
Formulas and Algorithms for the Length

of a Farey Sequence

Vladimir Sukhoy1 and Alexander Stoytchev1,*

1Department of Electrical and Computer Engineering, Iowa State University, Ames IA, 50011, USA
*alexs@iastate.edu

ABSTRACT

This paper proves several novel formulas for the length of a Farey sequence of order n. The formulas use different trade-offs
between iteration and recurrence and they range from simple to more complex. The paper also describes several iterative
algorithms for computing the length of a Farey sequence based on these formulas. The algorithms are presented from the
slowest to the fastest in order to explain the improvements in computational techniques from one version to another. The last
algorithm in this progression runs in O(n2/3) time and uses only O(

p
n) memory, which makes it the most efficient algorithm for

computing |Fn| described to date. With this algorithm we were able to compute the length of the Farey sequence of order 1018.

1 Introduction

Farey sequences1, 2 are related to the theory of prime numbers and they show up in many different scientific disciplines. Their
fundamental properties, e.g., the mediant property, can be described with basic algebra. At the same time, Farey sequences are
linked to unsolved mathematical mysteries, e.g., the Riemann hypothesis3. These sequences are also tied to the Stern–Brocot
tree, which could be used to find the best rational approximations for irrational numbers4. Recently, the elements of a Farey
sequence have been linked to the singularities5 of the Inverse Chirp Z-Transform (ICZT), which is a generalization6 of the
Inverse Fast Fourier Transform (IFFT).

A Farey sequence of order n, which is denoted by Fn, is a sequence formed by all irreducible fractions p/q between 0 and 1 for
which the denominator q is between 1 and n, i.e., Fn =

�
p/q s.t. q 2 {1, 2, . . . , n}, p 2 {0, 1, 2, . . . , q}, and gcd(p, q) = 1

.

By convention, it is assumed that the elements of the sequence Fn are sorted in increasing order. For example, the first five
Farey sequences are:

F1 =

✓
0

1
,
1

1

◆
,

F2 =

✓
0

1
,
1

2
,
1

1

◆
,

F3 =

✓
0

1
,
1

3
,
1

2
,
2

3
,
1

1

◆
,

F4 =

✓
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

◆
,

F5 =

✓
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

◆
.

If a/b, c/d, and p/q are any three adjacent elements of a Farey sequence, then the middle fraction is equal to the mediant
2, 7 of

its neighbors a/b and p/q, i.e.,

c

d
=

a+ p

b+ q
.

This property has been known to mathematicians for centuries8, 9, but it received a name only after Farey stated it formally
in a paper1 that he published in 1816. Previously, Haros2, 9 had used the mediant property in 1802 to generate the tables of
irreducible fractions between 0 and 1 for which the denominator was less than 100 (see ref. 2, p. 36). Cauchy published a
formal proof of the mediant property10 for all n in 1816.

As the order n of the Farey sequence Fn increases, the length of Fn grows as a quadratic function of n. More specifically,
|Fn| ⇠ 3n2

/⇡
2, where |Fn| denotes the length of Fn [2, p. 268] [7, p. 156] [4, p. 139]. However, no formula for computing the

exact value of |Fn| in O(1) time is known.

The length of Fn can be computed by enumerating its elements. Algorithm S1 in Supplementary Section S1 gives the
pseudo-code for an algorithm11 that uses the mediant property to enumerate all elements of a given Farey sequence. The
algorithm also counts the elements and returns the sequence length. The computational complexity of this approach is O(n2),
which makes it too slow and impractical for computing the value of |Fn| for large n. The fast algorithms described in this paper
do not use enumeration. Their computational complexities are summarized in Supplementary Section S2.

Increasing the value of n only adds new elements to the Farey sequence without removing any of them. That is, Fn�1 is a
subsequence of Fn. To see this, consider the elements of the first five Farey sequences shown below, which are arranged with
extra spacing between them. In this view the identical fractions are stacked vertically. The new elements that are added when
the order is increased by 1 are highlighted in red. The length of each Farey sequence is shown at the end of each row.

F1 =

✓
0

1
,

1

1

◆
,

��F1

�� = 2,

F2 =

✓
0

1
,

1

2
,

1

1

◆
,

��F2

�� = 3,

F3 =

✓
0

1
,

1

3
,

1

2
,

2

3
,

1

1

◆
,

��F3

�� = 5,

F4 =

✓
0

1
,

1

4
,
1

3
,

1

2
,

2

3
,
3

4
,

1

1

◆
,

��F4

�� = 7,

F5 =

✓
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

◆
,

��F5

�� = 11.

Each element of the set Fn \Fn�1 is a fraction k/n that is irreducible and lies between 0 and 1. Thus, the difference between
|Fn| and |Fn�1| is equal to the number of integers between 1 and n that are coprime with n. By definition, this number is equal
to the value of Euler’s totient function '(n). Therefore, an algorithm12 for computing the length of Fn can also be used to
calculate the sums of the values of Euler’s totient function for all integers between 1 and n.

n '(n) |Fn|
1 1 2 = 1 + 1

2 1 3 = 1 + 1 + 1

3 2 5 = 1 + 1 + 1 + 2

4 2 7 = 1 + 1 + 1 + 2 + 2

5 4 11 = 1 + 1 + 1 + 2 + 2 + 4

Figure 1. Visualization of the link between Euler’s totient function '(n) and the length of the Farey sequence Fn.

Figure 1 lists the values of Euler’s totients '(1), '(2), '(3), '(4), '(5) and expresses the values of |F1|, |F2|, |F3|, |F4|,
and |F5| in terms of these totients. This example also illustrates the following well-known formula for computing |Fn| that is
proven in Supplementary Section S3:

|Fn| = 1 +
nX

k=1

'(k). (1)

This equation implies that the value of '(n) can be added to |Fn�1| to obtain |Fn|, i.e., |Fn| = |Fn+1|+ '(n).
The value of |Fn| can also be expressed using the following recursive formula13:

|Fn| =
(n+ 3)n

2
�

nX

k=2

��Fbn/kc
�� . (2)

Supplementary Sections S4 and S5 prove this formula using basic algebra, mathematical induction, and a property of Euler’s
totient function that was proven by Gauss14. Algorithm S11 in Supplementary Section S9 implements formula (2) using
recursion and optimizes the repeated recursive calls using memoization

15. That algorithm runs in O(n log n) time, which is still
too slow for large values of n.

The algorithms described in this paper build upon these two formulas, extend them, and combine them in different ways.
The next section summarizes the key mathematical insights that were used to derive the formulas. The rest of the paper
describes the algorithms, proves their properties, and evaluates their run-time performance.

2/19

2 Overview and Formulas

This paper describes five different algorithms for computing the length of the Farey sequence Fn, where n is a parameter that
specifies the order. The algorithms will be denoted with the letters A, B, C, D, and E. These letters will also be used as suffixes
to form the names of the algorithms, e.g., FAREYLENGTHA or FAREYLENGTHB. This section briefly summarizes the formulas
for the length of Fn on which the algorithms are based.

Algorithm A is based on the following well-known formula:

|Fn| = 1 +
nX

k=1

'(k), (3)

which was illustrated with an example in the introduction. The algorithm uses a modified linear sieve that returns a list of prime
numbers and an array with the smallest prime factor for each integer. From these values, another function computes Euler’s
totients, which are then summed up to compute the length of Fn. This algorithm runs in O(n) time and uses O(n) memory.

The formula for algorithm B is derived from (3) by splitting the sum into three separate sums:

|Fn| = 1 +

b
p
ncX

k=1

'(k) +
X

k2S

'(k) +
X

k2S

'(k), (4)

where S is the set of b
p
nc-smooth integers in the interval

⇥
b
p
n+1c, n

⇤
and S is the set of integers that are not b

p
nc-smooth

in the same interval. Two helper algorithms are introduced to process the smooth and the non-smooth integers, which are
formally defined in one of the next sections. The overall algorithm still runs in O(n) time, but uses only O(n1/2+o(1)) memory.

Algorithm C is based on the following novel formula for the length of Fn:

|Fn| =
(n+ 3)n

2
�

u(n)X

k=2

��Fbn/kc
���

b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
· |Fk|, (5)

where u(n) =
⌅
n/
�
b
p
nc+ 1

�⇧
. The formula works for all n > 1. Supplementary Section S6 proves this formula by splitting

the sum in formula (2) at u(n) and then expressing the second sum in a different way. This leads to an algorithm that runs in
O(n3/4) time and uses O(

p
n) memory.

Algorithm D can be derived from formula (5) by splitting the first sum at v(n) =
⌅
n/
�
b 3p

n2c+1
�⇧

as follows:

u(n)X

k=2

��Fbn/kc
�� =

v(n)X

k=2

��Fbn/kc
�� +

u(n)X

k=v(n)+1

��Fbn/kc
��. (6)

Reversing the direction of the last sum and changing the index variable from k to i we get:

u(n)X

k=2

��Fbn/kc
�� =

v(n)X

k=2

��Fbn/kc
�� +

w(n)X

i=0

��Fb n
u(n)�ic

��, (7)

where w(n) = u(n) � v(n) � 1. To continue the derivation, let bi be the order of the Farey sequence in the last sum in
formula (7), i.e., bi =

⌅
n

u(n)�i

⇧
. Then,

w(n)X

i=0

��Fb n
u(n)�ic

�� =
w(n)X

i=0

��Fbi

��. (8)

This sum can be expressed using Euler’s totients for all integers in the intervals [a0, b0], [a1, b1], . . . , [aw(n), bw(n)], where
a0 = b

p
nc + 1, b0 =

⌅
n

u(n)

⇧
, and ai = bi�1 + 1 for i 2 {1, 2, . . . , w(n)}. To derive this result, the value of

��Fbi

�� can be

3/19

expressed as the value of
��Fbi�1

�� plus the sum of Euler’s totients for all integers in the interval [ai, bi]. That is,
��Fbi

�� =
��Fb

p
nc
��+ '(b

p
nc+ 1| {z }
a0

) + '(b
p
nc+ 2) + · · ·+ '(bi � 1) + '(bi)

=
��Fb

p
nc
��+

b0X

m=a0

'(m) +
b1X

m=a1

'(m) + · · ·+
bi�1X

m=ai�1

'(m)

| {z }��Fbi�1

��

+
biX

m=ai

'(m)

=
��Fbi�1

��+
biX

m=ai

'(m). (9)

Therefore, formula (8) can be expressed as follows:

w(n)X

i=0

��Fb n
u(n)�ic

�� =
w(n)X

i=0

��Fbi�1

��+
biX

m=ai

'(m)

!
. (10)

Plugging the right-hand side of the last equation into formula (6) and that result into (5) leads to the following formula:

|Fn| =
(n+ 3)n

2
�

v(n)X

k=2

��Fbn/kc
���

w(n)X

i=0

✓��Fbi�1

��+
biX

m=ai

'(m)

◆

| {z }��Fbi

��

�
b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
·

1 +

kX

m=1

'(m)

!

| {z }
|Fk|

,

(11)

where w(n) = u(n)�v(n)�1, u(n) =
⌅
n/
�
b
p
nc+1

�⇧
, and v(n) =

⌅
n/
�
b 3p

n2c+1
�⇧

. Also, a0 = b
p
nc+1 and b0 =

⌅
n

u(n)

⇧
.

Furthermore, ai = bi�1 + 1 and bi =
⌅

n
u(n)�i

⇧
for i 2 {1, 2, . . . , w(n)}. The last term in (11) expands the value of |Fk| as

a sum of totients, which suggests how it can be computed iteratively. Because the index k in the last sum in (11) goes up to
b
p
nc, the last value of |Fk| is equal to |Fb

p
nc|. If the last sum is processed first, then the computed value of |Fb

p
nc| can be

used to bootstrap the calculation of |Fbi | in the middle sum, e.g., see formula (9). These insights lead to algorithm D, which
runs in O(n2/3) time and uses O(n2/3) memory.

Algorithm E was inspired by a modified version of formula (11) that is shown below:

|Fn| =
(n+ 3)n

2
�

v(n)X

k=2

��Fbn/kc
���

w(n)X

i=0

✓��Fbi�1

��+
X

m2Si

'(m) +
X

m2Si

'(m)

| {z }
B[i]

◆
�

b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
·

1 +

kX

m=1

'(m)

!

| {z }
|Fk|

.

(12)

In other words, this modification splits one of the sums in (11) as follows:

biX

m=ai

'(m) =
X

m2Si

'(m) +
X

m2Si

'(m)

| {z }
B[i]

, (13)

where Si is the set of b
p
nc-smooth integers in the interval Ii = [ai, bi] and Si is the set of integers that are not b

p
nc-smooth

in the same interval. Thus, algorithm E uses a similar approach to summing the totients as in formula (4) that is used by
algorithm B. In this case, however, the smooth and the non-smooth numbers are processed separately but the values of
their corresponding totients are accumulated in the array B. This change is sufficient to reduce the memory complexity
from O(n2/3) to O(

p
n). The time complexity remains unchanged, i.e., O(n2/3).

4/19

3 Related Work

A prime sieve is an efficient algorithm for generating all prime numbers in some interval16. The sieve of Eratosthenes is
probably the oldest and the most well-known prime sieve algorithm4, 16, 17. It can generate all prime numbers in the interval
[1, n] in O(n log log n) time. Our algorithms, however, do not use the sieve of Eratosthenes. Instead, they use the linear sieve18

or the sieve of Atkin19. These two sieves do not have the factor log log n in their time complexity, i.e., they run in O(n) time.
Algorithms A, B, D, and E use the linear sieve algorithm18, making it possible to compute Euler’s totients for all integers

between 1 and n in O(n) time. In addition to the linear sieve, Algorithms B and E also use the sieve of Atkin19 to reduce the
space complexity. Algorithm C does not use a sieve.

The sieve of Atkin generates all prime numbers between 1 and N in O(N) time19. It uses O(N1/2+o(1)) memory19.
Algorithm E uses this sieve with N = � 2 O(n2/3) to enumerate numbers that are not (↵� 1)-smooth in the interval [↵,�].
This sub-routine and other optimizations reduce its space complexity down to O(

p
n). This makes it practical to compute |Fn|

for very large values of n by using the computer’s memory more efficiently. Algorithm E enumerates the smooth numbers
in [↵,�] separately from the non-smooth numbers, which are complementary to them. Smooth numbers20–22 are often used in
computational number theory for primality testing, integer factorization, and computing discrete logarithms.

Computing the length of the Farey sequence is related to several other problems. For example, by subtracting 1 from |Fn|
one can obtain12 the sum of all Euler’s totients between 1 and n. Some authors have described approaches for attacking the
order statistics problem23, 24 and the rank problem25 on Farey sequences. Their work is related to methods for summing the
values of the Möbius function26, which is equivalent to computing the Mertens function. The time complexity class of these
methods is O(n2/3(log log n)1/3). More recently, the best time complexity for computing the Mertens function was estimated27

at O(n2/3+"), i.e., slightly worse than O(n2/3). The time complexity of our most efficient algorithm for computing |Fn| is
exactly O(n2/3), i.e., without any additional small factors that depend on n. Its space complexity is O(

p
n). All estimates use

the same computational model, which assumes that any arithmetic or storage operation on any integer runs in O(1) time and
storing any integer requires O(1) memory.

In digital signal processing, the Inverse Chirp Z-Transform (ICZT) is a generalization6 of the Inverse Fast Fourier Transform
(IFFT). This transform is parametrized by the complex numbers A and W . They define a logarithmic spiral contour formed
by the sampling points AW

�k where k 2 {0, 1, 2, . . . , n� 1} and n is the size of the transform. For the special case when
the magnitudes of both A and W are equal to 1, the contour is restricted to lie on the unit circle in the complex plane. In this
case, the ICZT has a singularity5 if and only if the polar angle of W can be expressed as 2⇡p/q where p/q is an element of Fn�1.
Consequently, the numerical error profile for the ICZT of size n is determined5 by the elements of Fn�1. Therefore, the number
of possible values of the parameter W for which the transform is singular is equal to the length of Fn�1.

4 Algorithm A

Algorithm 1 shows the pseudo-code for the first algorithm that computes |Fn| without enumerating the sequence elements. On
line 2 the algorithm uses a linear sieve to compute a list P of all prime numbers in the interval [1, n]. The linear sieve also
returns an array Lp of size n such that its k-th element Lp[k] is equal to the smallest prime factor of k. On line 3 the elements
of Lp are used to compute an array ' that contains the values of Euler’s totient function '(1),'(2), . . . ,'(n). The rest of the
code (i.e., lines 4–7) uses formula (3) to compute the value of |Fn|, i.e., it sums up the n totients and adds 1 to the sum s.

Algorithm 1. Compute the length of the Farey sequence Fn. Runs in O(n) time and uses O(n) memory.

