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Simple linear regression models

Response Variable: Estimated variable

Predictor Variables: Variables used to predict the response

= Also called predictors or factors

Regression Model: Predict a response for a given set of
predictor variables

Linear Regression Models: Response is a linear function of
predictors

Simple Linear Regression Models: Only one predictor



Outline

_

= Definition of a Good Model

= Estimation of Model parameters

= Allocation of Variation

= Standard deviation of Errors

= Confidence Intervals for Regression Parameters
= Confidence Intervals for Predictions

= Visual Tests for verifying Regression Assumption
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Definition of a good model?
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Good models (contd.)

= Regression models attempt to minimize the distance measured
vertically between the observation point and the model line (or

curve)

= The length of the line segment is called residual, modeling error, or

simply error

= The negative and positive errors should cancel out => Zero overall

error

= Many lines will satisfy this criterion

= Choose the line that minimizes the sum of squares of the errors



Good models (contd.)

= Formally,

= Yy =0bg+ b1x
where, ¢ is the predicted response when the predictor variable is

x. The parameter b, and b, are fixed regression parameters to
be determined from the data.

= Given n observation pairs {(xZ, y1), ..., (xn, yn)}, the estimated
response for the i-th observation is:

yi = bo + brx;
= The error is:

Ci = Yi — Yi



Good models (contd.)

= The best linear model minimizes the sum of squared errors
(SSE):

Z?:l (:'f — Z:]:l(@'a — bo — blf*!?aal)2

subject to the constraint that the overall mean error is zero:
T T
Zi:l Ci = Z?::1(yt' — b — blmﬁ) =(

= This is equivalent to the unconstrained minimization of the

variance of errors (Exercise 14.1)
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Estimation of model parameters

= Regression parameters that give minimum error

variance are:

: 2.TY — NTY
| = —
Yx? — nr?
where,
1 TL
i —_— — -E?
n
i=1
TL
Yxy = E Tl
=1

1
=1
TL
Yot = E 7
1=1



Example 14.1

3a The number of disk I/O's and processor times of
seven programs were measured as: (14, 2). (16. 5).
(27.7). (42.9). (39, 10), (50, 13), (83, 20)

Q For this data: n=7. X xy=3375. 2 x=271. X x*=13.855.
2. y=006. 2 y*=828, x=38.71. y=9.43. Therefore.

XY — NITY 3375 — 7 x 38.71 x 9.43
S l S — (.2438
‘ Ye2 —n(z)2 13,855 — 7 x (38.71)2

by = y—bx =943 —0.2438 x 38.71 = —0.0083

1 The desired linear model 1s:
CPU time = —0.0083 + 0.2438(Number of Disk 1/0’s)



Example (contd.)
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Example (contd.)

3 Error Computation

Disk I/O’s CPU Time Estimate Error  Error”

T; Yi  Yi=bo+by T  €;=yi-y; e

14 2 3.4043 -1.4045 1.9721

16 5 3.8918 1.1082  1.2281

27 7 6.5731 0.4269 0.1822

42 9 10.2295  -1.2295 1.5116

39 10 9.4982 0.5018 0.2518

50 13 12.1795 0.8205 0.6732

83 20 20.2235  -0.2235  0.0500

2 271 66 66.0000 0.00 5.8690




Derivation of regression parameters?

1 The error 1n the 1th observation 1s:

ei =Yi — Ui = Yi — (bo + brz;)
3 For a sample of n observations, the mean error 1s:
1 | L :
w22 €= 2 Y — (bo + biz;)

G — b — by

e

a Setting mean error to zero, we obtain:
bp =y — b1 x
a Substituting b0 1n the error expression, we get:

e =Y —y+biT —brx; = (y; —y) — bi(z; — )



Derivation (contd.)

A The sum of squared errors SSE 1s:

SSE = Zn: e
i=1

> { @i —9)" - 201 (i — 9) (@i — 2) + B3 (@i — 2)° }

i=1

1 T
SE (vi — ) = 2 -

n—1 n~—~1

1 _\2
+b7 — Z (z; — T)
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Derivation (contd.)

a Differentiating this equation with respect to b, and
equating the result to zero:

d(SSE) 0 5
= —2 2b =
3 That 1s.
b Siy _ Xxy — nxy
1 [

s2  Yz? —n(x)?



