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ABSTRACT

This paper shows that the inverse chirp z-transform (ICZT), which generalizes the inverse fast Fourier transform (IFFT) off the
unit circle in the complex plane, can also be used with chirp contours that perform partial or multiple revolutions on the unit
circle. This is done as a special case of the ICZT, which in algorithmic form has the same computational complexity as the
IFFT, i.e., O(n logn). Here we evaluate the ICZT algorithm for chirp contours on the unit circle and show that it is numerically
accurate for large areas of the parameter space. The numerical error in this case depends on the polar angle between two
adjacent contour points. More specifically, the error profile for a transform of size n is determined by the elements of the Farey
sequence of order n−1. Furthermore, this generalization allows the use of non-orthogonal frequency components, thus lifting
one of the main restrictions of the IFFT.

Introduction
The Inverse Chirp Z-Transform (ICZT) is a generalization of the Inverse Fast Fourier Transform (IFFT), which is one of the
most popular and useful algorithms1, 2. The sampling points used by the ICZT are distributed along a logarithmic spiral contour
in the complex plane. The shape of this contour is determined by the complex parameters A and W such that the k-th contour
point is equal to AW−k, where k is a zero-based index (see Supplementary Section S1).

This paper studies the properties of the ICZT for the special case when the magnitudes of A and W are equal to 1, which
restricts the contour to lie on the unit circle. Unlike the IFFT, the ICZT can work with a contour that performs a partial
revolution, a full revolution, or more than one revolution. The effect of this generalization is that the frequency components
specified by the sampling points are no longer restricted to be harmonically related or orthogonal. Lifting this restriction makes
it possible to use the spectrum more efficiently.

Many applications require both signal analysis and signal synthesis. Traditionally, these tasks have been performed with
the FFT and IFFT algorithms that were published in 19653. Both algorithms run in O(n log n) time, which makes them fast
and practical. The Chirp Z-Transform (CZT), which generalizes the Fast Fourier Transform (FFT) and also runs in O(n log n)
time, was discovered in 19694–9. The inverse algorithm, however, remained elusive for the next 50 years. The ICZT algorithm
also runs in O(n log n) time10, where n is the size of the transform. This enables applications in which the CZT is paired with
the ICZT similarly to how the FFT is often paired with the IFFT. Application domains that could benefit from this include
signal processing, electronics, medical imaging, radar, sonar, wireless communications, and others.

Figure 1 shows three examples of 16-point chirp contours that lie on the unit circle. The spacing between the 16 points is
different in each plot. From left to right, the angular interval between neighboring points is equal to: 5.625◦, 11.25◦, and 22.5◦.
The last contour corresponds to the FFT after reordering the output vector elements (see Supplementary Sections S1 and S2).

Figure 2 shows the numerical error for the sequential application of the CZT followed by the ICZT for a transform of
size 16. Each point represents the average numerical error for 10 randomly generated unit-length complex input vectors. The
numerical error is plotted as a function of the polar angle of the transform parameter W . The red points indicate the numerical
error for the three contours from Fig. 1. For these contours, the error decreases as the samples cover larger fractions of the
circle. The error for the rightmost contour is very small and is close to the machine epsilon. Increasing the angle of W above
22.5◦ eventually wraps the chirp contour over the unit circle more than once (see Fig. 3). The behavior of the error in those
cases is more complicated and is related to Farey sequences.

Related Work
There have been several unsuccessful attempts11–14 to derive an efficient inverse chirp z-transform (ICZT) algorithm. Most
of these attempts have focused on the special case of inverting the CZT for chirp contours on the unit circle. In one case13, a
modified version of the forward transform, in which the circular chirp contour was traversed in the opposite direction, was
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Figure 1. Three chirp contours on the unit circle, each with 16 points. The angular interval between any two adjacent points
is: 90◦/16, 180◦/16, and 360◦/16. The starting point of each contour is indicated with an unfilled circle.
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Figure 2. Absolute numerical error for 16-point chirp contours, shown as a function of the polar angle of W , discretized at
360◦/2048. Each point represents the average error for ten random input vectors, each of unit length. The three red points
indicate the errors for the three chirp contours shown in Fig. 1.

presented as the ICZT transform. This approach, however, does not really invert the forward CZT in the general case, i.e., for
logarithmic spiral contours. This approach also doesn’t work for all chirp contours that lie on the unit circle, because the inverse
of the Vandermonde matrix used by the forward transform is not, in general, a Vandermonde matrix. Traversing the contour in
reverse order is equivalent to using another Vandermonde matrix as the transformation matrix. Our paper provides experimental
results that show that this method does not work.

The literature describes two algorithms that generalize the FFT on the unit circle: the Chirp Transform Algorithm (CTA)15

and the Fractional Fourier Transform (FRFT)16, 17. Both algorithms are special cases of the CZT for chirp contours that lie on
the unit circle, but the FRFT contours always start at the complex point (1, 0). It has been estimated18 that the inverse chirp
transform can be performed in 2M(n) +O(n), where M(n) can be taken in O(n log(n) log(log(n))).

As described in Supplementary Section S3, the CTA and the FRFT can each be implemented with a single call to the CZT
algorithm. Supplementary Section S3 also describes how to implement the inverse CTA and the inverse FRFT algorithms,
which have not been described in the literature until now. We named these algorithms ICTA and IFRFT. They are implemented
as special cases of the ICZT algorithm. Both algorithms run in O(n log n) time and use O(n) memory.

The FFT and IFFT are two very similar algorithms. They are also very stable numerically. The reason for this is that the
harmonically-spaced frequency components that they use are orthogonal. This condition doesn’t hold for the CZT and the
ICZT, which explains why the ICZT algorithm is substantially different from the CZT algorithm. The numerical accuracy of
the ICZT depends on the values of its parameters A and W .

