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Abstract
Interference model is the basis of MAC protocol design in

wireless networks, and it directly affects the efficiency and
predictability of wireless messaging. To take advantage of
the strengths of both the physical and the protocol interfer-
ence models and to understand the varying relative goodness
between physical and protocol interference models observed
in the literature, we analyze the impact of network traffic, link
length, and wireless signal attenuation on the choice of opti-
mal protocol interference models, and we identify the inher-
ent tradeoff between reliability and throughput in interference
model instantiation. Our analysis explains the seemingly in-
consistent observations in the literature and sheds light on
the open problem of choosing optimal protocol interference
models. Based on the analytical results, we propose the
physical-ratio-K (PRK) interference model which is suitable
for distributed protocol design and has both the high fidelity
of physical interference model and the locality of protocol
interference model. Via analysis, simulation, and testbed-
based measurement, we compare PRK with SINR physical
interference model, and we show that PRK based schedul-
ing achieves a network throughput very close to (e.g., at least
95% in many of the scenarios we study) what is enabled by
SINR model while ensuring the required packet delivery reli-
ability. These findings shed new light on wireless interference
models, and suggest new approaches to MAC protocol design
in supporting unpredictable traffic patterns and in addressing
application-specific tradeoff between reliability and through-
put.
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1 Introduction
Due to the broadcast nature of wireless communication,

concurrent transmissions in wireless networks may inter-
fere with one another and introduce co-channel interference.
Co-channel interference not only reduces the reliability and
throughput of wireless networks, it also increases the variabil-
ity and uncertainty in data communication [23, 27, 26]. As
wireless networks are increasingly applied to mission-critical
applications such as industrial monitoring and control [4], it
becomes critical to address wireless co-channel interference
for reliable, predictable wireless data communication.

A basis of interference control is the interference model
which determines whether and how a set of concurrent trans-
missions may interfere with one another. Two commonly
used models are the physical interference model and the pro-
tocol interference model [8]. In the physical interference
model, a set of concurrent transmissions do not interfere
with one another if the resulting signal-to-interference-plus-
noise-ratio (SINR) at every receiver is no less than a thresh-
old value; in the protocol interference model, a transmission
is not interfered by an interferer if the interferer is at least
K times the transmitter-receiver distance away from the re-
ceiver1. For simplicity, we also call the physical interference
model theSINR modeland the protocol interference model
theratio-K modelin this paper.

The SINR model is based on communication theory, and it
can be regarded as an instantiation of the graded-SINR model
[13] for satisfying certain minimum link reliability. SINR
model is a high fidelity interference model in general, but the
interference relations defined by it are non-local and combi-
natorial since whether one transmission interferes with an-
other may depend on all the other transmissions in the net-
work. Thus it is difficult to use SINR model in distributed
protocol design, especially when network traffic pattern is
bursty and unpredictable. On the other hand, even though the
ratio-K model is an approximate model in principle, it can
enable agile protocol adaptation in the presence of dynamic,
unpredictable traffic pattern since ratio-K model defines pair-
wise, non-combinatorial interference relations around the lo-
cal neighborhood of each transmission. Therefore, oneopen
questionis whether it is feasible and how to integrate SINR
and ratio-K models so that we can take advantage of the high
fidelity of SINR model and the locality of ratio-K model at
the same time.

The research community have studied the relative good-
ness of SINR model and ratio-K model, and it has been
shown that SINR based scheduling can improve the through-
put of ratio-K based scheduling [13, 16]. On the other hand,
Chafekaret al. [3] found that ratio-K based scheduling can
improve the throughput of SINR based scheduling too. Since
ratio-K model is only an approximation of SINR model, the
latter observation is counter-intuitive and raises the following
open questions: why can ratio-K based scheduling outper-

1Note that we replace the original notation of(1+∆) in [8] with
K for simplicity of presentation.



form SINR based scheduling in network throughput? How
to correctly use physical and protocol interference modelsin
protocol design and evaluation?