Least Squares Regression vs. Least Absolute
Deviations Regression?

Least Squares Regression Least Absolute Deviations
Regression
Not very robust to outliers Robust to outliers
Simple analytical solution No analytical solving method

(have to use iterative computation-intensive method)

Stable solution Unstable solution

Always one unique solution Possibly multiple solutions

The wunstable property of the method of least absolute deviations means that, for any small
horizontal adjustment of a data point, the regression line may jump a large amount. In
contrast, the least squares solutions is stable in that, for any small horizontal adjustment of
a data point, the regression line will always move only slightly, or continuously.
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Allocation of variation

2 Error variance without Regression = Variance of the response

Error = ¢; = Observed Response — Predicted Response

= Yi—Y
and
1 TL
Variance of Errors without regression = Z €

n— 1 4
=1
1 T

= Z(yi — )"

n—1 e

Variance of y



Allocation of variation (contd.)

= The sum of squared errors without regression would be:

Th

> (i —9)°

i=1
This is called total sum of squares or (SST). It is a measure of
s variability and is called variation of y. SST can be computed
as follows:

SST = Z(yi —9)? = (Z yz) —ng® = SSY — SS0
Where, SSY is the sum of squares of y (or 2y2). SSO is the sum
of squares of q;r and is equal to ﬂ,?}‘g



Allocation of variation (contd.)

a The difference between SST and SSE 1s the sum of squares
explamned by the regression. It 1s called SSR:

SSR = SST — SSE . |
Vvariation not eg(p/a/ned
SST =SSR + SSE by the regression

2 The fraction of the variation that 1s explained determines the
goodness of the I'e\gressiﬂu and 1s called the coefficient of
determination. RZ:

o2 _ SSR_ SST — SSE
T SST ~  SST

o1




Allocation of variation (contd.)

= The higher the value of R2, the better the regression.
R2=] = Perfect fit: R?=0 = No fit

" Shortcut formula for SSE:

SSE = Sy° — by — b1 Xy



Example

= For the disk 1/0-CPU time data of Example 14.1:
SSE Yy? — by — b1 xy
= 828 + 0.0083 x 66 — 0.2438 x 3375 = 5.87
SST = SSY —SS0 = Zy* — n(y)?
= 828 — 7 x (9.43)% = 205.71
SSR = SST — SSE = 205.71 — 5.87 = 199.84
, SSR  199.84
"~ SST  205.71

R = 0.9715

= The regression explains 97% of CPU time's variation.



Outline
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Standard deviation of errors

= Since errors are obtained after calculating two regression parameters
from the data, errors have -2 degrees of freedom

s SSE/(n-2)is called mean squared errors or (MSE)

) SSE
5. =
€ n— 2
= Standard deviation ot errors = square root of MSE

= Note:

= SSY has n degrees of freedom since it is obtained from n independent
observations without estimating any parameters

= SSO has just one degree of freedom since it can be computed simply
from y

= SST has n-1 degrees of freedom, since one parameter ¥ must be
calculated from the data before SST can be computed



Standard deviation of errors (contd.)

= SSR, which is the difference between SST and SSE, has the

remaining one degree of freedom.

s Overall,
SST = SSY — SSO0 = SSR + SSE
n—-1 = n - 1 = 1 + (n-2)

= Notice that the degrees of freedom add just the way

the sums of squares do



Example

3 For the disk I’O-CPU data of Example 14.1. the
degrees of freedom of the sums are:

SS: SST = SSY — SS0 = §SSR + SSE
205.71 = 828 — 62229 = 199.84 4 5H.87
DFE : § = 7 - 1 = 1 + 5
0 The mean squared error 1s:
SoE 2.87
MSE = = — = 1.17

DF for Errors 5

1 The standard deviation of errors 1s:

Se = VMSE = v1.17 = 1.08




Outline

= Definition of a Good Model

= Estimation of Model parameters

= Allocation of Variation

= Standard deviation of Errors

m Confidence Intervals for Regression Parameters
= Confidence Intervals for Predictions

= Visual Tests for verifying Regression Assumption



Cls for regression parameters

= Regression coefficients 60 and b1 are estimates from a single
sample of size n => 1) Random; 2) Using another sample, the

estimates may be different.

