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S—

Multiple Linear Regression

= More than one predictor variables

Categorical Predictors

= Predictor variables are categories such as CPU type, disk type, and so on

Curvilinear Regression

= Relationship is nonlinear

Transformations

= Errors are not normally distributed or the variance is not homogeneous
Outliers

Common mistakes in regression
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Multiple linear regression models

y=>by+bix1+boxo+ -+ brxr + €

O Given a sample of # observations with £ predictors

{(:Ull: L21y «+-y Lkl yl): JEIEN (:El’n,: Loy +++y Lkn, yn)}
y1 = bo+ bix11+ boxa1 -+ brxTE1 + €
Yo = bo+ b1x1o+ boxos -+ brpTro + €2

Un — bO + bl L1n + b2$2n " bk:xkn + €n



Vector notation

In vector notation, we have

—

or

1 L11 L2

Y1

Y2 I x12 woo
Yn | 1 2, 22,
v =Xb + e

Regression formula:

b=(X"X)"(X"y)
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Example 15.1

a Seven programs were monitored to observe their resource
demands. In particular, the number of disk I/O's, memory size
(1n kBytes), and CPU time (1n milliseconds) were observed.

CPU Time Disk I/O’s Memory Size

Yi L1i L2
2 14 70
5 16 75
7 27 144
9 42 190

10 39 210

13 50 235

20 83 400




Example (contd.)

CPU time = by + by (number of disk I/0O’s) + by (memory size)
d In this case:

1 14 70
1 16 75
1 27 144
X= 11 42 190
1 39 210
I 50 235
1 83 400

7 271 1324
XIx=| 271 13,855 67,188
1324 67,188 326,686




Example (contd.)

| 0.6297  0.0223 —0.0071
C=(XIX)"1=| 00223 00280 —0.0058
—0.0071 —0.0058  0.0012

| 66

Xty = | 3375

16,388

Q The regression parameters are:

b=(X'X)"'XTy = (~0.1614,0.1182,0.0265) 1
Q The regression equation 1s:

CPU time = —0.1614 4+ 0.1182(number of disk 1/O’s) +

0.0265(memory size)



Example (contd.)

CPU Time Disk I/O’s Memory Size Est. CPU time Error Error®

2

Yi T Ia; Ui €; €;

2 14 70 3.3490 -1.3490 1.8198

5} 16 75 3.7180 1.2820 1.6436

T 27 144 6.8472  0.1528 0.0233

9 42 190 9.8400 -0.8400 0.7053

10 39 210 10.0151 -0.0151 0.0002

13 50 235 11.9783  1.0217 1.0439

20 83 400 20.2529 -0.2529 0.0639

2 66 271 1324 66.0000 -0.0003 5.3000

2 From the table we see that SSE 1s:
SSE = Ye? = 5.3



Example (contd.)

d An alternate method to compute SSE 1s to use:
SSE = {yly —bIx!ly}
2 For this data, SSY and SSO are:
SSY = ¥y = 828

SS0 = ny? = 622.29
3 Theretfore, SST and SSR are:
SST = SSY — SS0 = 828 — 622.29 = 205.71

SOR = SST — SSE = 205.71 — 5.3 = 200.41



Example (contd.)

s The coefficient of determination R? is:
SSR ~200.41
SST  205.71

R? = —0.97

Thus, the regression explains 97% of the variation of y.

s Standard deviation of errors is:

E
S, = SS =+/5.3/4=1.2




C = (X™X)?
Example (contd.)

a Standard deviations of the regressiomrs are:

Estimated std. dev. of by = s.v/coo = 1.2v/0.6297 = 0.9131

Estimated std. dev. of by = s.+/c11 = 1.2v/0.0280 = 0.1925

Estimated std. dev. of by = s.y/c22 = 1.24/0.0012 = 0.0404
A The 90% t-value at 4 degrees of freedom 1s 2.132.

