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Performance Evaluation:  

Statistics is the art of lying by means of figures. 

--- Dr. Wilhelm Stekhel 



Simple linear regression models 

 Response Variable: Estimated variable 

 Predictor Variables: Variables used to predict the response 

 Also called predictors or factors 

 

 Regression Model: Predict a response for a given set of 
predictor variables 

 Linear Regression Models: Response is a linear function of 
predictors 

 Simple Linear Regression Models: Only one predictor 
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Definition of a good model? 



Good models (contd.) 

 Regression models attempt to minimize the distance measured 

vertically between the observation point and the model line (or 

curve) 

 The length of the line segment is called residual, modeling error, or 

simply error 

 The negative and positive errors should cancel out => Zero overall 

error 

 Many lines will satisfy this criterion 

 Choose the line that minimizes the sum of squares of the errors 



Good models (contd.) 

 Formally,  

   

   where,    is the predicted response when the predictor variable is 

x. The parameter b0 and b1 are fixed regression parameters to 

be determined from the data. 

 Given n observation pairs {(x1, y1), …, (xn, yn)}, the estimated 

response for the i-th observation is: 

 

 The error is: 



Good models (contd.) 

 The best linear model minimizes the sum of squared errors 

(SSE): 

 

     subject to the constraint that the overall mean error is zero: 

 

 

 This is equivalent to the unconstrained minimization of the 

variance of errors (Exercise 14.1) 
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Estimation of model parameters 

 Regression parameters that give minimum error 

variance are: 

 

     where, 

 



Example 14.1 



Example (contd.) 



Example (contd.) 



Derivation of regression parameters? 



Derivation (contd.) 



Derivation (contd.) 



Least Squares Regression vs. Least Absolute 
Deviations Regression? 

Least Squares Regression Least Absolute Deviations 

Regression 

Not very robust to outliers  Robust to outliers 

Simple analytical solution No analytical solving method  

(have to use iterative computation-intensive method) 

Stable solution Unstable solution 

Always one unique solution Possibly multiple solutions 

The unstable property of the method of least absolute deviations means that, for any small 
horizontal adjustment of a data point, the regression line may jump a large amount. In 
contrast, the least squares solutions is stable in that, for any small horizontal adjustment of 
a data point, the regression line will always move only slightly, or continuously. 
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Allocation of variation 



Allocation of variation (contd.) 

 The sum of squared errors without regression would be: 

 

    This is called total sum of squares or (SST). It is a measure of 

y's variability and is called variation of y. SST can be computed 

as follows: 

 

    Where, SSY is the sum of squares of y (or Σy2). SS0 is the sum 

of squares of      and is equal to 



Allocation of variation (contd.) 

Variation not explained 
by the regression 



Allocation of variation (contd.) 

   

   

 

 



Example  

 For the disk I/O-CPU time data of Example 14.1:  

 

 

 

 

 The regression explains 97% of CPU time's variation. 
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Standard deviation of errors 
 Since errors are obtained after calculating two regression parameters 

from the data, errors have n-2 degrees of freedom 

 SSE/(n-2) is called mean squared errors or (MSE) 

 

 Standard deviation of errors = square root of MSE 

 

 Note:  
 SSY has n degrees of freedom since it is obtained from n independent 

observations without estimating any parameters 
 SS0 has just one degree of freedom since it can be computed simply 

from 
 SST has n-1 degrees of freedom, since one parameter     must be 

calculated from the data before SST can be computed 



Standard deviation of errors (contd.) 

 SSR, which is the difference between SST and SSE, has the 

remaining one degree of freedom. 

 Overall, 

 

 Notice that the degrees of freedom add just the way 

the sums of squares do 



Example  
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CIs for regression parameters 

 Regression coefficients b0 and b1 are estimates from a single 

sample of size n =>  1) Random; 2) Using another sample, the 

estimates may be different.  

 If β0 and β1 are true parameters of the population (i.e., y = β0 + 

β1x), then the computed coefficients b0 and b1 are estimates of β0 

and β1, respectively.  

 Sample standard deviation of b0 and b1 

 



CIs for regression parameters (contd.) 

 The 100(1-α)% confidence intervals for b0 and b1 can be  
computed using t[1-α/2; n-2] --- the 1-α/2 quantile of a t 
variate with n-2 degrees of freedom. The confidence intervals 
are: 

 

 

 If a confidence interval includes zero, then the regression 
parameter cannot be considered different from zero at the 
100(1-α)% confidence level 



Example  



Example (contd.) 

 The 0.95-quantile of a t-variate with 5 degrees of freedom is 2.015 

    => 90% confidence interval for b0 is: 

 

 Since, the confidence interval includes zero, the hypothesis that this 
parameter is zero cannot be rejected at 0.10 significance level => b0 is 
essentially zero. 

    => 90% Confidence Interval for b1 is: 

 

 Since the confidence interval does not include zero, the slope b1 is 
significantly different from zero at this confidence level. 



Case study 14.1: remote procedure call 



Case study (contd.) 



Case study (contd.) 



Case study (contd.) 

 Best linear models are: 

 

 The regressions explain 81% and 75% of the 

variation, respectively. 

    Does ARGUS takes larger time per byte as well as a 

larger set up time per call than UNIX? 



Case study (contd.) 

    ? 

    Intervals for intercepts overlap while those of the slopes do not.  => Set up times are 
not significantly different in the two  systems while the per byte times (slopes) are 
different. 
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CI for predications 



CI for predications (contd.) 



CI for predications (contd.) 

 Standard deviation of the prediction is minimal at the 

center of the measured range (i.e., when x = x); 

Goodness of the prediction decreases as we move 

away from the center. 



Example  



Example (contd.) 



Example (contd.) 
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Visual test for regress assumptions 

 Regression assumptions: 

 The true relationship between the response variable y and 

the predictor variable x is linear. 

 The predictor variable x is non-stochastic and it is measured 

without any error. 

 The model errors are statistically independent.  

 The errors are normally distributed with zero mean and a 

constant standard deviation. 



Visual test for linear relationship 



Visual test for independent errors  

   

 

 

 

 

 Any trend would imply the dependence of errors on predictor 

variable => curvilinear model or transformation 

 In practice, dependence can be proven yet independent cannot 



Visual test for independent errors (contd.) 

   

 

 

 

 

 

 Any trend would imply that other factors (such as environmental 

conditions or side effects) should be considered in the modeling 



Visual test for “normal distribution of 
errors”? 



Visual test for constant standard deviation 
of errors  



Example  



Another example: RPC performance  



Summary   

 Definition of a Good Model 
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 Standard deviation of Errors 
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 Visual Tests for verifying Regression Assumption 



Exercise 
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