Contributions of the paper. To address the aforemen-
tioned open questions, we analyze, for both grid and random
networks, the impact of network traffic load, link length, and
wireless signal attenuation on effective instantiation ofratio-
K model. We find that, as traffic load increases and wireless
signal attenuation decreases, the optimal K for maximizing
network throughput and the minimum K for satisfying certain
link reliability tends to increase. As link length increases, the
minimum K for satisfying certain link reliability also tends to
increase, but the optimal K for maximizing network through-
put can both increase and decrease. We also find that fixing
K to a constant number, as in most existing studies [13, 16, 3],
can lead to significant performance loss as network and envi-
ronmental settings change. For instance, deviation from the
optimal K by up to 1 can cause up to 68% throughput loss,
and fixing K to 2 may lead to a link reliability less than 80%.
These findings suggest that it is important to choose the right
K when studying ratio-K models, otherwise the performance
evaluation will be biased against ratio-K model.

We also find that there is inherent tradeoff between re-
liability and throughput when choosing K for the ratio-K
model. Maximum network throughput is usually achieved
not at the minimum K for ensuring certain link reliability, but
at a smaller K. In grid topologies, for instance,

√
2 is the op-

timal K for maximizing throughput in many scenarios, but,
with non-negligible probability,

√
2 is unable to guarantee

an 80% link reliability. Moreover, as K increases from the
minimum one required for satisfying certain link reliability,
network throughput tends to go down, especially when link
reliability requirement is high. These findings suggest that
one reason why the studies in [13, 16, 3] observe inconsistent
relative goodness of SINR and ratio-K based scheduling is
because they did not address the reliability-throughput trade-
off and, by choosing a fixed K without considering network
and environmental settings, they could not ensure that link
reliabilities and thus maximum achievable throughput are the
same across different scenarios studied in [13, 16, 3], thus
leading to different conclusions. More importantly, our find-
ings suggest that, for cases where link reliability is critical
(e.g., for both reliable data delivery and small latency jitter in
mission-critical sensing and control), we can use link relia-
bility requirement as the basis of selecting K for the ratio-K
model. Since link reliability is a locally measurable metric,
link-reliability based selection of K addresses the challenge
of how to adapt K according to dynamic, potentially unpre-
dictable network and environmental settings, which has been
recognized as an open problem by Shiet al. [21] who in-
dependently studied protocol interference models in parallel
with our work here.

Based on these analytical results, we propose the physical-
ratio-K (PRK) interference model. PRK model is the same as
ratio-K model except that the parameter K of the PRK model,
instead of being constant, adapts to network and environmen-
tal conditions as well as application QoS requirements to en-
sure certain minimum link reliability. Through detailed anal-

ysis, we find that, for given requirements on link reliability,
scheduling based on PRK model achieves a network through-
put very close to (e.g., at least 95% in many of the scenar-
ios we study) what is enabled by SINR model. Moreover,
as link reliability requirement increases, the throughputloss
in PRK based scheduling further decreases. These findings
suggest that PRK model has both the high fidelity (and thus
high performance) of SINR model and the locality of ratio-
K model. Given that the parameter K of PRK model can be
chosen based on local and even passive measurement alone,
PRK model also suggests new approaches to MAC protocol
design in the presence of unpredictable traffic patterns, for in-
stance, by letting each node locally choose a K for satisfying
application-specific link reliability requirement.

The above analytical results give us insights into the be-
haviors of protocol and physical interference models in a
wide range of network and environmental settings. We have
verified these results through simulation as well as measure-
ment study in a testbed of 120 TelosB motes.

Organization of the paper. In Section 2, we present the
link, radio, and interference models used in this paper. We
study the impact of system properties and optimization ob-
jectives on the instantiation of ratio-K model in Section??,
and we examine the optimality of PRK model in Section 3.
We corroborate our analytical results through testbed based
measurement and simulation in Sections 4 and??, and we
also examine similar issues for ultra-wideband (UWB) net-
works in Section??. We discuss related work in Section 5
and make concluding remarks in Section 6.

2 Preliminaries
In this section, we present the link, radio, and interference

models used in the analysis part of this paper.