90% Conf. interval of by = —0.1614 F (2.132)(0.9131) = (—2.11, 1.79)

90% Conf. interval of by = 0.1182 F (2.132)(0.1925) = (—0.29, 0.53)
90% Conf. interval of by = 0.0265 F (2.132)(0.0404) = (—0.06, 0.11)

None of the three parameters 1s significant at a 90% confidence
level.




Example (contd.)

a A single future observation for programs with 100 disk I/O's
and a memory size of 550:

Yyip = bo+bixy + baxo
—  _0.1614 + 0.1182(100) + 0.0265(550) = 26.2375

Q Standard deviation of the predicted observation 1s:

Sy, = sc\/{l +xT(XTX)-1x} = 1.2/1 + 7.4118 = 3.3435

2 90% confidence interval using the t value of 2.132 1s:

26.2375 F (2.132)(3.3435) = (19.1096, 33.3363)



Example (contd.)

= Standard deviation for a mean of a large number of

future observations is:

Sg, = se\/{xT(XTX)—lx} — 1.2V7.4118 = 3.1385

» 90% confidence interval Is:

26.2375 F (2.132)(3.1385) = (19.5467, 32.9292)



Analysis of variance (ANOVA)

Test the hypothesis that SSR is less than or equal to SSE
SST = SSY — SS0 = SSR + SSE

Degrees of freedom = Number of independent values required to

compute
SST = SSY — SSO = SSR + SSE
n—-1 = n - 1 = k + (n—k—1)

Assuming “Errors are i.i.d. Normal” & “x's are nonstochastic (i.e.,
can be measured without errors)” => y's are also normally
distributed

Various sums of squares have a chi-square distribution with the
degrees of freedom as given above



F-test

J

Given SS1 and SSj with v; and v; degrees of freedom, the ratio
(SS1/v)/(SS)/v;) has an F distribution with v; numerator degrees
of freedom and v; denominator degrees of freedom.

Hypothesis that the sum SS1 1s less than or equal to SSj 1s
rejected at a significance level, 1f the ratio (SSi/vi)/(SSj/vj) 1S
greater than the 1-a quantile of the F-variate.

This procedure 1s also known as F-test.

The F-test can be used to check:
Is SSR significantly higher than SSE?
= Use F-test = Compute (SSR/vy)/(SSE/v,) =MSR/MSE



F-

U U D

test (contd.)

SSR SSE

MSE = Variance of Error
MSR/MSE has F[k, n-k-1] distribution

F-test = Null hypothesis that y doesn't depend upon any x;:
against an alternate hypothesis that y depends upon at least one

X; and therefore, at least one bj = 0.

If the computed ratio 1s less than the value read from the table, the
null hypothesis cannot be rejected at the stated significance level

In simple regression models,

If the confidence interval of b, does not include zero

= Parameter 1s nonzero

= Regression explains a significant part of the response variation
= F-test 1s not required.



ANOVA table for multiple linear regression

a See Table 15.3 on page 252

Compo- Sum of YoVariation DF Mean F- F-

nent Squares Square Comp.  Table

¥ SSY=X y“" 1

i 8S0= ni* 1

¥-1i SST=585Y-550 100 _ n-1

Regression  SSR = SST-SSE 100 { 83%) k MsrR=SRR O MER Ry ok
Frrors 8sE=y y-b! X1y 100 (88%) n-k1 MSE=;S5E,

s.=vMBSE



Example 15.2

a For the Disk-Memory-CPU data of Examplel5.1

Q Computed F ratio > F value from the table
= Regression does explain a significant part of the variation

Compo- Sum of %Variation DF  Mean F- F-
nent Squares Square Comp. Table
y 828.