= If B, and B, are true parameters of the population (i.e., y = B, +
B,x), then the computed coefficients b0 and b1 are estimates of 0
and B1, respectively.

=  Sample standard deviation of bO and b1l
| 72 1/2
S = Se|——+
b0 ‘ L’L Ya? — n:riz';’]
Se

(X2 — -n:fg]u2

Shy =



Cls for regression parameters (contd.)

= The 100(1-a)% confidence intervals for bO and b1l can be
computed using t[1-a/2; n-2] --- the 1-a/2 quantile of a t
variate with n-2 degrees of freedom. The confidence intervals

are.
bo F tsu,

And
bl -+ is f)-l

= If a confidence interval includes zero, then the regression
parameter cannot be considered different from zero at the
100(1-a)% confidence level



Example

2 For the disk Is’ O and C PU data of Example 14.1, we have 1:1—7r
r=38.71, Y 22=13,855, and s =1.0834.

ad Standard deviations of b, and b, are:

1 72 17
O {; T Y2 — fnfj]
1/2
(38.71)°
= 1.0834 | = = ().8311
)83 7 T 13,855 — 7 x 38.71 x 38.71 .83
S o
S
1 (X2 — ng]l,@

13,855 — 7 x 38.71 x 38.71]"/*




Example (contd.)

= The 0.95-quantile of a ~variate with 5 degrees of freedom is 2.015

=> 90% confidence interval for bO is:
—0.0083 F (2.015)(0.8311) = —0.0083 = 1.6747
= (—1.6830, 1.6663)
= Since, the confidence interval includes zero, the hypothesis that this
parameter is zero cannot be rejected at 0.10 significance level => b0 is
essentially zero.

=> 90% Confidence Interval for bl is:
0.2438 F {2.015)(0.0187) = 0.2438 F 0.0376

= (0.2061, 0.2814)
= Since the confidence interval does not include zero, the slope bl is

significantly different from zero at this confidence level.



Case study 14.1: remote procedure call

UNIX ARGUS
Data | Time | Data | Time
Bytes Bvtes
64 26.4 92 32.8
64 26.4 92 34.2
64 26.4 92 32.4
64 26.2 92 34.4
234 33.8 348 41.4
590 41.6 604 51.2
846 50.0 860 76.0
1060 48.4 1074 80.8
1082 49.0 1074 79.8
1088 42.0 1088 H8.6
1088 41.8 1088 57.6
1088 41.8 1088 59.8
1088 42.0 1088 57.4




Case study (contd.)
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Case study (contd.)
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Case study (contd.)

s Best linear models are:

Time on UNIX
Time on ARGUS

0.030 (Data size in bytes) + 24
0.034 (Data size in bytes) 4+ 30

= The regressions explain 81% and 75% of the

variation, respectively.

Does ARGUS takes larger time per byte as well as a

larger set up time per call than UNIX?



Case study (contd.)

UNIX:
Para- Std. Confidence
meter  Mean  Dev. Interval
by 26.898 2.005 ( 23.2968, 30.4988)
by 0.017 0.003 (0.0128, 0.0219)
ARGUS:
Para- Std. Confidence
meter  Mean  Dev. Interval
bp 31.068 4.711 ( 22.6076, 39.5278)
by 0.034 0.006 (0.0231, 0.0443)

?

Intervals for intercepts overlap while those of the slopes do not. => Set up times are
not significantly different in the two systems while the per byte times (slopes) are
different.
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Cl for predications

;I:fp — b[_] -+ blil“?p

2 This 1s only the mean VHFHE‘ of the predicted response. Standard
deviation of the mean of a future sample of m observations 1s:

1 1 (z,—7) }W

S{‘ — SE - + - I .
e Ln n  Ya? — nz?

2 m =1 = Standard deviation of a single future observation:

1 . =2 1/2
Sgip — Se [1+_3 (lp ;1:) }

n  2r?— nr?



Cl for predications (contd.)