1: function FAREYLENGTHA(n)
2: (P,Lp) LINEARSIEVE(n); // See Algorithm S2
3: ' COMPUTETOTIENTS(n, Lp); // See Algorithm S3
4: s 1;
5: for k 1 to n do
6: s s+ '[k];
7: end for
8: return s;
9: end function

Supplementary Section S3 gives the pseudo-code for the linear sieve algorithm and for the function COMPUTETOTIENTS.
The appendix also proves a property of Euler’s totient function that makes it possible to compute '(1),'(2), . . . ,'(n) from
the array Lp in O(n) time. Thus, the computational complexity of Algorithm 1 is O(n). It uses O(n) memory.

This algorithm is fairly easy to describe, but it is not very fast. It also uses a lot of memory. It is important to understand
how it works, however, as some of the more efficient algorithms use the same approach to solve a part of the problem.

5/19

5 Algorithm B

This section describes another algorithm for computing |Fn| that also runs in O(n) time, but uses only slightly more than
O(
p
n) memory. The main idea is to split all integers in the interval [b

p
nc+ 1, n] into two disjoint sets, S and S , such that

their elements and their corresponding Euler’s totients can be computed using O(
p
n) memory instead of O(n). The set S is

the set of b
p
nc-smooth numbers and the set S is the set of numbers that are not b

p
nc-smooth.

Both smooth and non-smooth numbers are integers. They are defined as follows:
• A positive integer N is B-smooth if its largest prime factor p does not exceed B, i.e., p B.
• A positive integer N is not B-smooth if its largest prime factor p is strictly greater than B, i.e., p > B.

For example, the number 100 is 5-smooth because 100 = 52 · 22. It is also 6-smooth, 7-smooth, 8-smooth, etc. But it is not
k-smooth for k 2 {2, 3, 4}. To give another example, the number 84 is 7-smooth because 84 = 7 · 3 · 22. It is also 8-smooth,
9-smooth, etc. But it is not 5-smooth because its largest prime factor is 7, which is greater than 5. In fact, it is not k-smooth for
k 2 {2, 3, 4, 5, 6}.

Algorithm 2 starts by computing r = b
p
nc exactly using the method28 described in Supplementary Section S7. Next,

it implements the summation of Euler’s totients in a way that avoids allocating an array of length n to store them. In
fact, the algorithm uses only slightly more than O(

p
n) memory. This is achieved by running the linear sieve only for

k 2 {1, 2, . . . , b
p
nc}. Starting from b

p
n+ 1c, the sum in formula (3) is split into three separate sums as follows:

|Fn| = 1 +

b
p
ncX

k=1

'(k) +
X

k2S

'(k) +
X

k2S

'(k), (14)

where S is the set of b
p
nc-smooth numbers in the interval

⇥
b
p
n+1c, n

⇤
and S is the set of numbers that are not b

p
nc-smooth

in the same interval. A similar technique is used in Algorithm 8 to reduce its space complexity from O(n2/3) to O(
p
n).

Algorithm 2. Compute the length of the Farey sequence Fn. Runs in O(n) time and uses O(n1/2+o(1)) memory.

1: function FAREYLENGTHB(n)
2: r ISQRT(n); // compute b

p
nc exactly using Algorithm S4

3: (P,Lp) LINEARSIEVE(r);
4: ' COMPUTETOTIENTS(r, Lp);
5: s 1;
6: for k 1 to r do
7: s s+ '[k];
8: end for
9: function VISITOR(m,�)

10: // The variable s is from the outer scope.
11: s s+ �;
12: end function
13: PROCESSSMOOTHNUMBERS(P, r+1, n, VISITOR); // r-smooth numbers in [r+1, n]

14: PROCESSNONSMOOTHNUMBERS(', r+1, n, VISITOR); // not r-smooth numbers in [r+1, n]
15: return s;
16: end function

The smooth numbers are processed with Algorithm 3. It enumerates the (↵ � 1)-smooth numbers in the interval [↵,�].
More specifically, the algorithm implements a depth-first traversal of the search space formed by all integers in this interval that
have prime factorizations that include only prime factors from the array P , which contains the prime numbers in the interval
[1,↵ � 1]. The algorithm calls the visitor function for each (↵ � 1)-smooth number m in the interval [↵,�] and its Euler’s
totient, which is computed using formula (22) that is described in Supplementary Section S3. Algorithm 3 runs in O(�) time
and uses O(log �) memory. It traverses no more than 2� values of m and performs O(1) operations for each of them. The
space complexity of this algorithm is determined by the maximum depth of the stack, which cannot exceed blog2 �c because 2
is the smallest possible prime factor in the list P .

The non-smooth numbers are handled by Algorithm 4. It traverses the numbers that are not (↵� 1)-smooth in the interval
[↵,�] and calls the visitor function for each non-smooth number and for all its integer multiples that fit in the interval. The
computational complexity of this algorithm is determined by the sieve of Atkin, which runs in O(�) time and uses O(�1/2+o(1))
memory19. In other words, Algorithm 4 performs O(1) operations for each non-smooth number that it visits, which doesn’t
change its time complexity class. Thus, the algorithm runs in O(�) time and uses O(�1/2+o(1)) memory.

6/19

Algorithm 3. Use an iterative depth-first search (DFS) to call a visitor function for each (↵ � 1)-smooth number m in the
interval [↵,�] and its Euler’s totient �. Runs in O(�) time and uses O(log �) memory.

1: function PROCESSSMOOTHNUMBERS(P,↵,�, visitor)
2: // The argument P is a list that should consist of prime numbers in the interval [1,↵� 1].
3: S EMPTYSTACK();
4: PUSH(S, (1, 1, 0));
5: while NOTEMPTY(S) do
6: (m, �, j) POP(S);
7: if j < LENGTH(P) then
8: PUSH(S, (m, �, j+1)); // advance to the next prime number in P

9: else
10: continue; // no prime numbers left in P

11: end if
12: p P [j];
13: if m mod p = 0 then
14: � � · p;
15: else
16: � � · (p� 1);
17: end if
18: m m · p;
19: if m > � then
20: POP(S);
21: end if
22: if ↵ m � then
23: visitor(m,�);
24: end if
25: if m < � then
26: PUSH(S, (m, �, j));
27: end if
28: end while
29: end function

Algorithm 4. Use the sieve of Atkin to call a visitor function for each number that is not (↵� 1)-smooth in the interval [↵,�]
and its Euler’s totient �. Runs in O(�) time and uses O(�1/2+o(1)) memory.

1: function PROCESSNONSMOOTHNUMBERS(',↵,�, visitor)
2: // The argument ' is an array that should contain Euler’s totients for the integers in the interval [1, b�/↵c].
3: for p in SIEVEOFATKIN(↵, �) do
4: m p;
5: j 1;
6: while m � do
7: if j mod p = 0 then
8: � p · '[j];
9: else

10: � (p� 1) · '[j];
11: end if
12: visitor(m, �);
13: j j + 1;
14: m m+ p;
15: end while
16: end for

end function

7/19

1

2

4

8

16

12

6

18

3

9

1

1

2

4

8

4

2

6

2

6

(a) 4-smooth numbers. (b) Euler’s totients.

Figure 2. Traversal of the 4-smooth numbers in the interval [5, 20] by Algorithm 3 when n = 20. The tree of b
p
nc-smooth

numbers is shown in (a). Their corresponding totients are shown in (b). The numbers for which the visitor function is called are
circled. The list of prime numbers in this case is P = (2, 3). Thus, each left branch in (a) multiplies the parent node by 2 and
each right branch multiplies it by 3. If the product exceeds 20, then the corresponding branch or leaf is excluded from the tree.

5 7 11 13 17 19

10 14

15

20

4 6 10 12 16 18

4 6

8

8

(a) Not 4-smooth numbers. (b) Euler’s totients.

Figure 3. Enumeration of not 4-smooth numbers in the interval [5, 20] by Algorithm 4 when n = 20. The tree of non-smooth
numbers is shown in (a), their corresponding totients are shown in (b). The visitor function is called for all circled numbers.

To give a concrete example, let n = 20. Figure 2a shows the search tree for the b
p
nc-smooth numbers in the interval [5, 20].

Algorithm 3 calls the visitor function for the pairs (k,'(k)) where k is 4-smooth (i.e., b
p
20c = 4) and '(k) is its totient. The

totients are shown in Figure 2b. The algorithm calls the visitor function only for k � b
p
20 + 1c = 5, i.e., only for the circled

integers and totients shown in the figure. The tree in this case is binary because the list P = (2, 3) contains only two prime
numbers. Thus, all left branches multiply the parent node by 2 and all right branches multiply it by 3. The order of enumeration
is: 1, 2, 4, 8, 16, 12, 6, 18, 3, 9 (i.e., pre-order traversal).

Figure 3 visualizes the enumeration of the numbers that are not b
p
nc-smooth for n = 20. Algorithm 4 calls the sieve of

Atkin to generate the prime numbers in the interval [5, 20], i.e., 5, 7, 11, 13, 17, 19. This is done one-at-a-time, i.e., without
storing the list of primes in memory. The algorithm also calls the visitor function for each pair (k,'(k)), where k is each prime
number or its integer multiples that fit in the interval. The enumeration order here is: 5, 10, 15, 20, 7, 14, 11, 13, 17, and 19.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
'(k) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

Table 1. Values of Euler’s totient function '(k) for all integers k between 1 and 20.

Table 1 shows the values of Euler’s totient function '(k) for each k between 1 and 20. The sum of these totients is equal to
128. Therefore, |F20| = 1 + 128 = 129. To compute this result, Algorithm 2 first adds 1 + '(1) + '(2) + '(3) + '(4) = 7.
Then, it calls Algorithm 3, which computes the sum of all circled numbers in Figure 2b (i.e., 4 + 8 + 4 + 2 + 6 + 6 = 30) and
adds it to 7. Finally, it calls Algorithm 4, which computes the circled numbers in Figure 3b and adds their sum (i.e., 92) to the
previous result. Thus, the return value for |F20| is 7 + 30 + 92 = 129.

8/19

6 Algorithm C

This section describes another algorithm for computing |Fn|. Unlike algorithms A and B, it does not sum Euler’s totients.
Instead, it uses formula (5), which expresses |Fn| in terms of values of |Fk| for k < n. The algorithm uses this formula multiple
times and stores the computed values for |Fk| in a lookup table, which is described in Supplementary Section S8.

Algorithm 5 gives the pseudo-code for algorithm C. First, the code sets the variables r and u to the upper limits of the
two summations in formula (5), which are b

p
nc and u(n), respectively. Next, it creates an empty lookup table and initializes

its first entry, which corresponds to |F1| = 2. Then, the two for-loops fill the required entries in the lookup table in an order
that makes it possible to eventually compute |Fn|. The first for-loop computes |F2|, |F3|, |F4|, . . . , |Fb

p
nc| in that order. The

second for-loop computes |Fbn/u(n)c|, |Fbn/(u(n)�1)c|, |Fbn/(u(n)�2)c|, . . . , |Fbn/2c|, |Fbn/1c|. The value of |Fn| is computed
in the last iteration when the value of the variable j is equal to 1.

Each iteration through line 7 or line 10 corresponds to an instance of formula (5). A helper function implements this
computation. Its pseudo-code is listed in Algorithm 6. It has two for-loops that correspond to the two summations in formula (5).
Each call to the helper function stores the computed value of |Fm| in the lookup table so that it is available later on.

Supplementary Section S10 proves that the order in which the algorithm fills the lookup table entries is correct. It shows
that computing each subsequent entry requires accessing only those lookup table elements that have already been set in
previous iterations. The appendix also proves that Algorithm 5 runs in O(n3/4) time and uses O(

p
n) memory. Supplementary

Section S11 gives a recursive version of this algorithm.

Algorithm 5. Compute the length of the Farey sequence Fn. Runs in O(n3/4) time uses O(
p
n) memory.

1: function FAREYLENGTHC(n)
2: r ISQRT(n); // Compute b

p
nc exactly using Algorithm S4

3: u
⌅

n
r+1

⇧
;

4: F LOOKUPTABLE(n, r + 1);
5: F [1] 2;
6: for m 2 to r do
7: UPDATELOOKUPTABLE(F,m);
8: end for
9: for j u down to 1 do

10: UPDATELOOKUPTABLE(F,
⌅
n/j
⇧
);

11: end for
12: return F [n];
13: end function

Algorithm 6. Helper function used by multiple algorithms. Runs in O(
p
m) time.

1: function UPDATELOOKUPTABLE(F,m)
2: ASSERT(m > 1);
3: r ISQRT(m);
4: u

⌅
m
r+1

⇧
;

5: s 0;
6: for k 2 to u do
7: q

⌅
m/k

⇧
;

8: ASSERT(q in F);
9: s s+ F [q];

10: end for
11: for k 1 to r do
12: ASSERT(k in F);
13: s s+

�⌅
m
k

⇧
�
⌅

m
k+1

⇧�
· F [k];

14: end for
15: F [m] (m+ 3)m

2
� s;

16: end function

9/19

Figure 4 visualizes the computation performed by algorithm C (i.e., Algorithm 5) for n = 6. This process uses formula (5)
three times. Each tree shown in this figure corresponds to one call to the helper function. The root node is the term |Fm| that the
helper function stores in the lookup table. The three branches show the terms in formula (5) that the function adds to compute
the value of |Fm|. The first for-loop in algorithm C computes |F2| and stores its value in the lookup table. Figure 4a visualizes
the corresponding instance of formula (5) in which the middle branch is empty. The second for-loop computes the values of
|F3| and |F6|. The corresponding trees are shown in Figure 4b and 4c, respectively. Note that there is no tree for |F1| because
the algorithm stores its value in the lookup table during initialization, before the first for-loop. Also, note that the tree for |F6|
uses the previously computed values for |F2| and |F3|.

Supplementary Section S10 proves that for each m > 1, every term |Fm| that appears in a branch of some tree also appears
as a root node for one of the preceding trees. In other words, the order in which the algorithm fills the lookup table is correct.

|F2|

(2 + 3)2

2
�
✓�

2

1

⌫
�

�
2

2

⌫◆
|F1|

|F3|

(3 + 3)3

2
�
✓�

3

1

⌫
�

�
3

2

⌫◆
|F1|

|F6|

(6 + 3)6

2
� |F3| �

✓�
6

1

⌫
�

�
6

2

⌫◆
|F1|

�
✓�

6

2

⌫
�

�
6

3

⌫◆
|F2|

(a) |F2| = 3. (b) |F3| = 5. (c) |F6| = 13.

Figure 4. Visualizations of the three instances of formula (5) in the execution of algorithm C when it is called with n = 6. In
this case, the first for-loop of the algorithm invokes the formula to compute |F2| as shown in (a). The second for-loop computes
|F3| and |F6|. The trees for these two terms are shown in (b) and (c), respectively. The result is |F6| = 13.

7 Algorithm D

This section describes the fourth algorithm for computing |Fn|. Algorithm D can be viewed as an optimized version of
algorithm C that runs faster, i.e., O(n2/3) instead of O(n3/4) time. This run-time improvement, however, is achieved at the
expense of using more memory than algorithm C, i.e., O(n2/3) instead of O(

p
n) memory. The pseudo-code is given in

Algorithm 7.
The first for-loop in algorithm C computes the values of |F1|, |F2|, . . . , |Fb

p
nc| using the helper function, which implements

formula (5). This process requires O(n3/4) time. Because the orders of these Farey sequences form a contiguous range of
integers, however, we can compute their lengths a bit faster. That is, they can be computed in O(

p
n) time by adding Euler’s

totients '(1),'(2), . . . ,'(b
p
nc). These totients, in turn, can be generated in O(

p
n) time using Algorithms S2 and S3.

Thus, the computation performed by the first for-loop in algorithm C can be implemented so that it runs in O(
p
n) instead

of O(n3/4) time. This optimization alone won’t affect the overall computational complexity because the second for-loop would
still run in O(n3/4) time. It cannot be optimized in the same way as the first for-loop because the orders of the Farey sequences
Fbn/u(n)c, Fbn/(u(n)�1)c, . . . , Fbn/2c, Fn do not form a contiguous range of integers.

In addition to the optimization described above, it is also possible to change the split point between the two stages of
computation so that the first stage computes more than b

p
nc entries of the lookup table. That is, instead of running the

sieve-based approach up to b
p
nc, we can let it run for some number of additional iterations beyond that. Correspondingly,

the starting value of the loop variable j in the second for-loop can be adjusted to be smaller than u(n) =
⌅
n/(b
p
nc + 1)

⇧
.

Supplementary Section S12 shows that the optimal running time is achieved when the first stage runs up to bn2/3c and when
the last for-loop starts from v(n) =

⌅
n/(bn2/3c+ 1)

⇧
instead of u(n).