Link model. To characterize signal attenuation in wireless
networks, we use the log-normal path loss model [18] which
is widely adopted in protocol design and analysis. By this
model, the powerPr (in dB) of the received signal at a node
distanced away from the transmitter is computed as follows:

Pr = Pt −PL(d0)−10αlog10
d
d0

+N(0,σ2) (1)

wherePt is the transmission power,PL(d0) is the power de-
cay at the reference distanced0, α is the path loss exponent,
N(0,σ) is a Gaussian random variable with mean 0 and vari-
anceσ. In our study, we use different instantiations ofα and
σ to represent different wireless environments.

Radio model. The reception capability of a radio can be
characterized by the bit error rate (BER) and the packet de-
livery rate (PDR) in decoding signals with specific signal-to-
interference-plus-noise-ratios (SINR). Our study mainlyfo-
cuses on the IEEE 802.15.4 compatible CC2420 radios [1],
but we also study UWB radios in Section??. To compute the
expected PDR for a CC2420 receiver at a specific location,
we first derive the PDR-SINR relation for CC2420 radios,
then we compute the expected PDR based on the distribution
of SINR values at the receiver using the method of [28]. To
this end, we derive the PDR-SINR relation for CC2420 (at
the 2.4GHz frequency band) as follows.



First, we compute BER as a function of SINR. The relation
between BER and SINR depends on the modulation method
used. CC2420 uses the O-QPSK modulation method [2], for
which the relation between BER and SINR is captured by the
following formula [18]:

Pe = Q

(

√

2γ
BN

R

)

(2)

wherePe is the BER,γ is the SINR value,BN is the noise
bandwidth,R is the radio chip rate, andQ(.) is the tail distri-
bution function of the standard normal variate. For CC2420,
BN = 2000KHz, andR = 2000 KChips/s. CC2420 radios use
a DSSS-like encoding scheme where every 4 bits of data are
mapped into a 32 bits chip sequence, which will then be mod-
ulated and transmitted. Accordingly, we can compute as fol-
lows the PDR at a SINR value based on the corresponding
BER:

PDR = (1−Pe)
8 f×8

=

(

1−Q

(

√

2γ BN
R

))64f (3)

wheref is the packet length (in units of bytes) including over-
head such as packet header.

Interference model. We consider the ratio-K and SINR in-
terference models. In ratio-K model, a concurrent transmitter
ni does not interfere with the transmission fromns to nr if and
only if the following holds:

d(ni ,nr) ≥ K ×d(ns,nr) (4)

whered(ni ,nr) is the distance betweenni andnr , andd(ns,nr)
is the distance betweenns andnr . In SINR model, a set of
concurrent transmittersSi does not interfere with the trans-
mission fromns to nr if and only if the following holds:

P(ns,nr)

N0 + ∑ni∈Si
P(ni ,nr)

≥ γ0 (5)

where N0 is the background noise power,P(ns,nr) is the
strength of signals reachingnr from ns, P(ni ,nr) is the
strength of signals reachingnr from ni , and γ0 is a SINR
threshold chosen to satisfy certain requirement on PDR.

3 Optimality of PRK model
To understand the potential effectiveness of PRK model,

we analyze in this section the optimality of PRK based
scheduling as compared with SINR based method. To avoid
the problem of inconsistent observations on the relative good-
ness of ratio-K and SINR based scheduling in the literature,
we conduct our comparative analysis on the condition that
the link reliability in PRK and SINR based scheduling is the
same.
3.1 Throughput loss in PRK model

Similar to Section??, our analysis here considers infinite
sized grid and Poisson random networks with uniform traffic
patterns. We will verify the analytical results in Sections4
and ?? through testbed based measurement and simulation
with finite networks and non-uniform traffic pattern.

To satisfy certain link reliability requirement and thus cer-
tain packet-delivery-rate (PDR) for data and acknowledgment

(ACK) reception along a linkL, we need to make sure that the
SINR at the receiverR and the transmitterT is above certain
thresholdγ0 andγ′0 respectively. For a given received signal
strengthPr and background noiseN0 at R, this requirement
translates into a requirement on controlling the maximum tol-
erable interferenceIt atR to bePr