7 622.

y-i 206. 100.0% 6

Regression 200. 97.4% 2 100.20 75.40 4.32
Errors 5.32 2.6% 4 1.33

se=vMSE= v/1.33=1.15

a Note: Regression passed the F test = Hypothesis of all
parameters being zero cannot be accepted. However, none of
the regression parameters are significantly different from zero.
This contradiction = Problem of multicollinearity



Multicollinearity >

= Two lines are said to be collinear if they have the same slope
and same intercept. (same line)

= These two lines can be represented in just one dimension instead
of the two dimensions required for lines which are not collinear.

= Two collinear lines are not independent.

= When two predictor variables are linearly dependent, they are
called collinear

= Collinear predictors == Problem of multicollinearity (i.e.,
contradictory results from various significance tests)

= High Correlation => Eliminate one variable and check if
significance improves



Example 15.3

Q For the data of Example 15.2, n=7, X x, =271, X x,,=1324,
X x,;7=1385, £ x,=326,686, X x,X,=67,188.

Correlation(xy, x2) = Ry, a,
_ Zm?m?—%/g; v13) (D) was) -
2ot w Qo) Qo w) | TR edi— 5 (Do wai ) (2 w2i)]

67,188 — 1(271)(1324
= ' 7 (271 ) — 0.9947

1385 — L(271)(271)]/* [326, 686 — L(1324)(1324)]"/*

Q Correlation 1s high
= Programs with large memory sizes have more I/O's

Q In Examplel4.1, CPU time on number of disk [/O's regression
was found significant.



Example (contd.)

= Similarly, as shown in Exercise 14.3, CPU time is regressed on the
memory size and the resulting regression parameters are found to be
significant.

= Thus, either the number of 1/0's or the memory size can be used to
estimate CPU time, but not both.

= Lesson:
= Adding a predictor variable does not always improve regression accuracy.

= If the variable is correlated to other predictors, it may reduce the
statistical accuracy (i.e., more variance) of the regression.

= Try all 2k possible subsets and choose the one that gives the best
results with small number of variables.

s Correlation matrix for the subset chosen should be checked
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Regression of categorical (i.e., nonnumerical)
predictors

= Note: If all predictor variables are categorical, use one of the
experimental design and analysis techniques for statistically more
precise (less variant) results

= Use regression if most predictors are quantitative and only a few predictors
are categorical

. 0 = First value
= Two Categories: T = { 1 = Second value
b;: represents difference in the effect of the two alternatives
= Db is insignificant => two alternatives have similar performance
= Alternatively: z, = { —1 = First value
+1 = Second value
b;: represents the difference from the average response

= Difference of the effects of the two levels is 2bj



Categorical predictors (contd.)

Q Three Categories: Incorrect:

’

1 = Type A
r1 =4 2 = TypeB
L 3 = Type C

This coding implies an order = B 1s half way between A and
C. This may not be true.

O Recommended: Use two predictor variables

| 1, Iftypc A
= 0, Otherwise

,  Otherwise

1, If type B
‘TQ:{O yp



Categorical predictors (contd.)

Thus, (z1,22)=(1,0) = Type A
(z1,23) = (0,1) = Type B
(z1,72) = (0,0) = Type C

A This coding does not imply any ordering among the types.
Provides an easy way to mterpret the regression parameters.

y=0bo+b1x1 + boxo + €



Categorical predictors (contd.)

2 The average responses for the three types are:

ya = by + by
yp = bo + b2
Yo = bo

Q Thus, b, represents the difference between type A and C.
b, represents the difference between type B and C.
b, represents type C.



Categorical predictors (contd.)

a Level = Number of values that a categorical variable can take
a To represent a categorical variable with k levels,
define k-1 binary variables:
o { 1, If jth value
J 0, otherwise

a kth (last) value 1s defined by x,= x,= --- = x;_,= 0.
a b, = Average response with the ith alternative.
a b, = Difference between alternatives j and £.

Q If one of the alternatives represents the status quo or a standard
against which other alternatives have to be measured, that
alternative should be coded as the Ath alternative.