Algorithm D is the result of making these changes to algorithm C. The loop on lines 10–14 computes |F1|, |F2|, . . . , |Fb
p
nc|

by using the linear sieve to generate an array of totients and then summing them similarly to what algorithm A does. The
for-loop on lines 15–23 implements formula (10) to compute

��Fb n
u(n)c

��,
��Fb n

u(n)�1c
��, . . . ,

��Fb n
u(n)�w(n)c

�� by adding the totients

from the array '. The last value is equivalent to
��Fb n

v(n)+1c
�� because w(n) = u(n)� v(n)� 1. The last for-loop (i.e., lines

24–26) computes
��Fb n

v(n)c
��,
��Fb n

v(n)�1c
��, . . . ,

��Fbn
2 c
��,
��Fn

�� using formula (5) that is implemented by the helper function.
Supplementary Appendix S13 gives an alternative, shorter version of this algorithm in which the second for-loop is removed

(i.e., lines 15–23). In that version, the first for-loop runs up to m = c, instead of m = r. This fills more entries in the lookup
table than necessary for computing |Fn|, but the space complexity remains in O(n2/3). The time complexity also remains
in O(n2/3). Algorithm 7 was selected for presentation in the main paper because it is easier to map it to the formulas and
because in this form it is easier to understand the optimization performed by algorithm E, which is discussed next.

10/19

Algorithm 7. Compute the length of the Farey sequence Fn. Runs in O(n2/3) time and uses O(n2/3) memory.

1: function FAREYLENGTHD(n)
2: r ISQRT(n); // Compute b

p
nc exactly using Algorithm S4

3: c ICBRT(n2); // Compute b 3
p
n2c exactly using Algorithm S5

4: u
⌅

n
r+1

⇧
;

5: v
⌅

n
c+1

⇧
;

6: w u� v � 1;
7: F LOOKUPTABLE(n, r + 1);
8: (P,Lp) LINEARSIEVE(c);
9: ' COMPUTETOTIENTS(c, Lp);

10: s 1;
11: for m 1 to r do
12: s s+ '[m];
13: F [m] s;
14: end for
15: a r + 1;
16: for i 0 to w do
17: b

⌅
n

u�i

⇧
;

18: for m a to b do
19: s s+ '[m];
20: end for
21: F [b] s;
22: a b+ 1;
23: end for
24: for j v down to 1 do
25: UPDATELOOKUPTABLE(F,

⌅
n/j
⇧
); // see Algorithm 6

26: end for
27: return F [n];
28: end function

8 Algorithm E

This section describes algorithm E, which computes the length of a Farey sequence of order n. Its pseudo-code is shown in
Algorithm 8. Its time complexity is O(n2/3), which is the same as that of algorithm D. However, algorithm E uses only O(

p
n)

memory. This improvement makes it the most efficient algorithm for computing |Fn| described in this paper.
Algorithm E can be viewed as a modified version of algorithm D. It changes how the entries of the lookup table are

computed for indices that fall in the interval [↵,�], where ↵ = b
p
nc+ 1 and � = bn/(v(n) + 1)c. The process of computing

all other entries of the lookup table is similar for both algorithms. That is, both algorithms use the linear sieve to compute the
totients '(1),'(2), . . . ,'(b

p
nc) and then add them to compute |F1|, |F2|, . . . , |Fb

p
nc|. Also, both algorithms use the helper

function to compute the entries of the lookup table for indices that fall in the interval [� + 1, n], including n.
For indices in the interval [↵,�], algorithm D uses the linear sieve. Because the value of � is in O(n2/3), its memory

complexity is O(n2/3). In contrast, algorithm E uses the linear sieve only in the interval [1,↵� 1] and ↵ = b
p
nc is in O(

p
n).

For each integer m in [↵,�], algorithm E calls the visitor function with arguments m and '(m). More specifically, Algorithm 3
is used to process all b

p
nc-smooth numbers in that interval and Algorithm 4 is called to process all numbers that are not

b
p
nc-smooth in the same interval. Algorithms 3 and 4 use only O(

p
n) memory because � is in O(n2/3).

The visitor function determines the index i of the corresponding interval Ii = [ai, bi] in formula (13) where m falls and
then adds '(m) to the array element B[i]. After processing all integers in [↵,�], the element B[i] becomes equal to the
sum of Euler’s totients for all integers in Ii. Then, the algorithm computes the values of |Fbi | by adding the elements of the
array B to

��Fb
p
nc
��. The length of the array B is equal to w(n) + 1, which is in O(

p
n). This reduces the amount of memory

required to process all integers in the interval [↵,�]. Therefore, the space complexity of algorithm E is O(
p
n). Supplementary

Section S14 gives a formal proof for its time and space complexity.

11/19

Algorithm 8. Compute the length of the Farey sequence Fn. Runs in O(n2/3) time and uses O(
p
n) memory.

1: function FAREYLENGTHE(n)
2: r ISQRT(n); // Compute b

p
nc using Algorithm S4

3: c ICBRT(n2); // Compute
⌅

3
p
n2
⇧

using Algorithm S5
4: u bn/(r + 1)c;
5: v bn/(c+ 1)c;
6: w u� v � 1;
7: F LOOKUPTABLE(n, r + 1);
8: (P,Lp) LINEARSIEVE(r);
9: ' COMPUTETOTIENTS(r, Lp);

10: s 1;
11: for m 1 to r do
12: s s+ '[m];
13: F [m] s;
14: end for
15: ↵ r + 1;
16: � bn/(v + 1)c;
17: if � � ↵ then
18: B ZEROARRAY(w + 1);
19: function VISITOR(m, �)
20: // The variables B, n, and u are from the outer scope.
21: i u� bn/mc;
22: B[i] B[i] + �;
23: end function
24: PROCESSSMOOTHNUMBERS(P, ↵, �, VISITOR); // r-smooth numbers in [↵,�].
25: PROCESSNONSMOOTHNUMBERS(', ↵, �, VISITOR); // not r-smooth numbers in [↵,�]

26: // Accumulate the computed partial sums into F .
27: s F [r];
28: for i 0 to w do
29: s s+B[i];
30: b bn/(u� i)c;
31: F [b] s;
32: end for
33: end if
34: for j v down to 1 do
35: UPDATELOOKUPTABLE(F,

⌅
n/j
⇧
); // see Algorithm 6

36: end for
37: return F [n];
38: end function

12/19

1

753

21159

2

14106

18

4

20128

2416

1

642

1286

1

642

6

2

844

88

(a) 10-smooth numbers. (b) Euler’s totients.

Figure 5. Enumeration of 10-smooth numbers and their Euler’s totients in the interval [11, 24].

11 13 17 19 23

22

10 12 16 18 22

10

(a) Not 10-smooth numbers. (b) Euler’s totients.

Figure 6. Enumeration of numbers that are not 10-smooth and their Euler’s totients in the interval [11, 24].

To give a concrete example, let’s look at how algorithm E computes |Fn| for n = 120. In this case, b
p
nc = b

p
120c = 10.

First, on lines 8–9 the algorithm uses the linear sieve to compute the values of '(1),'(2), . . . ,'(b
p
nc). Supplementary

Section S3 describes this process and gives the pseudo-code for the two algorithms that implement it. Second, the loop on lines
10–14 adds these totients to compute the values of |F1|, |F2|, . . . , |F10|. Essentially, this is an implementation of formula (1).

Next, on line 24, the algorithm processes the smooth numbers by invoking Algorithm 3. It calls a visitor function for each
10-smooth number in the interval [↵,�], which in this case is equal to [11, 24]. Figure 5 visualizes this process using two trees.
The circled nodes in Figure 5a show the 10-smooth numbers that the algorithm visits; the circled nodes in Figure 5b show
their Euler’s totients. The nodes that are not circled correspond to the 10-smooth numbers that are less than 11 and for which
the visitor function is not called in Algorithm 3. The Euler’s totients shown in Figure 5b are computed using formula (22).
The algorithm visits the numbers in lexicographic order with respect to their prime factorizations, i.e., 2 · 2 · 2 · 2 = 16,
2 · 2 · 2 · 3 = 24, 2 · 2 · 3 = 12, 2 · 2 · 5 = 20, 2 · 3 · 3 = 18, 2 · 7 = 14, 3 · 5 = 15, and 3 · 7 = 21.

On line 25, the algorithm processes the non-smooth numbers by calling Algorithm 4, which visits the numbers that are
not 10-smooth in the interval [11, 24] and their Euler’s totients. Figure 6 visualizes this process. Algorithm 4 uses the sieve of
Atkin to generate the prime numbers in this interval, i.e., 11, 13, 17, and 23. For each of them the algorithm iterates over their
integer multiples that fit in the interval. In this example, this results in visiting 11 · 2 = 22 after 11, but before 13. Figure 6b
shows the totients for each of the non-smooth numbers in Figure 6a. Their values are computed using formula (22).

The visitor function adds each circled totient from Figures 5b and 6b to the corresponding element of the array B. After
visiting all integers in [11, 24], the elements of B become equal to the sums of Euler’s totients in the corresponding sub-interval.
Then, the algorithm sums them with |F10| to compute |F12|, |F13|, |F15|, |F17|, |F20|, and |F24|. More formally,

I0 = [11, 12] B[0] = '(11) + '(12) = 14 |F12| = |F10|+B[0] = 33 + 14 = 47

I1 = [13, 13] B[1] = '(13) = 12 |F13| = |F12|+B[1] = 47 + 12 = 59

I2 = [14, 15] B[2] = '(14) + '(15) = 14 |F15| = |F13|+B[2] = 59 + 14 = 73

I3 = [16, 17] B[3] = '(16) + '(17) = 24 |F17| = |F15|+B[3] = 73 + 24 = 97

I4 = [18, 20] B[4] = '(18) + '(19) + '(20) = 32 |F20| = |F17|+B[4] = 97 + 32 = 129

I5 = [21, 24] B[5] = '(21) + '(22) + '(23) + '(24) = 52 |F24| = |F20|+B[5] = 129 + 52 = 181

Finally, on lines 34–36, the algorithm computes |F30|, |F40|, |F60|, and |F120| using the helper function as shown in Figure 7.
The colors in this figure indicate the three different methods that the algorithm uses to compute the lengths of Farey sequences
and store them in the lookup table. That is, green corresponds to line 13, purple to line 31, and red to line 35.

13/19

|F30|

(30 + 3)30

2
� |F15|

� |F10|

� |F7|

� |F6|

�
✓�

30

1

⌫
�
�
30

2

⌫◆
|F1|

�
✓�

30

2

⌫
�
�
30

3

⌫◆
|F2|

�
✓�

30

3

⌫
�
�
30

4

⌫◆
|F3|

�
✓�

30

4

⌫
�
�
30

5

⌫◆
|F4|

�
✓�

30

5

⌫
�
�
30

6

⌫◆
|F5|

|F40|

(40 + 3)40

2
� |F20|

� |F13|

� |F10|

� |F8|

�
✓�

40

1

⌫
�
�
40

2

⌫◆
|F1|

�
✓�

40

2

⌫
�
�
40

3

⌫◆
|F2|

�
✓�

40

3

⌫
�
�
40

4

⌫◆
|F3|

�
✓�

40

4

⌫
�
�
40

5

⌫◆
|F4|

�
✓�

40

5

⌫
�
�
40

6

⌫◆
|F5|

�
✓�

40

6

⌫
�
�
40

7

⌫◆
|F6|

(a)
��F30

�� = 279. (b)
��F40

�� = 491.

|F60|

(60 + 3)60

2
� |F30|

� |F20|

� |F15|

� |F12|

� |F10|

� |F8|

�
✓�

60

1

⌫
�
�
60

2

⌫◆
|F1|

�
✓�

60

2

⌫
�
�
60

3

⌫◆
|F2|

�
✓�

60

3

⌫
�
�
60

4

⌫◆
|F3|

�
✓�

60

4

⌫
�
�
60

5

⌫◆
|F4|

�
✓�

60

5

⌫
�
�
60

6

⌫◆
|F5|

�
✓�

60

6

⌫
�
�
60

7

⌫◆
|F6|

�
✓�

60

7

⌫
�
�
60

8

⌫◆
|F7|

|F120|

(120 + 3)120

2
� |F60|

� |F40|

� |F30|

� |F24|

� |F20|

� |F17|

� |F15|

� |F13|

� |F12|

�
✓�

120

1

⌫
�
�
120

2

⌫◆
|F1|

�
✓�

120

2

⌫
�
�
120

3

⌫◆
|F2|

�
✓�

120

3

⌫
�
�
120

4

⌫◆
|F3|

�
✓�

120

4

⌫
�
�
120

5

⌫◆
|F4|

�
✓�

120

5

⌫
�
�
120

6

⌫◆
|F5|

�
✓�

120

6

⌫
�
�
120

7

⌫◆
|F6|

�
✓�

120

7

⌫
�
�
120

8

⌫◆
|F7|

�
✓�

120

8

⌫
�
�
120

9

⌫◆
|F8|

�
✓�

120

9

⌫
�
�
120

10

⌫◆
|F9|

�
✓�

120

10

⌫
�
�
120

11

⌫◆
|F10|

(c)
��F60

�� = 1103. (d)
��F120

�� = 4387.

Figure 7. Visualization of the last stage of algorithm E in which the helper function is used to compute |F30|, |F40|, |F60|,
and |F120| when the algorithm is called with n = 120. The three colors correspond to the three different methods for
computing intermediate results and storing them in the lookup table. That is, green terms are set on line 13. Purple terms are
processed on line 31. Finally, the red terms are computed on line 35, during the call to UPDATELOOKUPTABLE.

14/19

9 Results

We evaluated the performance of C and Python implementations of algorithms C, D, and E (i.e., Algorithms 5, 7, and 8). The
value of n was varied between 100 and 1014 in increments of 0.5 on the decimal logarithm scale. For each of the 29 values
of n, each of the three algorithms, and each of the two implementations, the evaluation program ran the code 10 times while
measuring its run time, memory usage, and the number of CPU instructions (see Methods). We also ran algorithm E for n
between 1010 and 1018 and recorded the corresponding values of |Fn|.

Figure 8 visualizes the results of the experiments. Figures 8a and 8b give the run time plots for C and Python, respectively.
Figures 8c and 8d show the corresponding memory usage plots. All of them are on a log scale. The vertical coordinate of each
point is obtained by averaging the results of the 10 code runs. Figure 8e lists the slopes and intercepts for lines fitted to each
of the 12 curves in (a)–(d) using least squares. The fitting process used the region between n = 1010 and n = 1014. Finally,
Figure 8f gives the values of |Fn| for n between 1010 and 1018 computed using algorithm E.

The experiments confirm the theoretical time complexities of the algorithms. For each of the three algorithms and for each
of the two implementations, the slopes are close to the theoretical predictions, i.e., 0.75 for algorithm C and 2/3 ⇡ 0.66 for
algorithms D and E. The slope for algorithm C agrees with the theory up to the third digit after the decimal point. The slopes
for the other two algorithms are close to the theoretical predictions, but slightly higher by about 0.01 to 0.02. In other words, as
n increases, these algorithms slow down slightly more than the theory predicts.

Even though this difference is small, we investigated it further by measuring the number of CPU instructions in addition to
the run time. As described in Supplementary Section S15, that metric agrees with the theory very well. The slight deviation
of the run time from the theory is due to practical aspects of code execution, including cache misses and inaccurate branch
predictions. On average, this leads to slower execution of CPU instructions. The number of executed instructions, however,
agrees with the theory as confirmed by Figure S4. The reason for this is that for our algorithms the total number of executed
instructions is not affected by the need to access the main memory more frequently due to more cache misses. This number is
also not affected by the decreased efficiency of the instruction pipeline that results from more frequent branch mispredictions.

For memory usage, the theoretically predicted slope is equal to 0.5 for algorithms C and E and 2/3 for algorithm D. Figure 8
shows that there is a good match between the empirical results and the theoretical predictions for these algorithms. The slopes
deviate from the theoretical predictions by less than 0.01 and there does not appear to be a significant positive or negative bias.

The slight jump in time and memory usage of the C version of algorithm E at n = 103 is due to the implementation of the
sieve of Atkin. For small n it is optimized to return values from a hard-coded list of small prime numbers. That is, in this case
there is no sieving. In our experiments, more computationally intensive sieving starts only when n reaches 103. For the Python
version, the jump in run time occurs earlier, i.e., between 101 and 102. The reason for this is that our Python code runs the sieve
of Atkin in a separate process. This process is started only when n � 32 ⇡ 101.5, which leads to a run time spike at that point.
For smaller n, algorithm E does not call the sieve of Atkin and the Python code does not start the process.

10 Conclusion

This paper introduced several novel formulas for the length |Fn| of a Farey sequence of order n. They extend two classic results
and combine them in different ways to achieve various trade-offs between iteration and recurrence. The paper also studied the
problem of how to efficiently compute |Fn|. It described several algorithms that implement the formulas in ways that reduce
both the computational time and the memory usage requirements. Our most efficient algorithm runs in O(n2/3) time and uses
only O(

p
n) memory. These properties make it the most efficient algorithm for computing |Fn| that has been described so far.