γ0
−N0. Similarly, we can de-

rive the maximum tolerable interferenceI ′t atT. To control in-
terference, we need to silence the transmission of some nodes
in the network, and to maximize network throughput, we need
to minimize the number of silenced transmitters. Then,
PROPOSITION 1. To minimize the number of nodes silenced
for ensuring certain minimum SINR at the receiver R (or the
transmitter T ), we should first silence nodes s-closer to R (or
T ) rather than those s-farther away, whether or not we use
PRK or SINR model.
PROOF. PRK model silences the nodes within an exclusion
region around the receiver (or the transmitter), so the propo-
sition holds for PRK model. For SINR model, we prove
the proposition by contradiction. Suppose the receiverR has
two potential interferers A and B nearby. The s-distances
from A andB to receiverR aredA anddB respectively, with
dA < dB. If not silenced, the interference that nodeA gener-
ates is greater than that generated byB. To ensure that the
total interference incurred toR does not exceed the thresh-
old It , therefore, the number of nodes that have to be silenced
whenB but notA is silenced is no less than the number of
nodes that have to be silenced whenA but notB is silenced.
Thus, if we silenceB instead ofA, the number of silenced
nodes may not be minimized, which contradicts the objective
of minimizing the number of silenced nodes. The same argu-
ment applies to the transmitterT. Thus the proposition holds
for the SINR based scheduling.

Therefore, the setS of nodes silenced by the data reception
at receiverRare the|S | number of nodes s-closest toR, where
|S | denotes the number of elements in setS . We denote the
set of nodes silenced byR in SINR and PRK based scheduling
asSsinr andS prk respectively. For a tolerable interferenceIt
at R, we let Isinr andIprk be the interference incurred atR in
SINR and PRK based scheduling respectively. Similarly, for
correct ACK reception at the transmitterT in SINR and PRK
based scheduling, we denote the set of silenced nodes asS ′sinr
andS ′prk respectively, and, for a tolerable interferenceI ′t at T,
we let I ′sinr and I ′prk be the actual interference incurred atT
respectively. We also defineSsinr = Ssinr ∪ S ′sinr andSprk =
S prk∪ S ′prk to represent the set of silenced nodes around link
L in SINR and PRK based scheduling respectively. Then,
PROPOSITION 2. Given the tolerable interference It and I′t
at the receiver R and the transmitter T respectively,Ssinr ⊆
S prk, S ′sinr ⊆ S ′prk, Ssinr ⊆ Sprk, Iprk ≤ Isinr ≤ It , and I′prk ≤
I ′sinr ≤ I ′t .
PROOF. Let the longest s-distance from a node inSsinr to
R be dsinr. By the definition of PRK and SINR models and
Proposition 1, all the nodes inSsinr andS prk are withindsinr s-
distance away from the receiverR. The difference between
PRK model and SINR model is that, by the definition of
PRK model (see Inequality??), all the nodes that aredsinr
s-distance away fromR have to be silenced in PRK model
as long as at least one of them has to be silenced; whereas in



SINR model, we only need to silence the minimum number of
nodesdsinr s-distance away fromR to ensure that the SINR at
R is at leastγ0. For example, in Figure 1, there are four nodes

Figure 1. Difference in PRK and SINR based scheduling:
receiver oriented view

dsinr s-distance away fromR. While SINR model may only
need to silence nodeA to guarantee the SINR thresholdIt , the
PRK model will silence all the four nodesdsinr away. There-
fore,Ssinr ⊆ S prk. SinceSsinr ⊆ S prk, Iprk ≤ Isinr. SINR based
scheduling will ensure thatIsinr ≤ It . Thus,Iprk ≤ Isinr ≤ It
holds.

Similar argument applies to the transmitterT. Thus,
S ′sinr ⊆ S ′prk, andI ′prk ≤ I ′sinr ≤ I ′t .

SinceSsinr ⊆ S prk andS ′sinr ⊆ S ′prk, Ssinr ⊆ Sprk.
Now, we are ready to derive the upper bound on the

throughput loss in PRK based scheduling as compared with
SINR based scheduling. Assuming that each node in grid
and Poisson random networks covers an area ofA0 on av-
erage, then, by Formulas?? and??, the throughput of PRK
and SINR based scheduling, denoted byTprk andTsinr respec-
tively, can be computed as follows:

Tprk =
TR,prk

|Sprk|×A0
Tsinr =

TR,sinr

|Ssinr|×A0

whereTR,prk andTR,sinr are the link throughput toR in PRK
and SINR based scheduling respectively. From Proposition 2,
we know that the average link reliability in SINR based
scheduling is no higher than that in PRK based scheduling
(since the actual interference incurred in SINR based schedul-
ing is no less than that in PRK based scheduling). Thus,
TR,sinr ≤ TR,prk. Then, we can define the throughput lossTloss
in PRK based scheduling as

Tloss =
Tsinr−Tprk

Tsinr
=

TR,sinr
|Ssinr|×A0

− TR,prk
|Sprk|×A0

TR,sinr
|Ssinr|×A0

≤
TR,sinr

|Ssinr|×A0
− TR,sinr

|Sprk|×A0
TR,sinr

|Ssinr|×A0

=
|Sprk|−|Ssinr|

|Sprk|

(6)

Let nb be the node inSsinr that is s-farthest away from
the receiverR, P0 be the power of signals that reachR from
nb, andNb be the number of nodes in the network whose s-
distance toR is sd(nb,R). Similarly, let n′b be the node in
S ′sinr that is s-farthest away from the transmitterT, P′

0 be the
power of signals that reachT from n′b, andN′

b be the number
of nodes whose s-distance toT is sd(n′b,T). Then,
PROPOSITION 3. The expected Tloss is less than or equal to

1
|Sprk| (min{ It−Iprk

P0×β ,Nb}+min{ I ′t−I ′prk

P′
0×β ,N′

b}).

PROOF. Let dist(nb,R) be the s-distance fromnb to R, and
dist(n′b,T) be the s-distance fromn′b to T. Then from the
proof of Proposition 2, we know that the s-distanced from
every node inS prk \ Ssinr to R is dist(nb,R) since PRK model
silences all the nodes on the boundary of the exclusion region
aroundR. Similarly, the s-distanced′ from every node in
S ′prk \ S ′sinr to T is dist(n′b,T).

Given the interference toleranceIt and I ′t at R andT re-
spectively, the set of silenced nodesSprk is fixed for a tight-
est tessellation of concurrent transmitters in a specific net-
work and environmental setting. To understand the upper
bound onTloss, we need to understand the upper bound on
(|Sprk|− |Ssinr|) (seeInequality 6). By the definition ofSprk
andSsinr, we know that|Sprk| − |Ssinr| ≤ (|S prk| − |Ssinr|)+
(|S ′prk| − |S ′sinr|). To upper bound(|Sprk| − |Ssinr|), we ana-
lyze in what follows the upper bound on(|S prk|− |Ssinr|) and
(|S ′prk|− |S ′sinr|).

We first derive the upper bound on(|S prk|− |Ssinr|). Since
all the nodes inS prk \ Ssinr are on the boundary of the ex-
clusion region aroundR and aredist(nb,R) s-distance away
from R, each such node introduces an expected interference
of P0×β at receiverR. To ensure that the expected interfer-
ence atR is no more thanIt (a.k.a., the SINR atR is above
γ0), one necessary condition is that the expected interference
introduced by nodes inS prk \ Ssinr should be no more than
It − Iprk, that is, the number of nodes inS prk \ Ssinr should

be no more than
It−Iprk
P0×β . Note that this upper bound is usu-

ally not tight and not a sufficient condition because the in-
terference atR tends to exceedIt if the interferences from
nodes inS prk \ Ssinr reachesIt − Iprk. This is because, if we
add, for every area of the same size of the exclusion region
aroundR,

It−Iprk
P0×β more transmitters on average in SINR based

scheduling than in PRK based scheduling, the interference at
R will exceedIt − Iprk when the area covered by the network
is larger than the exclusion region aroundR (which is usually
the case). Therefore, an upper bound on the number of nodes
in S prk \ Ssinr is

It−Iprk
P0×β . In addition, the number of nodes on

the boundary of the exclusion region aroundR is no more than
Nb, thus(|S prk|− |Ssinr|) ≤ min{ It−Iprk

P0×β ,Nb}.

Similarly, we can derive that(|S ′prk| − |S ′sinr|) ≤
min{ I ′t−I ′prk

P′
0×β ,N′

b}.