Case study 15.1

a RPC performance on Unix
and Argus

y =byp + b1x1 + boxo

where, y 1s the elapsed
time, X, 1s the data size
and

|

1 = UNIX
0 = ARGUS

ARGUS

UNIX

Data | Time | Data | Time
Bytes Bytes

64 26.4 92 32.8
64 26.4 92 34.2
64 26.4 92 32.4
64 26.2 92 34.4
234 33.8 348 41.4
590 41.6 604 51.2
846 50.0 860 76.0
1060 48.4 1074 30.8
1082 49.0 1074 79.8
1088 42.0 1088 58.6
1088 41.8 1088 57.6
1088 41.8 1088 59.8
1088 42.0 1088 57.4




Case study (contd.)

Para- Std. Confidence
meter Mean  Dev. Interval
bo 36.739 3.251 ( 31.1676, 42.3104)
by 0.025 0.004 ( 0.0192, 0.0313)
by -14.927 3.165 ( -20.3509, -9.5024)

= All three parameters are significant (diff. from 0). The regression
explains 76.5% of the variation.

= Per byte processing cost (time) for both operating systems is 0.025
millisecond.

= Set up cost is 36.73 milliseconds on ARGUS, which is 14.927
milliseconds more than that with UNIX.



Differing conclusions

S—

Case Study 14.1 concluded that there was no significant difference in
the set up costs. The per byte costs were different.

Case Study 15.1 concluded that per byte cost is same but the set up
costs are different.

Which conclusion Is correct?

= Need system (domain) knowledge. Statistical techniques applied without
understanding the system can lead to a misleading result ®

= Case Study 14.1 was based on the assumption that the processing as well
as set up in the two operating systems are different

= => four parameters

= The data showed that the setup costs were numerically indistinguishable.



Differing conclusions (contd.)

= The model used in Case Study 15.1 is based on the assumption

that the operating systems have no effect on per byte
processing.

= This will be true if the processing is identical on the two systems and

does not involve the operating systems. i.e., only set up requires
operating system calls.

If this is, in fact, true, then the regression coefficients estimated in the

joint model of this case study 15.1 are more realistic estimates of the
real world.

On the other hand, if system programmers can show that the

processing follows a different code path in the two systems, then the
model of Case Study 14.1 would be more realistic.
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Curvilinear regression

A If the relationship between response and predictors 1s nonlinear
but it can be converted into a linear form
= curvilinear regression.

Example:

y = bx
Taking a logarithm of both sides we get:
Iny=Inb+alnx

Thus, In x and In y are linearly related. The values of In b aﬁid a
can be found by a linear regression of In y on In x.



Other examples

Nonlinear

y =a+ b/x
y=a+bx™
y=1/(a+bx)
y = x/(a+bx)
y = ab®

Linear

y=a+ b (1/x)
y=a+b(z")
(1/y)=a+bx

(x/y) = a + bx

In(y) :’ln(‘a) + (In(d))x

Qa If a predictor variable appears in more than one transformed
predictor variables, the transformed variables are likely to be
correlated = multicollinearity.

Try various possible subsets of the predictor variables to tind a
subset that gives significant parameters and explains a high
percentage of the observed variation.



Example 15.4

a Amdahl's law: I/O rate 1s|proportional| to the processor speed.
For each 1nstruction executed there 1s one bit of I/O on the
average.

System No. MIPS Used I/0 Rate

1 19.63 288.60
2 .45 117.30
3 2.63 64.60
1 8.24 356.40

14.00 373.20
9.87 281.10
11.27 149.60
10.13 120.60
1.01 31.10
1.26 23.70

O O oo~ O Ut

ek




Example (contd.)

a Let us fit the following curvilinear model to this data:

I/0 Rate = a(MIPS Rate)"™

a Taking a log of both sides we get:
log(I/O Rate) = log(«) + by log(MIPS Rate)

by = log ()



Example (contd.)