Algorithm E is based on formula (12). Even though this formula is long, it leads to the fastest algorithm. It combines
the computational optimizations and approaches used by the other algorithms described in the paper. More specifically, it
uses the linear sieve to help compute the lengths of Farey sequences of orders up to b

p
nc. Next, it enumerates smooth and

non-smooth numbers in the interval [↵,�], where ↵ = b
p
nc+ 1, � = bn/(v(n) + 1)c, and v(n) = bn/(b 3

p
n2 c+ 1)c. The

sieve of Atkin is used to enumerate the non-smooth numbers separately from the smooth numbers in order to improve the run
time and memory usage while computing the values of |Fm| in that interval. In its final stage, algorithm E uses formula (5)
several times to compute |Fn| using previously computed values of |Fm| for m < n.

This paper also showed that the empirical time and memory usage of the algorithms agree with the corresponding theoretical
time and space computational complexities. The experiments also showed that with algorithm E it is possible to compute the
length of the Farey sequence of order 1018. In other words, this paper makes it possible to explore the properties of |Fn| for
larger n than was previously possible, given the same amount of computational resources.

Future work could explore the applicability of other prime sieves29, 30, some of which may be faster and more compact than
the sieves used in our algorithms. However, the time and space complexities of our most efficient algorithm are not tied directly
to the prime sieves. They result from a combination of theoretical insights and computational techniques. In other words,
merely switching to a more efficient prime sieve may not result in better time or space complexity without other changes.

15/19

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

R
u

n
 T

im
e

 (
s

e
c

o
n

d
s

)

Algorithm C
Algorithm D
Algorithm E

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

R
u

n
 T

im
e

 (
s

e
c

o
n

d
s

)

Algorithm C
Algorithm D
Algorithm E

(a) Run time results for the C code. (b) Run time results for the Python code.

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

101

102

103

104

105

106

107

108

109

M
e
m

o
ry

 U
s
a
g

e
 (

k
il
o

b
y
te

s
)

Algorithm C
Algorithm D
Algorithm E

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

101

102

103

104

105

106

107

108

109

M
e
m

o
ry

 U
s
a
g

e
 (

k
il
o

b
y
te

s
)

Algorithm C
Algorithm D
Algorithm E

(c) Memory usage results for the C code. (d) Memory usage results for the Python code.

Alg. C Code Python Code
Slope Intercept Slope Intercept

Ti
m

e C 0.7507 �6.7584 0.7519 �5.4473
D 0.6851 �6.8754 0.6824 �5.5939
E 0.6771 �6.7085 0.6811 �5.4749

M
em

or
y C 0.4992 �1.4947 0.5056 �1.1730

D 0.6631 �1.7541 0.6614 �1.2299
E 0.4944 �1.1835 0.5081 �0.7992

n |Fn|

1010 30396355092886216367
1011 3039635509283386211141
1012 303963550927059804025911
1013 30396355092702898919527445
1014 3039635509270144893910357855
1015 303963550927013509478708835153
1016 30396355092701332166351822199505
1017 3039635509270133156701800820366347
1018 303963550927013314319686824781290349

(e) Lines fitted to the curves in (a), (b), (c), and (d) for n � 1010. (f) Length of Fn for some large values of n.

Figure 8. Evaluation results for C and Python implementations of algorithms C, D, and E. The run time curves plotted in (a)
and the memory usage curves plotted in (c) are for the C code. The run time and memory usage plots for the Python code are
shown in (b) and (d). The plots use the log scale for both axes and each point represents the average of 10 runs. The table in (e)
gives the slopes and intercepts for lines that were fitted to the twelve curves in (a)–(d) in the region between n = 1010 and
n = 1014. The table in (f) shows the lengths of Fn computed with algorithm E for several large values of n.

16/19

Methods

The experiments evaluated the run time and memory usage of algorithms C, D, and E (i.e., Algorithms 5, 7, and 8). This was done for two
different implementations of the algorithms and their dependencies: one written in C and another in Python. We used version 4.4.7 of GCC,
the default C compiler on the experimental platform, to build the C code. It generated native binaries using the 64-bit version of the x86
instruction set. The performance of our Python code was measured with version 3.9.0 of the CPython interpreter31, which serves as the
reference implementation of the Python language.

Run time measurements. We used the same high-level Python script to run the evaluation and collect the time and memory usage
measurements in all experiments. Each instance of each algorithm ran in a separate process that the evaluation script spawned before running
the algorithm. This process exited after completing the run and transmitting the time and memory measurements to the evaluation script. For
the Python implementation of the algorithms, this process called the corresponding Python function directly. For the C implementation, we
compiled the C code into a shared library from which the evaluation process invoked the corresponding function using Python’s ‘ctypes’
module.

In all cases, the run time of an algorithm was measured using the function ‘time.process_time’ in Python 3, i.e., by subtracting the
return value of this function recorded right before launching the algorithm from its value returned right after the algorithm’s completion. We
disabled Python’s garbage collector by calling ‘gc.disable()’ before starting an evaluation run. In other words, the run time measurements
don’t include the time that Python would normally spend on garbage collection, because the garbage collector was disabled.

Memory usage measurements. The memory usage of an algorithm was measured by subtracting the peak amount of physical memory used
by the spawned process (after initialization but before launching the algorithm) from the peak amount of physical memory recorded after its
completion. The memory usage plots report the value of this difference in kilobytes. The script obtained these values from the ‘VmHWM’
record in the special file ‘/proc/[pid]/status’ provided32 by our GNU/Linux system, where ‘[pid]’ is the process identifier.

The evaluation script also monitored the number of virtual memory pages transferred from the physical RAM to the designated swap
storage on the computer. We used the ‘pswpout’ record in the file ‘/proc/vmstat’ made available by the OS. During the experiments, its value
remained the same before and after running each instance of each algorithm, which implies that all virtual memory pages that our program
used during these time intervals remained resident in RAM.

Counting CPU instructions. We used the perf-stat utility33 provided by the OS to count the number of central processing unit (CPU)
instructions that the code executed. Each process spawned by the evaluation script launched the command ‘perf stat -e instructions -p [pid]’,
where ‘[pid]’ was its process identifier. The standard output of perf-stat was redirected to a temporary file. The monitoring process started
after initialization but before running the designated algorithm. After the algorithm finished, the spawned process sent the SIGINT signal34 to
the perf-stat process, which wrote the measurements to its standard output before exiting. The printed text included the number of instructions
executed by the spawned process while perf-stat was monitoring. This information, together with the run time and memory usage statistics,
was stored for subsequent analysis.

Averaging results from multiple runs. The logarithms of the run time, the memory usage, and the number of instructions were averaged
over 10 independent runs. This was done for each of the two implementations (i.e., C and Python) of the three algorithms (i.e., C, D, and
E). The order of the 29 values of n between 100 and 1014 used for the plots was randomized independently in each run. Multiple instances
of the algorithms ran in parallel on our server to the extent that they could fit in the available memory without swapping. The number of
simultaneously running algorithm instances never exceeded 15. The number of cores on the machine was 32. In other words, there were at
least 2 cores available for each algorithm at run time.

Experimental platform. All results were computed on a 32-core Dell PowerEdge R720 server with 315 gigabytes of RAM. The processor
on this machine was 2.20 GHz Intel Xeon E5-2660. The operating system was Red Hat Enterprise Linux (RHEL) version 6.10.

Native and long integers in Python. Python uses a unified implementation of integer arithmetic that automatically switches from native
to long integers when necessary to avoid overflow35. On the experimental platform, the size of a native integer was equal to 64 bits. In
other words, the Python interpreter automatically switched to long integers whenever it encountered an integer less than �263 or greater
than 263 � 1. This switch occurs for n > 109.5.

128-bit integers in C. Our C code used 128-bit integers for all integer values that would not fit in 64 bits for large n. More specifically, we
built the C code using GCC 4.4.7 and used the ‘__uint128_t’ unsigned 128-bit integer type provided by this compiler.

Computational model. The theoretical model used for estimating the computational complexity of the algorithms assumes that adding,
subtracting, multiplying, dividing, and storing any integer requires O(1) time. Similarly, the model assumes that the size of an integer is
also in O(1). The 128-bit integers used in the C code were sufficiently large to avoid overflow in all experiments. The Python interpreter
automatically switched to larger integers when necessary35.

The sieve of Atkin. The experiments used a C implementation of the sieve of Atkin from the ‘primegen’ package36, version 0.97, which
supports generating prime numbers in any interval [↵,�] where � 1015. This bound was sufficiently large for each of our experiments.
This implementation uses a relatively small fixed-size static memory buffer instead of dynamic memory allocation. That is, even though in
theory the sieve of Atkin requires O(N1/2+o(1)) memory, in practice the memory usage of this particular implementation was constant. For
n > 1010 the memory usage for computing |Fn| was dominated by the arrays used by our algorithms, i.e., the memory used by the sieve was
only a tiny fraction of all memory used by the code.

17/19

Data availability

All data and procedures are described in the main paper or in the supplementary information.

References

1. Farey, J. On a curious property of vulgar fractions. The Philos. Mag. 47, 385–386 (1816).

2. Hardy, G. & Wright, E. An Introduction to the Theory of Numbers (Oxford University Press, London, 1975), 4 edn.

3. Borwein, P., Choi, S., Rooney, B. & Weirathmueller, A. The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike

(Springer, New York, 2007). pp. 48–49.

4. Graham, R., Knuth, D. & Patashnik, O. Concrete Mathematics (Addison-Wesley, Reading, MA, 1994), 2 edn.

5. Sukhoy, V. & Stoytchev, A. Numerical error analysis of the ICZT algorithm for chirp contours on the unit circle. Sci. Reports 10, 4852
(2020).

6. Sukhoy, V. & Stoytchev, A. Generalizing the inverse FFT off the unit circle. Sci. Reports 9, 14443 (2019).

7. Conway, J. & Guy, R. The Book of Numbers (Copernicus, New York, 1995), corrected edn. pp. 152–156.

8. Flegg, G., Hay, C. & Moss, B. Nicolas Chuquet, Renaissance Mathematician: A Study with Extensive Translation of Chuquet’s

Mathematical Manuscript Completed in 1484 (Springer, New York, 1984), 1985 edn.

9. Guthery, S. A Motif of Mathematics (Docent Press, Boston, MA, 2011).

10. Cauchy, A.-L. Démonstation d’un theórème curieux sur les nombres (in French). Bull. des Sci. par la Socièté Philomatique de Paris 3,
133–135 (1816).

11. Routledge, N. Computing Farey series. The Mathematical Gazette 92, 55–62 (2008).

12. Routledge, N. Summing Euler’s '-function. The Mathematical Gazette 92, 242–251 (2008).

13. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. Sequence A005728 (2019). https://oeis.org/A005728.

14. Gauss, C. F. & translated by Clarke, A. Disquisitiones Arithmeticae (Yale University Press, New Haven, CT, 1965). Article 39.

15. Michie, D. “Memo” functions and machine learning. Nature 218, 19–22 (1968).

16. Crandall, R. & Pomerance, C. Prime Numbers: A Computational Perspective (Springer, 2005), 2 edn. Chapter 3.

17. Bach, E. & Shallit, J. Algorithmic Number Theory, Volume 1: Efficient Algorithms (1996).

18. Gries, D. & Misra, J. A linear sieve algorithm for finding prime numbers. Commun. ACM 21, 999–1003 (1978).

19. Atkin, A. O. L. & Bernstein, D. J. Prime sieves using binary quadratic forms. Math. Comput. 73, 1023–1030 (2003).

20. Galbraith, S. Mathematics of Public Key Cryptography (Cambridge University Press, Cambridge, United Kingdom, 2012). Chapter 15.

21. Granville, A. Smooth numbers: computational number theory and beyond. In Buhler, J. & Stevenhagen, P. (eds.) Algorithmic Number

Theory: Lattices, Number Fields, Curves, and Cryptography, vol. 44, 267–323 (MSRI Publications, Cambridge University Press, New
York, 2008).

22. Pomerance, C. The role of smooth numbers in number theoretic algorithms. In Proceedings of the International Congress of

Mathematicians, 411–422 (Birkhäuser, Basel, Switzerland, 1995).

23. Pătraşcu, C. & Pătraşcu, M. Computing order statistics in the Farey sequence. In Buell, D. (ed.) Proceedings of the 6th International

Symposium on Algorithmic Number Theory, 358–366 (Burlington, VT, 2004).

24. Pawlewicz, J. Order statistics in the Farey sequences in sublinear time. In Proceedings of the European Symposium on Algorithms,
218–229 (Eilat, Israel, 2007).

25. Pawlewicz, J. & Pătraşcu, M. Order statistics in the Farey sequences in sublinear time and counting primitive lattice points in polygons.
Algorithmica 55, 271–282 (2009).

26. Deléglise & Rivat, J. Computing the summation of the Möbius function. Exp. Math. 5, 291–295 (1996).

27. Hurst, G. Computations of the Mertens function and improved bounds on the Mertens conjecture. Math. Comput. 87, 1013–1028 (2018).

28. Ye, Y. Combining binary search and Newton’s method to compute real roots for a class of real functions. J. Complex. 10, 271–280
(1994).

29. Pritchard, P. A sublinear additive sieve for finding prime numbers. Commun. ACM 24, 18–23 (1981).

30. Sorenson, J. Two compact incremental prime sieves. LMS J. Comput. Math. 18, 675–683 (2015).

31. The Python Software Foundation. Python Release 3.9.0 (2020). https://www.python.org/downloads/release/python-390/.

32. The Linux man-pages project. proc – process information pseudo-filesystem (2020). https://man7.org/linux/man-pages/man5/proc.5.html.

18/19

https://oeis.org/A005728
https://www.python.org/downloads/release/python-390/
https://man7.org/linux/man-pages/man5/proc.5.html

33. The Linux man-pages project. perf-stat – Run a command and gather performance counter statistics (2020). https://man7.org/linux/
man-pages/man1/perf-stat.1.html.

34. The Linux man-pages project. signal – overview of signals (2020). https://man7.org/linux/man-pages/man7/signal.7.html.

35. Zadka, M. & van Rossum, G. PEP 237 – Unifying Long Integers and Integers (2001). https://www.python.org/dev/peps/pep-0237/.

36. Bernstein, D. J. Primegen: a small, fast library for generating prime numbers in order. (1999). Version 0.97. https://cr.yp.to/primegen.html.

Author contributions

V.S. developed the algorithms, wrote the evaluation code, and generated the tables and the figures. A.S. designed the scope of the study and
the structure of the paper. A.S. advised on all experiments and supervised the work. Both authors wrote the paper.

Additional Information

Supplementary information was submitted together with the paper. Supplementary source code for all algorithms was also submitted with
the paper.
Competing interests: The authors declare no competing interests.
Submitted: April 23, 2021; Revised: September 17, 2021.

19/19

https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://www.python.org/dev/peps/pep-0237/
https://cr.yp.to/primegen.html

Supplementary Information for
“Formulas and Algorithms for the Length

of a Farey Sequence”
Vladimir Sukhoy1 & Alexander Stoytchev1,⇤

1 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA. Correspondence and requests for materials should
be addressed to A.S. (email: alexs@iastate.edu).

S1. ALGORITHM FOR ENUMERATING AND COUNTING THE ELEMENTS OF A FAREY SEQUENCE

For the Farey sequence Fn, the mediant property implies that the numerator p and the denominator q of the third fraction
in a triple of adjacent fractions (a/b, c/d, p/q) can be expressed in terms of the values of a, b, c, and d as follows:

p =

�
n+ b

d

⌫
c� a, and q =

�
n+ b

d

⌫
d� b. (15)

This pair of formulas enables an elegant algorithm11 for enumerating the elements of Fn. The main idea is to use a window
of adjacent fractions (a/b, c/d) that ‘slides’ over the elements of Fn until it reaches 1/1. This window is initialized with the pair
of fractions (0/1, 1/n) that are the first two elements of the sequence Fn.

Algorithm S1 uses this approach to compute the length of the Farey sequence of order n by explicitly enumerating its
elements and counting them. Because the length of Fn grows quadratically with n, this algorithm runs in O(n2) time, which
makes it too slow for large values of n. Nevertheless, for small n, it can be used to cross-check the results of the faster
algorithms described in the main paper. This algorithm uses a tiny amount of memory because it only prints the sequence
elements and does not need to store them in memory. In other words, its space complexity is O(1).

Algorithm S1. Enumerate all elements of the Farey sequence Fn and return |Fn|. Runs in O(n2) time and uses O(1) memory.

1: function ENUMERATEFAREYFRACTIONS(n)
2: s 0;
3: (a, b, c, d) (0, 1, 1, n);
4: while true do
5: s s+ 1;
6: PRINT

�
a, ” / ”, b

�
;

7: if a = b then
8: break;
9: end if

10: k
⌅
n+b
d

⇧
;

11: (a, b, c, d) (c, d, kc� a, kd� b);
12: end while
13: return s;
14: end function

S2. SUMMARY OF THE TIME AND MEMORY COMPLEXITIES OF THE ALGORITHMS

The main paper describes five algorithms for computing the length of a Farey sequence. To distinguish between them, the
algorithms are denoted with the first five letters of the alphabet. These letters are also used as suffixes in the function name
for each algorithm, e.g., FAREYLENGTHA or FAREYLENGTHE.