Putting the above analysis together, the expectedTloss is

no more than 1
|Sprk| (

It−Iprk
P0×β +

I ′t−I ′prk

P′
0×β ).

Proposition 3 enables us to compute the upper bound, de-
noted byTlb, on the throughput loss in PRK based schedul-
ing. For convenience, we let∆X = min{ It−Iprk

P0×β ,Nb} +

min{ I ′t−I ′prk

P′
0×β ,N′

b}, and thusTlb = ∆X
|Sprk| . Note that∆X repre-

sents an upper bound on|Sprk\Ssinr|, that is, the average num-
ber of nodes per exclusion region that are silenced in PRK
based scheduling but not in SINR based scheduling. In the
next subsection, we numerically analyze the properties of∆X
andTlb.



3.2 Numerical analysis
Using the same network and environmental settings of

Section ?? and based on Proposition 3, we analyze the
throughput loss in PRK based scheduling as compared with
the SINR based scheduling. For each of the system configu-
rations we study, more specifically, we first findIt , I ′t , and the
minimum K value of PRK model for satisfying certain link
reliability requirement, then we compute|Sprk|, Iprk, andI ′prk
which in turn enable us to compute∆X andTlb according to
Proposition 3.

Grid network. For each system configuration, we compute
the ∆X and throughput loss in PRK based scheduling. For
different requirements on packet delivery rate (PDR), Fig-
ure 2 shows the boxplot of throughput loss in PRK based
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Figure 2. Throughput loss in PRK models: grid networks

scheduling in different system configurations. We see that
the throughput loss is small in general, and it also tends to
decrease as the PDR requirement increases. For instance, the
median throughput loss is less than 5% when the required
PDR is 50%, and the median throughput loss is less than
1% when the required PDR is 90%. These findings imply
that PRK model can be used for mission-critical wireless net-
working (e.g., those for real-time, reliable sensing and con-
trol) where PDR requirement is usually high and thus PRK
model can enable a performance very close to what is possi-
ble with SINR model.

Random network. Figure 3 shows the throughput loss
of PRK model in random networks with node distribution
densityλ being 1.59 and 12.74 respectively (i.e., with the
average number of neighbors being 5 and 40 respectively),
and Table 1 shows the median throughput loss for differ-

PDR req. (%) 20 40 60 80 99
λ = 3.18 8.87 7.01 6.25 5.21 4.20
λ = 6.37 7.60 6.01 5.36 4.46 3.60
λ = 9.55 6.65 5.26 4.69 3.91 3.15

λ = 12.74 5.91 4.68 4.17 3.47 2.80

Table 1. Impact of λ and PDR requirement on median
throughput loss (%)

ent λ’s and PDR requirements. We see that, similar to grid
networks, throughput loss decreases as PDR requirement in-
creases. Moreover, we see that throughput loss also decreases
as node distribution densityλ increases, and this is because
largerλ increases the number of silenced nodes in PRK model
(i.e., |Sprk|).
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(a) λ = 1.59
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(b) λ = 12.74

Figure 3. Throughput loss in PRK model: random net-
works

4 Measurement study of PRK and SINR based
scheduling

Our analytical results show that PRK model serves well as
the basis of instantiating ratio-K model in different network
and environmental settings and that PRK based scheduling
achieves a throughput close to what is possible in SINR based
scheduling. To corroborate these results, we experimentally
compare the performance of PRK and SINR based scheduling
using a testbed of 120 TelosB motes, and we also experimen-
tally verify the tradeoff between reliability and throughput in
both PRK and SINR based scheduling.

4.1 Methodology
In our measurement study, we use a 10×12 grid of TelosB

motes deployed in an indoor office as shown in Figure 4,

Figure 4. Testbed

where every two closest neighbor-
ing motes are separated by 2 feet.

. . .