Obs. No. T }I,f Para- Std.  Confidence
1 1.293 2.460 meter Mean  Dev. Interval
2 0.736  2.069 bo 1.423 0.119 ( 1.20, 1.64)
3 0.420 1.810 by 0.888 0.135 ( 0.64, 1.14)
4 0916 2.552
5 1.146 2.572 QO Both coeflicients are significant at
g 0.994 2-4‘719 90% confidence level.

1.052 2.175 , , .
3 1.006 2081 Y The regression explains 84% of the
9 0.004 1.493 variation.
10

0.100 1375 g At this confidence level, we can
accept the hypothesis that the
relationship 1s linear since the
confidence 1nterval for b, includes
1.




Example (contd.)
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Normal quantile

3a Errors 1n log I/O rate do seem to be normally distributed.
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Transformations

a Transformation: Some function of the measured response
variable y 1s used. For example,

\/§=50‘|‘51331-l-bzfﬂz-l-'--—i-bk:l:k—l—e

F.J-J

Transformation 1s a subset of the curvilinear regression.

However,

experiment

. : Qesig
the ideas apply to non-regression model as well|

Physical considerations = Transformation

For example, 1f response 1s inter-arrival times y and 1t 1s
known that the number of requests per unit time (1/y) has a
linear relationship to a predictor

If the range of the data covers several orders of magnitude and
the sample size 1s small. That 1s, if ymax/Ymin 1S large.

If the homogeneous variance (homoscedasticity) assumption
of the residuals 1s violated.



Transformations (contd.)

Q scatter plot shows non-homogeneous spread = Residuals are
still functions of the predictors

a Plot the standard deviation of residuals at each value of ¢ as a
function of the meany .

Q If s and the mean g :

s =g(y)
3 Then a transtformation of the form:
w = h(y)

1
h(y) :/g(y)dy

may help solve the problem



Useful transformations

A Log Transformation: Standard deviation s 1s a linear function
of the mean (s =a ¥)

w=Iny
. () r = b= Loy
and, therefore: A Low: Transformanon
1
h(y) = | —dy =dlny
ay

derinthon
Siamdard

&




Useful transformations (contd.)

Logarithmic transformation is useful only if the ratioymax/ O
1S large. s.t. transformation

For a small range the log function is almost linear «” 0% "ot el much

Q Square Root Transformation: For a Poisson distributed

variable: s = /% (bt =ur baw=T
i Square noot rransformation

Variance versus mean
will be a straight line

w=./y helps stabilize v"r:';'"
the variance.

‘Vienn 1



Useful transformations (contd.)

0 Arc Sine Transformation: If y is a proportion or percentage,
sin~? Jy may be helpful.
0 Omega lransformation: This transformation 1s popularly used
when the response y 1s a proportion.

» The transformed values w's are said to be 1n units of deci-
Bells. The term comes from signaling theory where the
ratio of output power to mput power 1s measured in dBs.

» Omega transformation converts fractions between 0 and 1
to values between -oco to +oo.

» This transformation 1s particularly helpful if the fractions
are very small or very large.

» If the fractions are close to 0.5, a transformation may not be
required.




Useful transformations (contd.)

a Power Transformation: y? 1s regressed on the predictor

variables.

» Standard deviation of residuals s, 1s proportional to gi—a



Useful transformations (contd.)

= A short summary

Relationship between Transformation
s and

S X ¥ w = In(y) or w=In(y + ¢)
s o 71/2 w= yl/2

s oc y° w= 3yl =% or w=(y +c)!7¢
s o g w=

s o¢ 1-4° w=In %{j

s o (1 — ) w=ln ( 175

s o< (149) V7 w=sin"' \/y

Shifting: y+c (with some suitable ¢) may be used in place of y.

» Usetul if there are negative or zero values and if the
transformation function is not defined for these values.