The algorithms are presented from the slowest to the fastest. This is done in order to explain the computational techniques
and optimizations that were needed to derive the most efficient algorithm, i.e., algorithm E, which runs in O(n2/3) time and
uses O(

p
n) memory. Figure S1 provides a visual overview of the time and memory complexities of all five algorithms.

O(n2/3) O(n3/4) O(n)

O(
p
n)

O(n2/3)

O(n)
A

BC

D

E

Time Complexity

Sp
ac

e
C

om
pl

ex
ity

Figure S1: Visual summary of the time and space complexities of the five algorithms for computing the length of the Farey
sequence of order n that are described in the main paper.

2

S3. COMPUTING EULER’S TOTIENT FUNCTION

This section defines Euler’s totient function '(n) and proves some of its properties. It also gives the pseudo-code for two
algorithms that can be used to compute it. An example that illustrates these algorithms is also provided.

Definition 1. Euler’s totient function '(n) maps each positive integer n to the number of integers in the range [1, n] that are
coprime with n. More formally,

'(n) =
���k 2 {1, 2, . . . , n} s.t. gcd(n, k) = 1

 �� . (16)

Theorem 1. For each n > 1, the length of the Farey sequence of order n can be expressed as the sum of '(n) and the length
of the Farey sequence of order n� 1. That is,

|Fn| = |Fn�1|+ '(n), for each n > 1. (17)

Proof. Let Dn be a set that contains the elements of the sequence Fn that are not members of the sequence Fn�1, i.e.,

Dn =
�
p/q 2 Fn s.t. p/q 62 Fn�1

. (18)

Then,

|Fn| = |Fn�1|+ |Dn|. (19)

It remains to show that |Dn| = '(n). For each irreducible fraction p/q 2 Dn the denominator q must be equal to n, otherwise
p/q would be in Fn�1. Thus, the cardinality of Dn is equal to the number of positive integers p between 1 and n for which
the fraction p/n is irreducible. This fraction is irreducible if and only if p is coprime with n. Therefore, |Dn| = '(n), which
completes the proof.

Theorem 2. For each positive integer n � 1 the length of the Farey sequence of order n can be computed by adding 1 to the
sum of the values of Euler’s totient function from 1 to n, i.e.,

|Fn| = 1 +
nX

k=1

'(k). (20)

Proof. For n = 1 the formula reduces to |F1| = 1 + '(1) = 1 + 1 = 2, which is correct. For n > 1 the proof follows from
Theorem 1, i.e.,

|Fn| = |Fn�1|+ '(n)

= |Fn�2|+ '(n� 1) + '(n)

= |Fn�3|+ '(n� 2) + '(n� 1) + '(n)

· · ·

= |F1|+ '(2) + '(3) + · · ·+ '(n)

= 1 + '(1) + '(2) + '(3) + · · ·+ '(n)

= 1 +
nX

k=1

'(k). (21)

Table S1 shows the values of Euler’s totient function '(k) for all integer arguments k from 1 and 20. Table S2 shows the
length of the Farey sequence Fn for values of n from 1 to 20. Using these numbers we can verify that formula (20) holds for
some small values of n. For example, |F5| = 1 + '(1) + '(2) + '(3) + '(4) + '(5) = 11.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

'(k) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

Table S1: Values of Euler’s totient function '(k) for k between 1 and 20.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|Fn| 2 3 5 7 11 13 19 23 29 33 43 47 59 65 73 81 97 103 121 129

Table S2: The length of the Farey sequence |Fn| for n between 1 and 20.

3

The following theorem gives a formula for computing the value of '(p ·k), where p is a prime number and k is any positive
integer. This formula is used as an update rule by several algorithms described in this manuscript.

Theorem 3. Let p be a prime number and let k be a positive integer. Then, the value of Euler’s totient '(p · k) can be
expressed as follows:

'(p · k) =
(
p · '(k), if p is a factor of k,

(p� 1) · '(k), if p is not a factor of k.
(22)

Proof. Euler’s product formula allows us to express the values of '(k) and '(p · k) as shown below:

'(k) = k

Y

q|k

✓
1� 1

q

◆
, (23)

'(p · k) = p · k
Y

q|k·p

✓
1� 1

q

◆
, (24)

where the products run over the distinct prime numbers q that divide k and k · p, respectively.
If p is a factor of k, then '(p · k) can be expressed as follows:

'(p · k) = p · k
Y

q|k·p

✓
1� 1

q

◆
= p · k

Y

q|k

✓
1� 1

q

◆
= p · '(k), (25)

which proves the first branch in formula (22).
If p is not a factor of k, then formulas (23) and (24) imply that '(p · k) has the following value:

'(p · k) = p · k
Y

q|k·p

✓
1� 1

q

◆
= p · k

Y

q|k

✓
1� 1

q

◆✓
1� 1

p

◆
= p

✓
1� 1

p

◆
k

Y

q|k

✓
1� 1

q

◆
= (p� 1) · '(k), (26)

which proves the second branch in formula (22).

One way to compute Euler’s totients for all integers between 1 and N is to use formula (22) with the array Lp that the linear
sieve algorithm18 generates. Algorithm S2 gives the pseudo-code for the linear sieve. Its main goal is to compute a list P that
consists of all prime numbers in the interval [1, N]. The algorithm solves this problem in O(N) time and uses O(N) memory.
In addition to P , the linear sieve algorithm also fills an array Lp that contains the smallest prime factor for each integer in
the interval [1, N] (the algorithm sets the value of Lp[1] to 1 as a special case). The array Lp is sufficient for computing the
Euler’s totients '(1),'(2), . . . ,'(N) using a special case of formula (22) as described below.

Algorithm S3 fills the array ' such that its elements '[1],'[2], . . . ,'[N] are equal to Euler’s totients '(1),'(2), . . . ,'(N).
The algorithm starts by setting '[1] to '(1), which is equal to 1. Then, the algorithm iterates over m from 2 to N and sets
'[m] to Euler’s totient '(m). Each iteration of this for-loop uses the following version of formula (22):

'(m) =

(
p · '(k), if Lp[k] = p,

(p� 1) · '(k), if Lp[k] 6= p,

(27)

where p = Lp[m] is the smallest prime number that divides m and k = bm/pc = m/p (we use the floor function to indicate
that integer division should be used here). In other words, m = k · p. Because p is the smallest prime number that divides m,
the prime factorization of m can be derived from the prime factorization of k by adding one more factor p to it. This also
implies that the smallest prime factor of k must be greater than or equal to p, i.e., Lp[k] � Lp[k · p] = p. Moreover, p is a
factor of k if and only if Lp[k] = p. Conversely, if Lp[k] 6= p, then the prime number p is not a factor of k. This logic leads to
formula (27). Algorithm S3 runs in O(N) time because it performs O(1) operations for each integer between 1 and N . The
space complexity of this algorithm is also in O(N) because it creates an array ' that consists of N integers.

4

Algorithm S2. Find all prime numbers in the interval [2, N] using a linear sieve. This algorithm also returns an array Lp that
contains the smallest prime factor for each integer in [2, N]. Runs in O(N) time and uses O(N) memory.

1: function LINEARSIEVE(N)
2: P EMPTYLIST(); // list of all prime numbers in the interval [2, N]

3: Lp NULLARRAY(N+1);
4: Lp[1] 1; // array of smallest prime factors
5: for k 2 to N do
6: if Lp[k] is null then
7: // k is a prime number
8: Lp[k] k;
9: APPEND(P, k);

10: end if
11: for p in P do
12: q p · k;
13: if p > Lp[k] or q > N then
14: break;
15: end if
16: Lp[q] p;
17: end for
18: end for
19: return (P, Lp);
20: end function

Algorithm S3. Compute Euler’s totient function '(m) for each m 2 {1, 2, . . . , N} by traversing the array of smallest prime
factors Lp generated by the linear sieve algorithm. This algorithm runs in O(N) time and uses O(N) memory.

1: function COMPUTETOTIENTS(N, Lp)
2: ' EMPTYARRAY(N+1); // values of Euler’s totient
3: '[1] 1;
4: for m 2 to N do
5: p Lp[m];
6: k bm/pc;
7: if Lp[k] = p then
8: '[m] p · '[k];
9: else

10: '[m] (p� 1) · '[k];
11: end if
12: end for
13: return ';
14: end function

5

Figure S2 visualizes a sample run of the linear sieve (i.e., Algorithm S2) with N = 5. It shows the state of the array of
smallest prime factors Lp and the list of prime numbers P for k 2 {1, 2, 3, 4, 5}. The elements of Lp and P that change after
each iteration are colored in red. All elements of Lp are initially set to null, which is indicated with ; in the figure. The list P
starts empty.

k Lp P

1 [1, ;, ;, ;, ;] ()

2 [1, 2, ;, 2, ;] (2)

3 [1, 2, 3, 2, ;] (2, 3)

4 [1, 2, 3, 2, ;] (2, 3)

5 [1, 2, 3, 2, 5] (2, 3, 5)

Figure S2: Illustration of the linear sieve algorithm for N = 5.

The algorithm starts by setting Lp[1] to 1. Then, it proceeds to the for-loop that starts at k = 2. Because Lp[k] is null at the
beginning of this iteration, the algorithm marks k = 2 as a prime number by setting Lp[2] to 2 and appending 2 to the list P .
Subsequently, the algorithm iterates over each p in P = (2), sets the variable q to the product p · k, and then sets Lp[q] to p

until q exceeds N . In our example, this leads to setting Lp[4] to 2. Next, the algorithm proceeds to k = 3. Because Lp[k] is
null here, this value of k is also a prime number, which leads to setting Lp[3] to 3 and appending 3 to P . No other elements
of Lp change because 2 · 3 > N = 5, which leads to breaking out of the inner for-loop on its first iteration. Subsequently,
the algorithm continues to k = 4. Because Lp[k] is not null, this value of k is not a prime number and the list P remains
unchanged here. The inner for-loop also terminates early and does not modify any elements of Lp. Finally, the algorithm
advances to k = 5. The value of Lp[k] is null here, which leads to setting Lp[5] to 5 and appending 5 to the list P (i.e., 5 is
a prime number). The inner for loop, again, terminates early and the function returns the final state of P and Lp.

Figure S3 shows an example for Algorithm S3 with N = 5. This algorithm computes Euler’s totients '(1), '(2), '(3),
'(4), and '(5) using the array Lp computed by the linear sieve algorithm in the previous example, i.e., Lp = [1, 2, 3, 2, 5].
Algorithm S3 stores the computed totients in the array ', which starts uninitialized. The uninitialized elements of ' are denoted
with the symbol ; in the figure.

m Lp p = Lp[m] k = bm/pc Lp[k] ' Computing '[m]

1 [1, 2, 3, 2, 5] 1 1 1 [1, ;, ;, ;, ;] '[1] = 1

2 [1, 2, 3, 2, 5] 2 1 1 [1, 1, ;, ;, ;] '[2] = (p� 1) · '[k] = (2� 1) · 1 = 1

3 [1, 2, 3, 2, 5] 3 1 1 [1, 1, 2, ;, ;] '[3] = (p� 1) · '[k] = (3� 1) · 1 = 2

4 [1, 2, 3, 2, 5] 2 2 2 [1, 1, 2, 2, ;] '[4] = p · '[k] = 2 · 1 = 2

5 [1, 2, 3, 2, 5] 5 1 1 [1, 1, 2, 2, 4] '[5] = (p� 1) · '[k] = (5� 1) · 1 = 4

Figure S3: Illustration of the algorithm for computing Euler’s totients with N = 5.

The algorithm starts by setting '[1] to 1. Then, it continues to the for-loop, which starts at m = 2. It sets the value of the
variable p to Lp[m], which in this case is equal to 2. The variable k is set to bm/pc = b2/2c = 1. In this iteration, Lp[k] 6= p

and therefore the value of '[m] is set to (p � 1) · '[k] = (2 � 1) · '[1] = 1. Next, the algorithm proceeds to m = 3. It sets
the variable p to Lp[m], which is equal to 3 and sets the variable k to bm/pc, which is equal to 1. The if-statement, again,
sets the value of '[m] to (p � 1) · '[k] = (3 � 1) · 1 = 2. Subsequently, the algorithm proceeds to m = 4. In this iteration,
p becomes 2 because Lp[4] = 2. The variable k is also set to 2, because bm/pc = b4/2c = 2. In this case, Lp[k] = p and
therefore the first branch of the if-statement is executed, which sets '[m] to p · '[k] = 2 · '[2] = 2. Finally, the algorithm
continues to m = 5. Here, p becomes equal to 5 = Lp[m] and k becomes equal to 1 = b5/5c. Because Lp[k] 6= p, the value
of '[m] is set to (p� 1) · '[k] = (5� 1) · 1 = 4. After the last iteration, the function returns the final state of the array '.

6

S4. LEMMAS USED IN THE PROOFS

The following lemma is used in the proof of Theorem 13.

Lemma 4. Let k and n be two positive integers and let S(k, n) be a set of all integers m such that bn/mc = k, i.e.,

S(k, n) =
�
m 2 N s.t. bn/mc = k

. (28)

Then, the set S(k, n) consists of all integers in the interval
�⌅

n
k+1

⇧
,
⌅
n
k

⇧⇤
, i.e.,

S(k, n) =

⇢�
n

k + 1

⌫
+ 1,

�
n

k + 1

⌫
+ 2, . . . ,

�
n

k

⌫�
. (29)

Moreover, if k1 6= k2, then the sets S(k1, n) and S(k2, n) are disjoint, i.e.,

S(k1, n) \ S(k2, n) = ;, if k1 6= k2. (30)

Finally, the union of the sets S(k, n) over all k 2 {1, 2, . . . , b
p
nc} is equal to the set of integers that fall in the interval

[u(n)+1, n], where u(n) =
j

n
b
p
nc+1

k
. That is,

b
p
nc[

k=1

S(k, n) = {u(n) + 1, u(n) + 2, . . . , n}. (31)

Proof. First, we will prove formula (29). Let m 2 S(k, n). Then, bn/mc = k, i.e.,

k n

m
< k + 1. (32)

Reciprocating the three terms leads to:
1

k + 1
<

m

n
 1

k
. (33)

Multiplying this inequality by n leads to the following interval for the value of m:
n

k + 1
< m n

k
. (34)

Because m is an integer, the floor function can be applied to the lower and upper bounds for the value of m in the previous
inequality, i.e.,

�
n

k + 1

⌫
< m

�
n

k

⌫
. (35)

Therefore, m 2
�⌅

n
k+1

⇧
,
⌅
n
k

⇧⇤
, which implies that S(k, n) ✓

�⌅
n

k+1

⇧
,
⌅
n
k

⇧⇤
.

Conversely, let m be an integer that lies in the interval
�⌅

n
k+1

⇧
,
⌅
n
k

⇧⇤
. That is,

�
n

k + 1

⌫
+ 1 m

�
n

k

⌫
. (36)

Dividing by n and reciprocating leads to:
n⌅
n
k

⇧ n

m
 n⌅

n
k+1

⇧
+ 1

. (37)

Because bn/kc n/k, the lower bound can be stated as:

k =
n

n
k

 n⌅
n
k

⇧ n

m
. (38)

On the other hand,
⌅

n
k+1

⇧
+ 1 >

n
k+1 . Therefore, the upper bound in (37) can be expressed as:

n

m
 n⌅

n
k+1

⇧
+ 1

<
n

n
k+1

= k + 1. (39)

Inequalities (38) and (39) imply that k n/m < k + 1 and, thus, bn/mc = k. Therefore, N \
�⌅

n
k+1

⇧
,
⌅
n
k

⇧⇤
✓ S(k, n), which

proves formula (29).
Formula (30) is proven by contradiction. Suppose that there is a pair of integers k1 and k2 such that k1 6= k2 and that the

intersection of S(k1, n) and S(k2, n) is not empty. Then, there is an integer m that is an element of both sets, which implies
that bn/mc = k1 and bn/mc = k2. Thus, k1 = k2, which is a contradiction that proves formula (30).

7

Formula (31) is proven by showing that the union of the sets in the left-hand side forms a contiguous range of integers
that matches the set in the right-hand side. In this case, larger values of k correspond to smaller elements of S(k, n). From
formula (29) we can derive that the maximum element in the set S(k + 1, n) can be obtained by decrementing the minimum
element in the set S(k, n). More formally,

maxS(k + 1, n) =

�
n

k + 1

⌫
=

�
n

k + 1

⌫
+ 1� 1 = minS(k, n)� 1. (40)

The minimum element in the set S(b
p
nc, n) is equal to

j
n

b
p
nc+1

k
+1 = u(n) + 1. The maximum element in the set S(1, n)

is equal to n. Thus, all integers between u(n) + 1 and n are elements of the union.

Many formulas in this manuscript use the function u(n) = bn/(b
p
nc+1)c to simplify the notation. Depending on the value

of the integer n, this function evaluates to either b
p
nc� 1 or b

p
nc. For example, if n = 4, then it evaluates to 1 = b

p
4c� 1.