1 m = oo = Standard deviation of the mean of a large

number of future L‘le‘EI"VﬂtiGHS at X

~ 1/2
L (zp—2)° /
Sg, — Se | —
Yr n  Yr? —ng?

2 100(1-a)% confidence interval for the mean can be
constructed using a t quantile read at n-2 degrees of
freedom.



Cl for predications (contd.)

= Standard deviation of the prediction is minimal at the
center of the measured range (i.e., when x = X);
Goodness of the prediction decreases as we move

away from the center.
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Example

A Using the disk /O and CPU time data of Example
14.1. let us estimate the CPU time for a program with

100 disk I/O's.
CPU time = —0.0083 + 0.2438(Number of disk [/0O’s)

3 For a program with 100 disk I/O's.
the mean CPU time 1s:

CPU time = —0.0083 + 0.2438(100) = 24.3674

Standard deviation of errors s, = 1.0834



Example (contd.)

2 The standard deviation of the predicted mean of a large number
of observations 1s:
1/2
1 (100 —38.71)2 1Y

o =1.0834 | - 1 — 1.2159
" 7 713,855 — 7(38.71)2

2 From Table A .4, the 0.95-quantile of the t-variate with 3
degrees of freedom 1s 2.015.
— 90% CIT for the predicted mean

= 24.3674 F (2.015)(1.2159)
= (21.9174, 26.8174)




Example (contd.)

1 CPU time of a smgle future program with 100 disk
[/O's:
1/2

100 — 38.71)%
(100 — 38.71) = 1.6286

= 1.0834 |1+
Sjr, = 1.083 13,855 — 7(38.71)2

21 90% C1 for a single prediction:

= 24.3674 F (2.015)(1.6286)
= (21.0858, 27.6489)




Outline

= Definition of a Good Model

= Estimation of Model parameters

= Allocation of Variation

= Standard deviation of Errors

= Confidence Intervals for Regression Parameters
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m Visual Tests for verifying Regression Assumption



Visual test for regress assumptions

= Regression assumptions:

= The true relationship between the response variable y and
the predictor variable xis /inear.

= The predictor variable xis non-stochastic and it is measured

without any error.
= The model errors are statistically independent.

= The errors are normally distributed with zero mean and a

constant standard deviation.



Visual test for linear relationship

a Scatter plot of y versus x = Linear or nonlinear relationship
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Visual test for independent errors

= Scatter plot of g; versus the predicted response ;
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Predicied res poase

= Any trend would imply the dependence of errors on predictor

variable => curvilinear model or transformation

= In practice, dependence can be proven yet independent cannot



Visual test for independent errors (contd.)

" Plot the residuals as a function of the experiment number

A {a) Ko ueid ;! (b Trend
Reidual Residual
s " » - u '
[ pee e smmssnnamn T LLEELEREEEE LT
| ] : . r -
+ ]
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Experiment number Experiment numbsr

= Any trend would imply that other factors (such as environmental

conditions or side effects) should be considered in the modeling



Visual test for “normal distribution of

errors”’?

2 Prepare a normal quantile-quantile plot of errors.
Linear = the assumption 1s satisfied.
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Visual test for constant standard deviation

of errors

S—

2 Also known as homoscedasticity
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2 Trend = Try curvilinear regression or transformation



Example

For the disk I/O and CPU time data of Example 14.1
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1. Relationship 1s linear
2. No trend 1n residuals = Seem independent
3. Linear normal quantile-quantile plot
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Another example: RPC performance
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1. Larger errors at larger responses
2. Normality of errors 1s questionable



summary

= Definition of a Good Model

= Estimation of Model parameters

= Allocation of Variation

= Standard deviation of Errors

= Confidence Intervals for Regression Parameters & Predictions

= Visual Tests for verifying Regression Assumption



Exercise

The time to encrypt a & byte record using an encryption
technique 1s shown in the following table. Fit a linear
regression model to this data. Use visual tests to verify the

regression assumptions.
Record Observations
Size 1 2 3
128 386 37H 393
256 850 805 824
384 1544 1644 1553
h12 2035 3123 3235
640 6650 6839 6768
768 13,887 14,567 13,456
396 28,059 27,439 27,659
1024 50,916 52,129 51,360
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