Box-cox family of transformations

Q If the value of the exponent a 1n a power transformation 1s not
known, Box-Cox family of transformations can be used:

y*—1
Ww = { agcb—1 3 a ?é U
(Iny)g, a=
Where g 1s the geometric mean of the responses:
9= (y1yz---yn)""

2 The Box-Cox transformation has the property that w has the
same units as the response y for all values of the exponent a.

a All real values of a, positive or negative can be tried.
The transtformation 1s continuous even at zero, since:

oyt —1
Nm gt — nv)g




Box-cox transformations

a Use a that gives the smallest SSE.

2 Use simple values for a. If a=0.52 is found to give the minimum

SSE and the SSE at a=0.5 1s not significantly higher, the latter
value may be preferable.

Q2 100(1-a) confidence interval for a: all the a for which the SSE is <

tQ
[1—a/2;v]
SSEmin (1 -+ > )

Where, SSE,,i1, is the minimum SSE, and v is the number of
degrees of freedom for the errors.

If the confidence interval for a includes a = 1, then the

hypothesis that the relationship 1s linear cannot be rejected
= No need for the transformation.



Case study 15.2: garbage collection

a The garbage collection time for various values of heap sizes.

Garbage (Garbage

Heap Collection Heap Collection
Size Time Size Time
500 594.34 1600 63.64
600 247.42 1800 1.00
800 114.24 2000 1.00
1000 85.64 2200 1.00
1200 49.60 2400 1.00

1400 50.30 2600 1.00




Case study (contd.)

= The analyst hypothesizes that

01

Time)Y/2 = b -

( ) ! Heap Size
N ;

§ 16} /,.f':/
T
%.ﬂ l 0'.': l 10 I L5 I 2.0
1000/ heap alxe)

The points do not appear to be close to the straight line.



Case study (contd.)

= Is exponent on time different than a half?

=> Use Box-Cox transformations with “a” ranging from -0.4 to 0.8

Lo

16,000 —

1.2

= The minimum SSE of 2049 occurs at a = 0.45.




Case study (contd.)

a Since 0.95-quantile of a t variate with 10 degrees of freedom 1s

1.812
2
SSE = 2049 (1+(1'811)2) )

= 2721.8

Q The SSE = 2271 line intersects the curve at a = 0.2465 and
a=0.5726.

a2 90% confidence interval for a 1s (0.2465, 0.5726). Since the
mterval includes 0.5, we cannot reject the hypothesis that the
exponent 1s 0.5.
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Outliers

= Any observation that is atypical of the remaining observations may
be considered an outlier.
= Including the outlier in the analysis may change the conclusions
significantly.
= Excluding the outlier from the analysis may lead to a misleading

conclusion, if the outlier in fact represents a correct observation of the
system behavior.

= A number of statistical tests have been proposed to test if a
particular value is an outlier.

= Most of these tests assume a certain distribution for the observations.

= If the observations do not satisfy the assumed distribution, the results of the
statistical test would be misleading.

= Easiest way to identify outliers is to look at the scatter plot of the
data.



Outliers (contd.)

= Any value significantly away from the remaining observations should
be investigated for possible experimental errors.

= Other experiments in the neighborhood of the outlying observation may
be conducted to verify that the response is typical of the system
behavior in that operating region.

Once the possibility of errors in the experiment has been eliminated,
the analyst may decide to include or exclude the suspected outlier based
on the intuition.

= One alternative is to repeat the analysis with and without the outlier and
state the results separately.

= Another alternative is to divide the operating region into two (or more)
sub-regions and obtain a separate model for each sub-region.
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Common mistakes Iin regression

1. Not verifving that the relationship is linear.

2. Relyving on automated results without visual verification

A

(n]

{bh

* In all these cases,
R* = High

* High R? is necessary
but not sufficient for a
good model.



Common mistakes (contd.)