For n = 6, however, it evaluates to 2 = b
p
6c. The next lemma formally proves this property.

Lemma 5. For any positive integer n, the value of the function u(n) =
⌅
n/
�
b
p
nc+1

�⇧
is equal to either b

p
nc � 1 or b

p
nc.

Proof. For the fraction in the definition of u(n), the value of the denominator lies between
p
n and

p
n+ 1, i.e.,

p
n < b

p
nc+ 1

p
n+ 1. (41)

Reciprocating all three values changes the direction of the inequality and leads to:
1p
n+ 1

 1

b
p
nc+ 1

<
1p
n
. (42)

Multiplying by n leads to the following bounds for the fraction in u(n) that is used as the argument of the floor function:
np
n+ 1

 n

b
p
nc+ 1

<
np
n
=
p
n. (43)

The value of the term n/(
p
n+ 1) in the left-hand side can be expressed as follows:

np
n+ 1

=
n� 1 + 1p

n+ 1
=

(
p
n� 1)(

p
n+ 1) + 1p

n+ 1
=
p
n� 1 +

1p
n+ 1

. (44)

Therefore,
p
n� 1 <

np
n+ 1

. (45)

Combining inequality (43) with inequality (45) leads to the following formula:
p
n� 1 <

n

b
p
nc+ 1

<
p
n. (46)

Applying the floor function to the previous inequality makes the middle term equal to u(n). It also changes the inequality
such that it is no longer strict when

p
n is an integer. This completes the proof, i.e.,

b
p
nc � 1 = b

p
n� 1c u(n) b

p
nc, (47)

where b
p
nc � 1 = b

p
n� 1c follows from the definition of the floor function.

The following two lemmas are used in the proof of Theorem 12. They express the value of bn+1
k c in two ways depending

on whether k divides n+ 1 or not.

Lemma 6. Let n be a positive integer and let k be an integer between 1 and n. If k does not divide n + 1, then the value
of
⌅
n+1
k

⇧
is equal to

⌅
n
k

⇧
. That is,

�
n+ 1

k

⌫
=

�
n

k

⌫
, if (n+1) mod k 6= 0. (48)

Proof. The properties of integer division imply that there is exactly one pair of integers x and y such that the value of n+ 1
can be expressed in the following form:

n+ 1 = xk + y, (49)

where 0 y < k. In this case, x =
⌅
n+1
k

⇧
is the quotient and y = (n+1) mod k is the remainder. The lemma states that k

does not divide n+ 1, which implies that y cannot be zero, i.e., 1 y < k.

8

Subtracting 1 from both sides of equation (49) leads to the following expression for the value of n:

n = xk + y � 1. (50)

The value of the term y � 1 is an integer that lies in the interval [0, k � 1). Once again, the uniqueness of integer division
implies that y � 1 = n mod k and that x =

⌅
n
k

⇧
, which completes the proof.

Lemma 7. Let n be a positive integer. Also, let k be an integer between 1 and n. If k divides n+ 1, then the value of
⌅
n+1
k

⇧

is a whole number equal to
⌅
n
k

⇧
+ 1, i.e.,
�
n+ 1

k

⌫
=

n+ 1

k
=

�
n

k

⌫
+ 1, if (n+ 1) mod k = 0. (51)

Proof. Similarly to the previous proof, the properties of integer division imply that:

n+ 1 = xk + y = xk, (52)

where x =
⌅
n+1
k

⇧
and y = (n+1) mod k = 0. In this case, y = 0 because n+ 1 is evenly divisible by k.

Once again, we can subtract 1 from both sides of (52), which leads to the following formula for the value of n:

n = xk � 1. (53)

Furthermore, we can express xk as (x� 1)k + k, which leads to

n = (x� 1)k + k � 1. (54)

Here the uniqueness of integer division implies that
⌅
n
k

⇧
= x� 1. Recalling that x =

⌅
n+1
k

⇧
completes the proof.

The next lemma proves an interesting property of the floor function, which is used in the correctness proof for Algorithm C.

Lemma 8. Let k, j, and n be three positive integers. Then,
�
bn/kc

j

⌫
=

�
n/k

j

⌫
. (55)

Proof. Similarly to the previous two lemmas, we start by using integer division to express the value of bn/kc as follows:

bn/kc = xj + y, (56)

where x =
⌅bn/kc

j

⇧
and y = bn/kc mod j. The integer y lies in the closed interval [0, j � 1].

The value of n/k is equal to the sum of its integer and fractional parts, i.e.,

n/k = bn/kc+ f, (57)

where f = n/k � bn/kc. Because n and k are integers, the value of f is an element of the closed interval
⇥
0, k�1

k

⇤
, i.e., it

never reaches 1.
Combining (56) and (57) allows us to derive the following formula for the value of n/k

j :

n/k

j
=
bn/kc

j
+

f

j
=

xj + y

j
+

f

j
= x+

y

j
+

f

j
. (58)

This formula, in turn, implies that the following upper and lower bounds hold for n/k
j :

x =

�
bn/kc

j

⌫
 bn/kc

j
 n/k

j
< x+

j � 1

j
+

1

j
= x+ 1. (59)

In other words, x n/k
j < x + 1. Applying the floor function to all three terms leads to x

j
n/k
j

k
< x + 1, since x is an

integer. Because the term in the middle must be an integer and because the second inequality remains strict, it follows thatj
n/k
j

k
must be equal to x =

⌅bn/kc
j

⇧
. This completes the proof.

Lemma 9. Let k, j, and n be three positive integers such that n � kj. Then, the lengths of the following two Farey sequences
are equal:

��Fbbn/kc/jc
�� =

��Fbn/(kj)c
�� . (60)

Proof. The proof follows from Lemma 8, which proved that the values of the two subindices in (60) are equal. Also, when
n � kj, the value of bn/(kj)c is an integer that is greater than or equal to 1, i.e., it identifies an order of a Farey sequence.

9

The next two lemmas are used to prove the computational complexities of FAREYLENGTHL and FAREYLENGTHC (i.e.,
Algorithm S10 and Algorithm 5), respectively.

Lemma 10. Let N be a positive integer. Then,
NX

k=1

O

✓
1

k

◆
= O(logN). (61)

Proof. Let f(x) = 1
x . This function is monotonically decreasing in the interval (0,1). Therefore,

Z k+1

k

1

x
dx <

1

k
<

Z k

k�1

1

x
dx, (62)

for each k 2 N = {1, 2, . . . }. This implies that we can find lower and upper bounds for the sum in formula (61) as follows:
Z N+1

1

1

x
dx =

NX

k=1

Z k+1

k

1

x
dx <

NX

k=1

1

k
= 1 +

NX

k=2

1

k
 1 +

NX

k=2

Z k

k�1

1

x
dx = 1 +

Z N

1

1

x
dx. (63)

The left-most integral is equal to:
Z N+1

1

1

x
dx = lnx

���
N+1

1
= ln(N + 1). (64)

The right-most term in this inequality evaluates to:

1 +

Z N

1

1

x
dx = 1 + lnx

���
N

1
= 1 + lnN. (65)

Therefore, the bounds for the sum are:

ln(N + 1) <
NX

k=1

1

k
 1 + lnN, (66)

which completes the proof.

Lemma 11. Let N be a positive integer. Then,
NX

k=1

O

✓
1p
k

◆
= O

⇣p
N

⌘
. (67)

Proof. Let f(x) = 1p
x

. This function is monotonically decreasing in the interval (0,1). Thus, for each k 2 N = {1, 2, . . . }
the following inequality holds:

k+1Z

k

1p
x
dx <

1p
k

<

kZ

k�1

1p
x
dx. (68)

From this inequality we can derive lower and upper bounds for the value of the sum 1/
p
1 + 1/

p
2 + · · ·+ 1/

p
N , i.e.,

N+1Z

1

1p
x
dx =

NX

k=1

k+1Z

k

1p
x
dx <

NX

k=1

1p
k
<

NX

k=1

kZ

k�1

1p
x
dx =

NZ

0

1p
x
dx. (69)

The left-most integral evaluates to:
N+1Z

1

1p
x
dx = 2

p
x

���
N+1

1
= 2
p
N+1� 2. (70)

Similarly, the right-most integral has the following value:
NZ

0

1p
x
dx = 2

p
x

���
N

0
= 2
p
N. (71)

Combining (69) with (70) and (71) leads to:

2
p
N+1� 2 <

NX

k=1

1p
k
< 2
p
N, (72)

from which (67) follows.

10

S5. PROOF OF FORMULA (2)
This section proves formula (2), which expresses the length of the Farey sequence Fn recursively in terms of the lengths

of the Farey sequences of lower orders. This formula is well-known, but its proof is hard to find. Our proof uses only basic
algebra and mathematical induction. The proof also uses Euler’s totient function '(n), which is defined in Section S3.

Theorem 12. The length of the Farey sequence of order n can be computed recursively as follows:

|Fn| =
(n+ 3)n

2
�

nX

k=2

��Fbn/kc
�� , (73)

where bxc denotes the largest integer that does not exceed x.

Proof. The proof is by mathematical induction. The base case of the induction is formed by the length of Fn when n = 1,
i.e.,

|F1| =
(1 + 3) · 1

2
= 2. (74)

To prove the inductive step, we will introduce the term Tn that is defined as follows:

Tn = |Fn|+
nX

k=2

��Fbn/kc
�� . (75)

Our goal is to prove that

Tn =
(n+ 3)n

2
. (76)

We have already established that this is true for n = 1. Assuming that this formula holds for some n � 1, our next goal is to
prove that it also holds for Tn+1. In other words, we would like to show that the value of Tn+1 can be expressed as follows:

Tn+1 = |Fn+1|+
n+1X

k=2

��Fb(n+1)/kc
��

=
((n+ 1) + 3)(n+ 1)

2

=
(n+ 3)n

2
+

2n+ 4

2
= Tn + n+ 2. (77)

Using Theorem 1 and Definition 1 (see Section S3), we can express the term Tn+1 as shown below:

Tn+1 = |Fn+1| +
n+1X

k=2

����Fj
n+1

k

k
����

= |Fn|+ '(n+ 1) +
n+1X

k=2

����Fj
n+1

k

k
����

= |Fn|+ '(n+ 1) +
nX

k=2

����Fj
n+1

k

k
����+

n+1X

k=n+1

����Fj
n+1

k

k
����

| {z }
|F1|

= |Fn|+ '(n+ 1) +
nX

k=2

����Fj
n+1

k

k
����+ 2. (78)

Lemmas 6 and 7 (see Section S4) imply that in (78) the value of each term in the sum from 2 to n can be expressed as
follows:

����Fj
n+1

k

k
���� =

8
>><

>>:

����Fj
n

k

k
���� , if (n+1) mod k 6= 0,

����Fj
n

k

k
+1

���� , if (n+1) mod k = 0.

(79)

Moreover, for the second case in (79), Theorem 1 and Lemma 7 imply that:
���Fbn+1

k c
��� =

����Fj
n

k

k
+1

���� =
����Fj

n

k

k
����+ '

✓
n+1

k

◆
, if (n+ 1) mod k = 0. (80)

11

Let D be the set of all positive integer divisors of n+1 that lie between 2 and n. That is,

D =
�
k 2 {2, 3, . . . , n} s.t. (n+ 1) mod k = 0

. (81)

Then, the sum in equation (78) can be expressed as follows:
nX

k=2

����Fj
n+1

k

k
���� =

nX

k=2

����Fj
n

k

k
����+

X

k2D

'

✓
n+1

k

◆
. (82)

If an integer k is an element of the set D, then the value of (n+1)/k is also an element of D and vice versa. Therefore,
X

k2D

'

✓
n+1

k

◆
=
X

k2D

'(k). (83)

Thus, equation (82) can be restated as:
nX

k=2

����Fj
n+1

k

k
���� =

nX

k=2

����Fj
n

k

k
����+

X

k2D

'(k). (84)

Plugging this result into (78) leads to the following formula for the value of Tn+1:

Tn+1 = |Fn|+ '(n+1) +
nX

k=2

����Fj
n

k

k
����+

X

k2D

'(k) + 2. (85)

Because '(1) = 1, it follows that '(1) + 1 = 2. This allows us to rearrange the terms in the last equation as follows:

Tn+1 = |Fn|+
nX

k=2

����Fj
n

k

k
����

| {z }
Tn

+'(n+1) +
X

k2D

'(k) + '(1)

| {z }X

k|n+1

'(k)

+1

= Tn +
X

k|n+1

'(k) + 1. (86)

In this formula,
X

k|n+1

'(k) denotes the sum of the values of Euler’s totient function '(k) for all k that are positive integer

divisors of n+ 1. In 1798, Gauss proved14 that this sum is equal to n+1. Thus,

Tn+1 = Tn + (n+ 1) + 1 = Tn + n+ 2, (87)

which proves equation (77) as required.

12

S6. PROOF OF FORMULA (5)
This section proves another recursive formula for the value of |Fn|. This formula is derived from formula (2) by splitting

the sum into two segments and grouping the repeated terms in the second segment. The resulting formula is longer, but it
needs to add fewer terms. It leads to Algorithm 5 (i.e., FAREYLENGTHC), which is described in the main paper.

Theorem 13. For each n > 1, the length of the Farey sequence Fn can be expressed using the following recursive formula:

|Fn| =
(n+ 3)n

2
�

u(n)X

k=2

��Fbn/kc
���

b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
· |Fk|, (88)

where u(n) =
j

n
b
p
nc+1

k
.

Proof. This formula is derived from formula (2), which is replicated below:

|Fn| =
(n+ 3)n

2
�

nX

k=2

��Fbn/kc
�� . (89)

The first step is to split the summation over k at u(n) into two separate sums:

nX

k=2

��Fbn/kc
�� =

u(n)X

k=2

��Fbn/kc
��+

nX

k=u(n)+1

��Fbn/kc
�� . (90)

And then change the index variable from k to m in the second sum:

nX

k=2

��Fbn/kc
�� =

u(n)X

k=2

��Fbn/kc
�� +

nX

m=u(n)+1

��Fbn/mc
�� . (91)

The next step is to express the last sum in formula (91) so that it has only b
p
nc terms. Lemma 4 proves that the set of the

indices m used in that sum is equal to the following union:
b
p
nc[

k=1

S(k, n) = {u(n) + 1, u(n) + 2, . . . , n}, (92)

where each set S(k, n) consists of all positive integers m for which bn/mc = k, i.e.,

S(k, n) =

⇢�
n

k + 1

⌫
+ 1,

�
n

k + 1

⌫
+ 2, . . . ,

�
n

k

⌫�
. (93)

Lemma 4 also proves that all sets S(k, n) in this union are disjoint. Each of these sets has
⌅
n
k

⇧
�
⌅

n
k+1

⇧
elements. Therefore,

for each n > 1 the last sum in (91) can be expressed as follows:

nX

m=u(n)+1

��Fbn/mc
�� =

b
p
ncX

k=1

X

m2S(k,n)

|Fk| =
b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
|Fk|. (94)

Substituting this expression into (91) and that result into (89) proves the theorem.

Formula (88) cannot express F1 because the last sum leads to an infinite recursion when n = 1. Also, in this special case
the sum in formula (89) is degenerate. In contrast to the cases when n � 2, the sum cannot be split in a way that leads to
formula (90) when n = 1. Therefore, any algorithm that implements formula (88) should handle n = 1 as a special case. For
example, F1 can be hard-coded to be equal to 2.

13

S7. COMPUTING b
p
nc AND b 3

p
n2c EXACTLY

Algorithms S4 and S5 give the pseudo-code for two helper functions that are used by several of the algorithms. The first
function computes b

p
nc exactly using Newton’s method and integer arithmetic.28 The second function computes the value of

b 3
p
nc exactly using a similar approach. All algorithms, however, call ICBRT with an argument that is equal to n

2 instead
of n. Thus, it is used to compute b 3

p
n2c. Both algorithms run in O(log log n) time and use O(1) memory.

Algorithm S4. Compute b
p
nc exactly using integer arithmetic. Runs in O(log log n) time and uses O(1) memory.

1: function ISQRT(n)
2: x n;
3: y dn/2e;
4: while y < x do
5: x y;
6: y

j
x+bn/xc

2

k
;

7: end while
8: return x;
9: end function

Algorithm S5. Compute b 3
p
nc exactly using integer arithmetic. Runs in O(log log n) time and uses O(1) memory.

1: function ICBRT(n)
2: x n;
3: y dn/3e;
4: while y < x do
5: x y;
6: y

j
2x+bn/x2c

3

k
;

7: end while
8: return x;
9: end function

S8. LOOKUP TABLE DESIGN

Some of the algorithms described in this paper use a lookup table called F to store the values of |Fm| for different m.
The computational complexity estimates assume that each entry in this lookup table can be accessed in O(1) time. They also
assume that storing a lookup table of size N requires O(N) memory.

