented to show the general steps that

are employed to predict the UEs’ next locations. The results

show that the employment of UEs prediction and ANN in

solving the optimization problem gave efficient computational

performance with a near optimal solution.
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