3. Attaching importance to numerical values of regression
parameters.

CPU time 1n seconds = 0.01 (Number of disk I/O's) + 0.001
(Memory size in kilobytes)
0.001 1s too small #> memory size can be 1gnored

CPU time 1 milliseconds = 10 (Number of disk I/O's) + 1
(Memory size 1n kilobytes)
CPU time 1n seconds = 0.01 (Number of disk I/O's) +
1 (Memory size 1n bytes)

4. Not specifying confidence intervals for the regression
parameters.

5. Not specifving the coefficient of determination.



Common mistakes (contd.)

6. Confusing the coefficient of determination and the coefficient
of correlation
R=Coefficient of correlation, R>= Coefficient of determination
R=0.8, R*=0.64
= Regression explains only 64% ot variation and not 80%.

7. Using highly correlated variables as predictor variables.
Analysts often start a multi-linear regression with as many
predictor variables as possible

=> severe multicollinearity problems.

8. Using regression to predict far beyond the measured range.

Predictions should be specified along with their confidence
intervals

9. Using too many predictor variables.
k predictors = 2k-1 subsets



Common mistakes (contd.)

Subset giving the minimum sSE 1s the best. But, other subsets
that are close may be used instead for practical or engineering
reasons. For example, if the second best has only one variable
compared to five in the best, the second best may the
preferred model.

10. Measuring only a small subset of the complete range of
operation, e.g2., 10 or 20 users on a 100 user system.

|‘ Range of ’l
A operation

I Mceagred
. F Sl
¥ ‘\r“' séﬁmﬂ' li- mnge —}a'
u“‘ I ',
\__‘-‘-- !‘.’
S .

X



Common mistakes (contd.)

11. Assuming that a good predictor variable is also a good
control variable.

» Correlation = Can predict with a high precision
#> Can control response with predictor

» For example, the disk I/O versus CPU time regression
model can be used to predict the number of disk I/O's for a
program given its CPU time.

However, reducing the CPU time by installing a faster CPU
will not reduce the number of disk I/O's.

» w and y both controlled by x
= w and y highly correlated and would be good predictors
for each other.



Common mistakes (contd.)

» The prediction works both ways:

w can be used to predict y and vice versa.
» The control often works only one way:

X controls y but y may not control x.



summary

—

= Multiple Linear Regression
= Categorical Predictors

= Curvilinear Regression

= Transformations

= Outliers

= Common mistakes in regression



Summary of “performance evaluation”

= Common mistakes and how to avoid them
= Selection of techniques and metric
= Workload characterization techniques

= Introduction to experiment design

= 2K factorial design

= One-factor experiments

= General full factorial design with k factors

= Introduction to simulation
= Summarizing measured data

= Comparing systems using sample data
= Regress models: simple linear regression, non-SL regress



Further reading

—

Richard Draves, Jitendra Padhye, Brian Zill, “Comparison of routing metrics for
static multi-hop wireless networks”, ACM SIGCOMM 04

S. Corson, J. Macker, “Mobile Ad hoc Networking (MANET). Routing Protocol
Performance Issues and Evaluation Considerations’, IETF RFC 2501

Hongwer Zhang, Anish Arora, Prasun Sinha, “Link Estimation and Routing in
Sensor Network Backbones: Beacon-based or Data-driven?”, |EEE Transactions
on Mobile Computing, 2009

Dongjin Son, Bhaskar Krishnamachari, John Heidemann, “Experimental Analysis
of Concurrent Packet Transmissions in Low-Power Wireless Networks”, ACM
SenSys'06

Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung Han, Ratul Mahajan, “A General Model
of Wireless Interference”, ACM MOBICOM 07



Exercise

Time to encrypt or decrypt a k-bit record was measured on a
uniprocessor as well as on a multi-processor. The times in
milliseconds are shown below. Using a log transformation and
the method for categorical predictors fit a regression model and
interpret the results.

k Uniprocessor | Multiprocessor
128 93 67
256 478 399
512 3408 2351
1024 25,410 17,022
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