This appendix describes an implementation for a lookup table that satisfies these time and space complexity constraints. The
implementation is specific to our algorithms, i.e., it works for the special case when all keys (or indices) that are used are in
the set {1, 2, . . . , d}[

�⌅
n

bn/dc
⇧
, . . . ,

⌅
n
2

⇧
,
⌅
n
1

⇧
. Alternatively, it is possible to use a generic hash table as a lookup table (e.g.,

the hash table implemented in the standard dictionary class in the Python language). In that case the computational complexity
of setting or getting entries is in O(1) on average. Even though this is a minor technical point, this appendix shows that the
desired performance can be achieved in all cases, i.e., not just on average.

Algorithm S6 gives the pseudo-code for initializing the lookup table. The function has two parameters: n and d. The value
of n determines the size of the problem, i.e., the order of the Farey sequence Fn for which we want to compute the length.
The parameter d controls the split between the two sets of keys that the table supports. The table is organized as two arrays.
The first array, X , stores the entries for the keys in the set {1, 2, . . . , d}. The second array, Y , stores the entries for the keys
in the set

�⌅
n

bn/dc
⇧
, . . . ,

⌅
n
2

⇧
,
⌅
n
1

⇧
. In most cases, d = b

p
nc+ 1, except for Algorithm S13, where it is set to b 3

p
n2c+ 1.

Algorithm S7 gives the pseudo-code for getting the value of an element from the lookup table, given a key k. This function
is called when the square bracket notation is used with F in our algorithms, i.e., F [k] translates to GETITEM(F, k);

Algorithm S8 gives the pseudo-code for setting an element of the lookup table. Once again, it is assumed that an assignment
F [k] x in our algorithms translates to a call to SETITEM(F, k, x).

Finally, Algorithm S9 gives the pseudo-code for a function that checks if the value for the key k is set in the lookup table F .
This check is used in some of our algorithms for diagnostic purposes. That is, it is assumed that a check k in F translates to
a function call CONTAINS(F, k).

14

Algorithm S6. Initialize a lookup table. Uses O(d+ n/d) memory.

1: function LOOKUPTABLE(n, d)
2: F NEWOBJECT();
3: F.n n;
4: F.X NULLARRAY(d);
5: F.Y NULLARRAY(bn/dc+ 1);
6: return F ;
7: end function

Algorithm S7. Get the value for a key from the lookup table. Runs in O(1) time.

1: function GETITEM(F, k)
2: if k < LENGTH(F.X) then
3: return F.X[k];
4: else
5: return F.Y [bF.n/kc];
6: end if
7: end function

Algorithm S8. Set the value for a key in the lookup table. Runs in O(1) time.

1: function SETITEM(F, k, x)
2: if k < LENGTH(F.X) then
3: F.X[k] x;
4: else
5: F.Y [bF.n/kc] x;
6: end if
7: end function

Algorithm S9. Check if the value for a key is set in the lookup table. Runs in O(1) time.

1: function CONTAINS(F, k)
2: if k < LENGTH(F.X) then
3: return (F.X[k] is not null);
4: else
5: m bF.n/kc;
6: if k 6= bF.n/mc then
7: return FALSE;
8: end if
9: return (F.Y [m] is not null);

10: end if
11: end function

15

S9. TWO ALGORITHMS THAT RUN IN O(n log n) TIME AND USE O(
p
n) MEMORY

This section describes two O(n log n) algorithms for computing the length of the Farey sequence of order n. The algorithms
are based on a combination of formulas (2) and (5) from the main paper, which are reproduced below:

|Fn| =
(n+ 3)n

2
�

nX

k=2

��Fbn/kc
�� , (95)

|Fn| =
(n+ 3)n

2
�

u(n)X

k=2

��Fbn/kc
���

b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
· |Fk|. (96)

Algorithm S10 gives the pseudo-code for the first algorithm, which is given a suffix letter L. The helper function in this case
implements formula (95). The main algorithm, however, structures the calls to this function in the same way as Algorithm 5,
which is based on formula (96). Theorem 14 (see below) proves that the computational complexity of this algorithm is in
O(n log n). The space complexity is in O(

p
n). This is easy to show because FAREYLENGTHL is structured similarly to

FAREYLENGTHC, except for using a different helper function (see also the proofs in Section S10).

Algorithm S10. Compute the length of the Farey sequence Fn. Runs in O(n log n) time and uses O(
p
n) memory.

1: function FAREYLENGTHL(n)
2: r ISQRT(n);
3: u

⌅
n

r+1

⇧
;

4: F LOOKUPTABLE(n, r + 1);
5: F [1] 2;

6: for m 2 to r do
7: UPDATELOOKUPTABLEL(F,m);
8: end for
9: for j u down to 1 do

10: UPDATELOOKUPTABLEL
�
F,
⌅
n/j
⇧�

;
11: end for
12: return F [n];
13: end function

14: function UPDATELOOKUPTABLEL(F,m) // helper function
15: s 0;
16: for k 2 to m do
17: q

⌅
m/k

⇧
;

18: ASSERT(q in F);
19: s s+ F [q];
20: end for
21: F [m] (m+ 3)m

2
� s;

22: end function

16

Algorithm S11 is a recursive version of Algorithm S10. This algorithm also runs in O(n log n) time and uses O(
p
n)

memory. This can be established by unpacking the recursion, which leads to the iterative version presented above. This is the
shortest algorithm described in this paper. Unfortunately, it is also one of the slowest. For small values of n, however, it could
be very useful. For example, it can be used to verify the output of the faster algorithms.

Algorithm S11. Recursive algorithm for computing the length of Fn. Runs in O(n log n) time and uses O(
p
n) memory.

1: function FAREYLENGTHLR(n, F = null)
2: if F is null then
3: F LOOKUPTABLE(n, ISQRT(n) + 1); // initialize the lookup table F for memoization
4: end if
5: if n in F then
6: return F [n];
7: end if
8: s 0;
9: for k 2 to n do

10: s s+ FAREYLENGTHLR(bn/kc, F);
11: end for
12: F [n] (n+ 3)n

2
� s; // update the lookup table

13: return F [n];
14: end function

Theorem 14. Algorithm S10 (i.e., FAREYLENGTHL) runs in O(n log n) time.

Proof. One call to the helper function UPDATELOOKUPTABLEL computes exactly one new entry in the lookup table F . The
main algorithm calls this function in the correct order such that the elements of F that the helper function uses are already
computed by the time it is called. Thus, the computational complexity of the helper function is in O(m), because it has only
one loop that runs for m� 1 iterations in order to compute F [m].

The main algorithm calls the helper function from within two for-loops, but they are not nested. Therefore, the computational
complexity of the algorithm can be expressed as follows:

b
p
ncX

m=2

O(m) +

u(n)X

j=1

O(bn/jc) = O

0

@
b
p
ncX

m=2

m

1

A+O

0

@
u(n)X

j=1

bn/jc

1

A . (97)

The first sum in the right-hand side of this formula is in O(n). That is,

b
p
ncX

m=2

m =
(b
p
nc � 1)(b

p
nc+ 2)

2
=

n

2
+
b
p
nc
2
� 1 = O(n). (98)

The second sum in the right-hand side of (97) is in O(n log n). This can be shown as follows:

u(n)X

j=1

bn/jc
b
p
ncX

j=1

bn/jc
b
p
ncX

j=1

n

j
= n

0

@
b
p
ncX

j=1

1

j

1

A . (99)

In this formula, the left-most inequality follows from Lemma 5, which implies that u(n) b
p
nc. The derivation can be

continued using Lemma 10, which implies that:
b
p
ncX

j=1

1

j
= O

�
logb
p
nc
�
= O(log n). (100)

Therefore,
u(n)X

j=1

bn/jc = O(n log n). (101)

Combining formulas (98) and (101) with formula (97) proves that Algorithm S10 runs in O(n log n) time.

17

S10. COMPUTATIONAL COMPLEXITY ANALYSIS OF FAREYLENGTHC
This section analyzes the computational complexity of FAREYLENGTHC (i.e., Algorithm 5) and proves that it runs in O(n3/4)

time and uses O(
p
n) memory. It also proves that the elements of the lookup table are computed in such a way that they are

always available when the helper function needs them.
The following theorem gives the time complexity of the helper function UPDATELOOKUPTABLE (i.e., Algorithm 6).

Theorem 15. Algorithm 6 runs in O(
p
m) time.

Proof. This algorithm implements a helper function that uses formula (5) to compute the value of Fm. That is,

|Fm| = (m+ 3)m

2
�

u(m)X

k=2

��Fbm/kc
���

b
p
mcX

k=1

✓�
m

k

⌫
�
�

m

k + 1

⌫◆
· |Fk|. (102)

This function has two for-loops, but they are not nested. These loops implement the first and the second summation in the
formula, respectively. One call to this function computes exactly one new entry in the lookup table F . The main algorithm
(i.e., Algorithm 5) ensures that all calls to this function are performed in the correct order such that the values from F that it
uses are already set because they were computed earlier (see the proofs on the next page).

The computational complexity of each iteration in either of the two loops is in O(1). Thus, the computational complexity
of the helper function can be determined as follows:

O

0

@
u(m)X

k=2

1 +

b
p
mcX

k=1

1

1

A = O
�
u(m)� 1 + b

p
mc
�
= O

�p
m
�
. (103)

This result follows from Lemma 5, which proves that u(m) b
p
mc. This, in turn, implies that u(m)�1+ b

p
mc < 2b

p
mc.

Therefore, this function runs in O(
p
m) time, where m is its argument, i.e., not the n for which the main algorithm is

called.

The next theorem establishes the time and space complexity of FAREYLENGTHC (i.e., Algorithm 5).

Theorem 16. Algorithm 5 runs in O(n3/4) time and uses O(
p
n) memory.

Proof. The algorithm calls the helper function from inside two for-loops, which are not nested. The first loop iterates over m
from 2 to b

p
nc. The second loop iterates over j from u(n) down to 1. Thus, the overall computational complexity can be

expressed as follows:

b
p
ncX

m=2

O
�p

m
�
+

u(n)X

j=1

O

 s�
n

j

⌫!
= O

0

@
b
p
ncX

m=2

p
m

1

A+O

0

@
u(n)X

j=1

s�
n

j

⌫1

A . (104)

The first sum in the right-hand side of (104) can be bounded from above as follows:
b
p
ncX

m=2

p
m

b
p
ncX

m=2

q
b
p
nc

b
p
ncX

m=2

qp
n < b

p
nc
qp

n
p
n

qp
n = n

1/2
n
1/4 = n

3/4
. (105)

This result implies that

O

0

@
b
p
ncX

m=2

p
m

1

A = O(n3/4). (106)

The second sum in the right-hand side of (104) can also be bounded from above:
u(n)X

j=1

s�
n

j

⌫

b
p
ncX

j=1

s�
n

j

⌫

b
p
ncX

j=1

r
n

j
=
p
n

b
p
ncX

j=1

1p
j
=
p
nO(

q
b
p
nc) = O(n3/4), (107)

which follows from Lemmas 5 and 11.
To summarize, we showed that both terms in the right-hand side of (104) are in O(n3/4). Therefore, the computational

complexity of FAREYLENGTHC is also in O(n3/4). The algorithm fills b
p
nc entries of the lookup table F in the first for-loop

and u(n) entries in the second for-loop. Because u(n) b
p
nc, the space complexity of the algorithm is in O(

p
n).

18

Algorithm 5 uses the helper function to compute the value of |Fm| for each integer m in two lists. The first list has
b
p
nc�1 elements and consists of the numbers 2, 3, . . . , b

p
nc. The second list has u(n) elements and consists of the numbers⌅

n
u(n)

⇧
,
⌅

n
u(n)�1

⇧
, ...,

⌅
n
1

⇧
. The algorithm processes the first list sequentially starting from 2. After that, it processes the second

list sequentially starting from bn/u(n)c. In total, the algorithm processes b
p
nc � 1 + u(n) 2b

p
nc values of m.

Let Q(m) be the set of keys in the lookup table F that are used by the first for-loop of the helper function (i.e., Algorithm 6).
For a given value of m this set is equal to:

Q(m) =

⇢j
m

2

k
,

j
m

3

k
, . . . ,

�
m

u(m)

⌫�
. (108)

Let K(m) be the set of keys in the lookup table F that are used by the second for-loop of the helper function. That is,

K(m) = {1, 2, . . . , b
p
mc}. (109)

The following theorem helps us to prove that all entries in the lookup table F that the helper function uses to compute the
value of F [m] are already set when the function is called in the first for-loop of Algorithm 5.

Theorem 17. Let m be an integer that is greater than 1. Then, both Q(m) and K(m) are subsets of the set of all integers
in the interval [1,m� 1]. More formally,

Q(m) ✓ {1, 2, . . . ,m� 1}, (110)

K(m) ✓ {1, 2, . . . ,m� 1}. (111)

Proof. The elements of the set Q(m) fall between 1 and bm/2c, which does not exceed m � 1. The reason for this is that
u(m) � 2 when m � 2, i.e., the maximum element of Q(m) is bm/2c. The minimum element is equal to bm/u(m)c, which
is a positive integer. Thus, Q(m) ✓ {1, 2, . . . ,m� 1}.

The elements of the set K(m) fall between 1 and b
p
mc. Also, the value of b

p
mc does not exceed m � 1 for m � 2.

Therefore, K(m) ✓ {1, 2, . . . ,m� 1}, as required.

Corollary 18. All entries in the lookup table F that are required for computing F [m] during each iteration of the first for-loop
in FAREYLENGTHC have already been computed.

Proof. This follows from Theorem 17. The algorithm sets F [1] to 2 and then loops over the values of m in the list
(2, 3, . . . , b

p
nc) in increasing order. Thus, when the algorithm reaches the iteration that computes F [m], the lookup table

already contains the entries for the keys in the set {1, 2, . . . ,m � 1}. Therefore, Theorem 17 implies that all prerequisite
elements for computing F [m] are already computed when the helper function is called to calculate it.

Let Y (j) be the set of keys in the lookup table F that are already computed by Algorithm 5 before it calls the helper
function in the second for-loop with the parameter m equal to bn/jc. More formally,

Y (j) = {1, 2, . . . , b
p
nc} [

⇢�
n

u(n)

⌫
,

�
n

u(n)� 1

⌫
, . . . ,

�
n

j + 1

⌫�
. (112)

Then, the following theorem helps us to prove that the second for-loop in Algorithm 5 also uses only those entries of F that
have already been set.

Theorem 19. Let n be a positive integer and let j be an integer between 1 and u(n). Then,

K(bn/jc) ✓ Y (j), (113)

Q(bn/jc) ✓ Y (j). (114)

Proof. Clearly, formula (113) holds because

K(bn/jc) =
�
1, 2, . . . ,

⌅p
n/j
⇧
✓ {1, 2, . . . , b

p
nc} ✓ Y (j). (115)

To prove formula (114), suppose that k 2 Q(bn/jc). Then, there is an integer q such that q 2 {2, 3, . . . , u(bn/jc)} and
k =

j
bn/jc

q

k
. Lemma 8 implies that k =

⌅
n
jq

⇧
. If k b

p
nc, then k 2 Y (j) because, by definition, Y (j) includes all integers

between 1 and b
p
nc. If k > b

p
nc, then k � b

p
nc + 1, which implies that n

jq � b
p
nc + 1. Therefore, jq n

b
p
nc+1

.

Because the value of the product jq is an integer, jq
j

n
b
p
nc+1

k
= u(n). Also, from q � 2 it follows that jq > j. Therefore,

jq 2 {j + 1, j + 2, . . . , u(n)}, and, thus,
�
n

jq

⌫
2
⇢�

n

u(n)

⌫
,

�
n

u(n)� 1

⌫
, . . . ,

�
n

j + 1

⌫�
. (116)

This implies that k 2 Y (j), which shows that Q(bn/jc) ✓ Y (j) and completes the proof of the theorem.

19

Corollary 20. For each iteration of the second for-loop in Algorithm 5, all entries in the lookup table F that are necessary
for computing the value of

��Fbn/jc
�� are already available when the helper function is called to compute it.

Proof. This corollary follows from Theorem 19. After the end of the first for-loop of Algorithm 5 the values of |Fm| for
m 2 {1, 2, . . . , b

p
nc} are already computed. The second for-loop iterates over values of j from the list (u(n), u(n)�1, . . . , 1)

in decreasing order starting from u(n). Thus, the entries for keys from the set Y (j) are already set when the control flow enters
the helper function with m = bn/jc. The function uses keys from the sets Q(bn/jc) and K(bn/jc) to compute

��Fbn/jc
��.

Because both Q(bn/jc) and K(bn/jc) are subsets of Y (j), all required entries are available and the helper function can
compute

��Fbn/jc
�� successfully.

S11. RECURSIVE VERSION OF FAREYLENGTHC
Algorithm S12 gives the pseudo-code for a recursive version of Algorithm 5 (i.e., FAREYLENGTHC). This version is a direct

implementation of formula (5), which is replicated below:

|Fn| =
(n+ 3)n

2
�

u(n)X

k=2

��Fbn/kc
���

b
p
ncX

k=1

✓�
n

k

⌫
�
�

n

k + 1

⌫◆
· |Fk|. (117)

In this case, however, the required values of |Fk| and |Fbn/kc| are computed with recursive calls. These intermediate values
are stored in the lookup table F . Similarly to the iterative version, this algorithm also runs in O(n3/4) time and uses O(

p
n)

memory. This can be shown by unpacking the recursive calls, which leads to the iterative version described in the main text.