4.2 Scheduling algo-
rithms

Optimal SINR and ratio-K
based scheduling are NP-complete
in general [3, 20], thus we use the
greedy, approximate scheduling

framework, denoted by ALG0, that has been used to compare
different wireless interference models in [13]. In addition
to interference model, ALG0 takes as input the link demand
vector f = ( f1, f2, . . . , fL) for L number of links, where the
demandfi for the i-th link is the number of packets to be
transmitted across the link. The output of ALG0 is a schedule
S= {S1,S2, . . . ,Sτ}, whereSj is a set of links scheduled in



the j-th time slot. ALG0 works as follows to generate the
output schedule:

1. Order and rename links such thatf1 ≥ f2 ≥ . . . ≥ fL.
2. Seti = 1,S= /0,τ = 0. (Note: initial schedule is empty.)
3. Schedule linki in the very first available time slot to

which link i can be added based on certain scheduling
objective (e.g., guaranteeing certain minimum link re-
liability or maximizing network throughput) and inter-
ference model. If no such slot exists, incrementτ and
schedule linki in the newly created slot. (Note: incre-
mentingτ is equivalent to creating a new empty slot at
the end of the current schedule.)

4. Repeat step 3fi times.
5. Incrementi. Go back to step 3 untili > L.
. . .

4.3 Experimental results
Using the scheduling algorithms ALGprk and ALGsinr, we

have measured the performance of PRK and SINR based
scheduling using the methodology discussed in Section 4.1.
Figures 5 and 6 show the PDR and throughput of PRK
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Figure 5. PDR and throughput in the grid network

and SINR based scheduling in the grid network and the ran-
dom network respectively, with the error bars representing
the 95% confidence intervals (which are very small) of the
corresponding metrics. The PDR is defined as the number
of successfully delivered packets divided by the number of
packets transmitted in a schedule; the throughput is defined
as the number of successfully delivered packets divided by
the schedule length (i.e., number of slots used in a schedule).
Note that the throughput is not that high because of the lim-
ited concurrency allowed in the testbed which is in turn due
to the wide transitional region of wireless communication as
can be seen from Figure??. For instance, Table 2 shows the

# of Concurrent Links 1 2 3
Probability 0.46 0.51 0.03

Table 2. Probability of having different number of con-
current links in a slot: random network, PRK, Obj-8
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Figure 6. PDR and throughput in the random network

probability of having different number of concurrent linksin
a slot in PRK based scheduling for the random network and
theObj-8objective.

. . .

5 Related work
The seminal work of [8] used both ratio-K and SINR mod-

els in analyzing the capacity of wireless networks. Since the
paper did not focus on MAC protocol design, it did not study
the impacts of different factors on optimal ratio-K model, the
tradeoff between reliability and throughput, and the optimal-
ity of correctly instantiated ratio-K model.

[13] and [16] have studied the benefits of SINR model
as compared with ratio-K model. On the other hand, [3]
found that ratio-K based scheduling can improve the through-
put of SINR based scheduling too. Without studying the im-
pact of different factors and the tradeoff between reliability
and throughput in instantiating ratio-K model, however, these
work did not explain the causes for the inconsistent obser-
vations on the relative goodness between ratio-K and SINR
based scheduling, and they did not study how to best use
ratio-K model either. Our work complements the aforemen-
tioned studies by examining the impact of different network
and environmental factors on the optimal ratio-K model, by
studying the tradeoff between reliability and throughput in
ratio-K model instantiation, by identifying the PRK interfer-
ence model which addresses the challenge of adapting K to
potentially unpredictable network and environmental dynam-
ics, and by studying the optimality of PRK based scheduling
through analysis, simulation, and testbed based measurement.

Most closely related to our work is Shiet al. [21] who,
in parallel with our study, independently examined the ef-
fectiveness of protocol interference model from the perspec-
tive of frequency scheduling (together with routing and power
control). Having not focused on distributed protocol design,
however, [21] left it as an open problem how to choose op-
timal K in instantiating ratio-K model. Through detailed
study of the sensitivity of and the inherent tradeoff between



throughput and reliability in ratio-K based scheduling, we
discover the simple, distributed, link reliability based ap-
proach to selecting the optimal K, and we propose the PRK
model which has both the locality of ratio-K model and the
high fidelity of SINR model. Our work also complements
[21] by examining the effectiveness of ratio-K model from
the perspective of time scheduling and distributed protocol
design, by studying in Section 3 why PRK/ratio-K based
scheduling can be very close to the performance of SINR
based scheduling, by examining the issue in a wide range of
network and environmental settings (e.g., [21] did not study
scenarios of different path loss exponent), and by corroborat-
ing the analytical and simulation results with testbed based
measurement. Together, [21] and our work show that ratio-K
model, if correctly used, may well help simplify cross-layer
optimization and distributed protocol design, and it will be
worthwhile to explore this direction further.

Other approximate interference models such as hop-based
model [19] and range-based model [24] have also been used
in the literature, but they are either similar to ratio-K model
or perform worse than ratio-K model [13]. Therefore, we did
not study those approximate models in detail in this paper.
[10] studied the feasibility of local interference model, where
only nodes in a local neighborhood (with diameterρ) need
to coordinate with one another to ensure minimum SINR at
each receiver. But it did not study the impact of various fac-
tors on the optimalρ, nor did [10] study how to correctly
instantiateρ in dynamic, potentially unpredictable network
and environmental settings. [20] and [24] studied TDMA
scheduling based on ratio-K model. But [24] only considered
the case where K is 1, and the study of [20] did not exam the
impact of traffic load and node distribution on the optimal K.
The simulation study of optimal K in [20] is also based on
approximate instead of optimal scheduling.

Spatial reuse control based on the concept ofexclusion re-
gionhas been studied in [15, 25, 11, 12, 6, 17] too. Nonethe-
less, the issue of optimal K in different scenarios and the com-
parison between ratio-K and SINR models were not studied
in these work. [15] also used the Matern Hard-core Process
to analyze the distribution of interferers in a random field;
but it did not consider the impact of traffic load on optimal
spatial reuse, it only focused on the exclusion region around
the receiver (but not the sender), and it did not study how
the tradeoff between reliability and throughput affects opti-
mal spatial reuse. The analysis in [25] and [11] used the
honey-grid model which assumes the existence of a node at
every point in space. [25] did not study the impact of traffic
load on optimal spatial reuse, [11] only focused on exclusion
region around the receiver (and not the sender) in control-
ling transmission power and carrier sensing threshold. [12]
and [17] only considered the case of single interferer (and did
not consider additive interference from multiple interferers)
in controlling parameters such as carrier sensing range and
transmission power. [6] only considered the case of K = 1 in
transmission power control.

[5] showed that additive interference from multiple inter-
ferers significantly affect link properties, especially for links
of medium-to-high quality. [14] and [22] studied the addi-
tivity of interfering signals (i.e., whether the aggregatesig-

nal strength of multiple interfering signals is the sum of the
strength of the individual signals) for TelosB and MICA2
motes respectively, and it was found that measurement errors
may affect the conclusions.

Several studies (e.g., [7] and [9]) recently proposed mech-
anisms for interference cancellation where a single receiver
can simultaneously receive packets from multiple senders.
These results challenged the traditional paradigm where a re-
ceiver can only receive one packet at a time, and they sug-
gest new ways of interference control. Nonetheless, interfer-
ence still needs to be controlled due to the constraints of these
interference cancellation mechanisms. For instance, ZigZag
decoding [7] works the best when the number of interferers
is small (e.g., less than 6). How to build interference models
for these interference cancellation mechanisms should be an
interesting problem to study, but the detailed study is beyond
the scope of this paper.

6 Concluding remarks
Through detailed analysis of the impact of different net-

work and environmental factors (e.g., traffic load and wire-
less signal attenuation) on the optimal instantiation of ratio-
K model, we showed that the performance of ratio-K based
scheduling is highly sensitive to the choice of K and that it is
important to take this into account in both protocol design and
performance evaluation. We then comparatively studied the
performance of PRK and SINR based scheduling and showed
that, if correctly instantiated, ratio-K based schedulingcan
achieve a close-to-optimal performance. Moreover, our re-
sults on PRK model and the inherent tradeoff between relia-
bility and throughput suggest that ratio-K model can be cor-
rectly instantiated through link reliability based adaptation of
K which is readily amenable to distributed, local implemen-
tation. These findings explained the seemingly inconsistent
observations about ratio-K model in the literature, showedthe
feasibility of integrating the high fidelity of SINR model with
the locality of ratio-K model, and suggested new approaches
to MAC protocol design in dynamic, unpredictable network
and environmental settings. We will study the issue of how to
apply PRK model to protocol design and systems analysis in
our future work.
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