Algorithm S12. Recursive algorithm for the length of the Farey sequence Fn. Runs in O(n3/4) time and uses O(
p
n) memory.

1: function FAREYLENGTHCR(n, F = null)
2: r ISQRT(n); // call Algorithm S4 to compute b

p
nc exactly

3: u
⌅

n
r+1

⇧
;

4: if F is null then
5: F LOOKUPTABLE(n, r + 1); // initialize the lookup table F for memoization
6: F [1] 2; // set F [1] to |F1| = 2
7: end if
8: if n in F then
9: return F [n];

10: end if
11: s 0;
12: for k 2 to u do
13: s s+ FAREYLENGTHCR

�⌅
n
k

⇧
, F
�
;

14: end for
15: for k 1 to r do
16: s s+

�⌅
n
k

⇧
�
⌅

n
k+1

⇧�
· FAREYLENGTHCR(k, F);

17: end for
18: F [n] (n+ 3)n

2
� s; // update the lookup table

19: return F [n];
20: end function

20

S12. COMPUTATIONAL COMPLEXITY ANALYSIS OF FAREYLENGTHD

FAREYLENGTHD can be viewed as a mixture between FAREYLENGTHA and FAREYLENGTHC. It picks an optimal point
to divide the computation between these two algorithms as described below.

In order to compute |Fn|, FAREYLENGTHC (i.e., Algorithm 5) computes |Fm| for values of m that can be split into two
sets M1 and M2 that correspond to the two for-loops in the algorithm. That is, the first for-loop computes the length of Fm

for m 2M1 and the second for-loop computes the length of Fm for m 2M2. The set M1 includes all integers between 1 and
b
p
nc, i.e.,

M1 =
�
1, 2, . . . , b

p
nc

. (118)

The set M2 is defined by the following formula:

M2 =
�⌅

n
u(n)

⇧
,
⌅

n
u(n)�1

⇧
, . . . ,

⌅
n
2

⇧
,
⌅
n
1

⇧
. (119)

Because u(n) =
⌅

n
b
p
nc+1

⇧
, it follows that

⌅
n

u(n)

⇧
� b
p
nc+1. Thus, each element of M2 falls between b

p
nc+1 and n. This

set is sparse because it has u(n) elements, but the total number of integers between b
p
nc + 1 and n is equal to n � b

p
nc.

In other words, u(n) b
p
nc (see Lemma 5), but n� b

p
nc > b

p
nc for each n > 2.

The first for-loop in FAREYLENGTHC computes the values of |Fm| for m 2M1 in O(n3/4) time. However, this is not the
fastest way of performing this computation because FAREYLENGTHA (i.e., Algorithm 1) solves a similar problem in linear
time with respect to the number of computed values of |Fm|. That is, instead of O(n3/4) time it is possible to perform this
computation in O(

p
n) time.

Simply speeding up the first for-loop in Algorithm 5 won’t affect its overall time complexity class because the second
for-loop still runs in O(n3/4) time. The second for-loop uses the recursive formula for computing the values of |Fm| for each
m in the set M2. Because M2 is sparse, switching to a sieve-based algorithm instead of the recursive formula won’t speed up
the computation of the required values of |Fm| for m > b

p
nc.

Nevertheless, it is possible to change the split between the sets M1 and M2 so that the sieve-based approach processes more
values of m, including some values that are greater than b

p
nc. Because that approach computes the values of |Fm| for each

integer m in the designated interval, it would still compute |Fm| for each m 2 M1. In other words, the modified algorithm
can run faster despite computing more values of |Fm| than required for computing |Fn| using the recursive formula.

Let M⇤
1 (x) be a function that maps a real number x to the following set:

M
⇤
1 (x) = {1, 2, . . . , bxc}. (120)

Also, let û(x) be the following function:

û(x) =

�
n

bxc+ 1

⌫
. (121)

Furthermore, let M⇤
2 (x) be another function that maps a real number to a set, which is defined as follows:

M
⇤
2 (x) =

⇢�
n

û(x)

⌫
,

�
n

û(x)� 1

⌫
, . . . ,

j
n

1

k�
. (122)

Then, M1 = M
⇤
1 (
p
n) and M2 = M

⇤
2 (
p
n).

Using FAREYLENGTHA we can compute |Fm| for each m 2M
⇤
1 (x) in O(x) time. Using FAREYLENGTHC, we can compute

|Fm| for each m 2M
⇤
2 (x) in O(g(x)) time, where g(x) is the following function:

g(x) =
X

m2M⇤
2 (x)

b
p
mc =

û(x)X

j=1

⌅p
n/j
⇧
. (123)

The value of g(x) can be bounded from above as follows:

g(x) =

û(x)X

j=1

�r
n

j

⌫

bn
x cX

j=1

�r
n

j

⌫

bn
x cX

j=1

r
n

j
=
p
n

bn
x cX

j=1

r
1

j
=
p
n

bn
x cX

j=1

1p
j
. (124)

Lemma 11 implies that the sum in the right-hand side of this inequality is in O(
p
bn/xc). In other words,

g(x)
p
n

bn
x cX

j=1

1p
j
=
p
nO
�p
bn/xc

�
=
p
nO
�p

n/x
�
= O

�
n/
p
x
�
. (125)

21

The time complexity of computing |Fm| for each m 2 M
⇤
1 (x) [M

⇤
2 (x) by an algorithm that uses the sieving approach to

process the set M⇤
1 (x) and the recursive approach to process M

⇤
2 (x) is in O(f(x)), where f(x) is the following function:

f(x) = x+
np
x

= x+ nx
� 1

2 . (126)

What is the optimal value of x for which f(x) is minimized? Differentiating f(x) leads to the following formula for its
first derivative:

f
0(x) = 1� 1

2
nx

� 3
2 . (127)

The equation f
0(x) = 0 has only one root at x = (n/2)2/3. Multiplying this solution by a constant factor that is independent of

n does not affect the time complexity class of the overall computation because any constant factor is subsumed by the big-O
notation. For simplicity, the optimal split x⇤ can be set to bn2/3c.

FAREYLENGTHD is the result of the modifications to FAREYLENGTHC described above. It replaces the first for-loop with
FAREYLENGTHA in order to process the set M⇤

1 (bn2/3c). It also modifies the second for-loop to start from v =
⌅
n/
�
b 3p

n2c+1
�⇧

instead of u =
⌅
n/
�
b
p
nc+1

�⇧
in order to compute |Fm| for each m in the set M⇤

2 (bn2/3c). The resulting algorithm runs in
O(n2/3) time because each of these two sub-parts requires O(n2/3) time. The space complexity of this algorithm is determined
by the sieve-based approach that processes the set M⇤

1 (bn2/3c). Because this step requires holding arrays of length bn2/3c in
memory, FAREYLENGTHD uses O(n2/3) memory.

S13. ALTERNATIVE VERSION OF FAREYLENGTHD
Algorithm S13 gives the pseudo-code for an alternative version of Algorithm 7 (i.e., FAREYLENGTHD). This version has

the same run-time complexity and the same memory complexity as the one described in the main paper. It is shorter than
the other algorithm, but updates more entries of the lookup table than necessary to compute |Fn|. It also obscures the link to
Algorithm 8 (i.e., FAREYLENGTHE), which improves the space complexity. Additional details are provided in the main paper.

Algorithm S13. Alternative version of Algorithm 7. Runs in O(n2/3) time and uses O(n2/3) memory.

1: function FAREYLENGTHD2(n)
2: c ICBRT(n2);
3: v

⌅
n

c+1

⇧
;

4: F LOOKUPTABLE(n, c+ 1);
5: (P,Lp) LINEARSIEVE(c);
6: ' COMPUTETOTIENTS(c, Lp);
7: s 1;
8: for m 1 to c do
9: s s+ '[m];

10: F [m] s;
11: end for
12: for j v down to 1 do
13: UPDATELOOKUPTABLE(F,

⌅
n/j
⇧
);

14: end for
15: return F [n];
16: end function

22

S14. COMPUTATIONAL COMPLEXITY ANALYSIS OF FAREYLENGTHE
The following theorem proves the time and space complexity of FAREYLENGTHE (i.e., Algorithm 8).

Theorem 21. Algorithm 8 runs in O(n2/3) and uses O(
p
n) memory.

Proof. The time complexity of Algorithm 8 is in the same complexity class as Algorithm 7, i.e., O(n2/3). More specifically,
FAREYLENGTHE starts by processing the integers in the interval [1, b

p
nc] using the linear sieve and Algorithm S3. Next, the

algorithm enumerates all b
p
nc-smooth numbers in the interval [b

p
nc+ 1, bn2/3c] using Algorithm 3 and adds their totients

to the corresponding elements of the array B. This step requires O(n2/3) time and uses O(
p
n) memory. Next, the algorithm

enumerates all numbers that are not b
p
nc-smooth in the interval [b

p
nc + 1, bn2/3c] using Algorithm 4 and also adds their

totients to the corresponding elements of B. This step requires O(n2/3) time and O(
p
n) memory because it uses the sieve of

Atkin19 to find the prime numbers between b
p
nc+1 and bn2/3c. Finally, the algorithm computes the value of |Fm| for each m

in the set
�⌅

n
v(n)

⇧
,
⌅

n
v(n)�1

⇧
, . . . ,

⌅
n
1

⇧
using the helper function. Similarly to FAREYLENGTHD, this step requires O(n2/3)

time and O(
p
n) memory. Therefore, FAREYLENGTHE runs in O(n2/3) time and its space complexity is O(

p
n).

The following three theorems prove that the computation in Algorithm 8 is correct. They show that the set of integers in the
interval [↵,�] that the algorithm enumerates is the correct set, where ↵ = b

p
nc+ 1 and � = bn/(v(n) + 1)c. The theorems

also show that the formula for mapping k to the index i of the array element B[i] is also correct for each integer k in [↵,�].
The first theorem shows that the set S(u(n), n), which consists of all integers j such that

⌅
n
j

⇧
= u(n), includes the value

of b
p
nc + 1. This implies that ↵ = b

p
nc + 1 is a suitable split point for switching between the linear sieve approach and

enumeration of smooth and non-smooth integers. For this value of ↵ the algorithm computes the value of B[0] correctly because
the split point is an element of S(u(n), n) so that all integers in S(u(n), n) are accounted for either by the computation of
|F1|, |F2|, . . . , |Fb

p
nc| using the linear sieving approach or by enumerating smooth and non-smooth numbers.

Theorem 22. Let S(k, n) be a set of all positive integers m such that the value of
⌅
n
m

⇧
is equal to k. That is,

S(k, n) =
�
m 2 N s.t.

⌅
n
m

⇧
= k

. (128)

Then, b
p
nc+ 1 2 S(u(n), n). Moreover, the set S(u(n), n) is a contiguous range of integers such that

S(u(n), n) =
�⌅

n
u(n)+1

⇧
+ 1,

⌅
n

u(n)+1

⇧
+ 2, . . . ,

⌅
n

u(n)

⇧
, (129)

minS(u(n), n) =
⌅

n
u(n)+1

⇧
+ 1 b

p
nc+ 1 maxS(u(n), n) =

⌅
n

u(n)

⇧
. (130)

Proof. Formula (129) follows from Lemma 4 after plugging u(n) as the value of k in formula (29). Formula (130) follows
from (129) and the definitions for the set S(u(n), n) and the function u(n). That is, b

p
n+1c 2 S(u(n), n) because S(u(n), n)

is a contiguous range of integers. Thus, b
p
n+ 1c lies between its minimum and maximum elements.

The second theorem shows that the endpoint � =
⌅

n
v(n)+1

⇧
that Algorithm 8 uses as the upper limit for enumerating smooth

and non-smooth numbers is the correct endpoint. That is, it shows that the enumeration process covers all elements of the sets
S(u(n)� 1, n), S(u(n)� 2, n), . . . , S(v(n) + 1, n), which is required for computing the elements of the array B correctly.

Theorem 23. The union of the sets S(u(n) � 1, n), S(u(n) � 2, n), . . . , S(v(n) + 1, n) is equal to the contiguous range of
integers between

⌅
n

u(n)

⇧
+ 1 and

⌅
n

v(n)+1

⇧
, where v(n) =

⌅
n/
�
b 3p

n2c+1
�⇧

. More formally,

u(n)�1[

k=v(n)+1

S(k, n) =
�⌅

n
u(n)

⇧
+ 1,

⌅
n

u(n)

⇧
+ 2, . . . ,

⌅
n

v(n)+1

⇧
. (131)

Proof. This theorem follows from equation (29) in the statement of Lemma 4, which implies that the set S(u(n)� 1, n) is a
contiguous range of integers that starts from

⌅
n

u(n)

⇧
+ 1, the set S(u(n)� 2, n) is a contiguous range of integers that follows

S(u(n) � 1, n) without any gaps in-between, and so forth until S(v(n) + 1, n). The lemma also shows that the maximum
element of S(v(n) + 1, n) is equal to

⌅
n

v(n)+1

⇧
.

The last theorem proves that the formula i = u(n)�
⌅
n
m

⇧
that Algorithm 8 uses to compute the value of the index for the

array B in the visitor function correctly identifies the zero-based indices of these elements. This theorem implies that i = 0
corresponds to S(u(n), n), i = 1 corresponds to S(u(n) � 1, n), etc., until i = w(n), which maps to S(v(n) + 1, n), where
w(n) = u(n)� v(n)� 1.

Theorem 24. Let m and n be two positive integers and let m be an element of the set S(k, n). Then, k = u(n) � i, where
i = u(n)�

⌅
n
m

⇧
.

Proof. The proof follows from the definition of the set S(k, n) in Lemma 4. That is, m 2 S(k, n) implies that
⌅
n
m

⇧
= k.

Therefore, i = u(n)�
⌅
n
m

⇧
= u(n)� k. Thus, k = u(n)� i.

23

S15. RESULTS FOR THE NUMBER OF CPU INSTRUCTIONS

In addition to the run time and memory usage results described in the main paper, we also measured the number of CPU
instructions that the code executed (see Methods). Figure S4a visualizes these additional results for the C implementations of
algorithms C, D, and E. Figure S4b shows the results obtained with the Python versions of these three algorithms. In both
plots the value of n was varied from 100 to 1014 in increments of 0.5 on the decimal logarithm scale. Figure S4c lists the
slopes and intercepts for six lines that were fitted to the six curves in (a) and (b) using least squares. The fitting procedure
used the region between n = 1010 and n = 1014.

These results show that the number of CPU instructions agrees with the theoretical time complexities. Each slope is within
0.01 of the corresponding power of n in the time complexity class, i.e., 3/4 for algorithm C and 2/3 for algorithms D and E.
More specifically, the slopes for the two programming language implementations of algorithm C are equal to 0.7494 and
0.7520, respectively. For algorithm D they are equal to 0.6672 and 0.6754. For algorithm E they are equal to 0.6655 and
0.6744.

This precise agreement with the theory suggests that the run time results reported in Figure 8 may be slightly higher than
the theoretical predictions due to the practical aspects of running the code on modern processors. One of them could be
increasingly inaccurate branch prediction as n increases. Another could be a greater number of cache misses for larger n.
Because the time spent waiting for the cache to be updated does not affect the CPU instruction counter for the current process,
this metric agrees with the theory very well.

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

105

106

107

108

109

1010

1011

1012

1013

1014

1015

N
u

m
b

e
r

o
f

C
P

U
 I
n

s
tr

u
c
ti

o
n

s

Algorithm C
Algorithm D
Algorithm E

(a) Number of instructions executed by the C code.

100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

Order of the Farey Sequence (n)

105

106

107

108

109

1010

1011

1012

1013

1014

1015

N
u

m
b

e
r

o
f

C
P

U
 I
n

s
tr

u
c
ti

o
n

s

Algorithm C
Algorithm D
Algorithm E

(b) Number of instructions executed by the Python code.

Alg. C Code Python Code
Slope Intercept Slope Intercept

C 0.7494 2.7289 0.7520 4.3427
D 0.6672 2.7017 0.6754 4.2639
E 0.6655 2.9445 0.6744 4.3561

(c) Lines fitted to the curves in (a) and (b) for n � 1010.

Figure S4: Number of CPU instructions executed by algorithms C, D, and E. The plots in (a) show the results for the C
implementations of the algorithms. The results for the Python versions are shown in (b). The table in (c) lists the slopes and
intercepts for lines fitted to the six curves in (a) and (b) in the region between n = 1010 and n = 1014.

24

	Introduction
	Overview and Formulas
	Related Work
	Algorithm A
	Algorithm B
	Algorithm C
	Algorithm D
	Algorithm E
	Results
	Conclusion
	References