A different, but related, problem is generalizing the FFT or the IFFT to nonequispaced sampling points on the unit circle19.
This problem is solved with approximate or iterative algorithms19–22. The accuracy and speed of approximate algorithms
depend on the desired precision20, which is often controlled by an oversampling parameter22. The computational complexity of
iterative algorithms19, 22 depends on the condition number of the problem, i.e., they may require many iterations to converge. In
contrast, the CZT and ICZT algorithms are exact and their computational complexity depends only on the problem size.
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Summary of the CZT and ICZT Algorithms
Forward CZT. The chirp z-transform (CZT) is defined7 as follows:

Xk =

N−1∑
j=0

xj A
−jW jk, k = 0, 1, . . . ,M−1, (1)

where x is the input vector of length N and X is the output vector of length M . Using matrix notation this can be stated as:

X = WAx. (2)

In this formula, A is the following diagonal matrix

A = diag
(
A−0, A−1, . . . , A−(N−1)

)
(3)

and W is the following Vandermonde matrix:

W =


W 0·0 W 1·0 . . . W (N−1)·0

W 0·1 W 1·1 . . . W (N−1)·1

...
...

. . .
...

W 0·(M−1) W 1·(M−1) . . . W (N−1)·(M−1)

. (4)

Using Bluestein’s substitution9, i.e., jk =
(
j2 + k2 − (k− j)2

)
/ 2, the matrix W can be expressed as W = PŴQ. That

is, it is equal to a product of three matrices where Ŵ is the following Toeplitz matrix

Ŵ =


W
− (0−0)2

2 W
− (0−1)2

2 . . . W
− (0−(N−1))2

2

W
− (1−0)2

2 W
− (1−1)2

2 . . . W
− (1−(N−1))2

2

...
...

. . .
...

W
− ((M−1)−0)2

2 W
− ((M−1)−1)2

2 . . . W
− ((M−1)−(N−1))2

2

 (5)

and P and Q are the following two diagonal matrices:

P = diag
(
W

02

2 ,W
12

2 , . . . ,W
(M−1)2

2

)
and Q = diag

(
W

02

2 ,W
12

2 , . . . ,W
(N−1)2

2

)
. (6)

Thus, the CZT algorithm can be viewed as an efficient implementation of the following matrix equation:

X = P
(
Ŵ
(
Q
(
Ax

)))
. (7)

By exploiting the structure of the matrices, the output vector X can be computed in O(n log n) time, where n = max(M,N).
Algorithm S5 in Supplementary Section S2 gives the pseudo-code for the forward CZT.

Inverse CZT. In the square case, i.e., when M = N , the ICZT can be stated10 by inverting Eq. (7), which leads to:

x = A−1Q−1 Ŵ−1 P−1 X. (8)

Because A, Q, and P are diagonal matrices, it is straightforward to compute the inverse matrices A−1, Q−1, and P−1.
The symmetric Toeplitz matrix Ŵ can be inverted10 using a special case of the Gohberg–Semencul formula23, 24. In other
words, the inverse matrix Ŵ−1 is given by:

Ŵ−1 =
1

u0

(
AAT −DTD

)
, (9)

where A is a lower-triangular Toeplitz matrix and D is an upper-triangular Toeplitz matrix. Both A and D are defined by the
same generating vector u = (u0,u1,u2, . . . ,un−1), i.e.,

A =


u0 0 0 . . . 0
u1 u0 0 . . . 0
u2 u1 u0 . . . 0
...

...
...

. . .
...

un−1 un−2 un−3 . . . u0

, D =


0 un−1 un−2 . . . u1
0 0 un−1 . . . u2
0 0 0 . . . u3
...

...
...

. . .
...

0 0 0 . . . 0

. (10)
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The value of uk for each k ∈ {0, 1, . . . , n−1} is given by:

uk = (−1)k W
2k2−(2n−1)k+n(n−1)

2

n−k−1∏
s=1

(W s − 1)

k∏
s=1

(W s − 1)

. (11)

Combining these results leads to the following closed-form solution for the ICZT:

x =
1

u0
A−1Q−1

(
AAT −DTD

)
P−1 X. (12)

Algorithm 1 computes this expression in O(n log n) time by exploiting the structure of the matrices. See reference 10 for more
details, proofs, and the pseudo-code for TOEPLITZMULTIPLYE and all of its dependencies.

Algorithm 1. ICZT algorithm. Runs in O(n log n) time.
1: ICZT(X, N, W, A)
2: M ← LENGTH(X);
3: if M 6= N then
4: ERROR(“M must be equal to N .”);
5: end if
6: n← N ;
7: x← EMPTYARRAY(n);
8: for k ← 0 to n− 1 do

9: x[k]←W−
k2

2 ·X[k]; // multiply P−1 and X
10: end for
11: // Precompute the necessary polynomial products.
12: p← EMPTYARRAY(n);
13: p[0]← 1;
14: for k ← 1 to n− 1 do
15: p[k]← p[k−1] · (W k − 1);
16: end for
17: // Compute the generating vector u.
18: u← EMPTYARRAY(n);
19: for k ← 0 to n− 1 do

20: u[k]← (−1)k W
2k2−(2n−1)k+n(n−1)

2

p[n−k−1] · p[k]
;

21: end for
22: z← ZEROVECTOR(n); // vector with n zeros
23: û← (0,u[n−1],u[n−2], . . . ,u[2],u[1]);
24: ũ← (u[0], 0, 0, . . . , 0︸ ︷︷ ︸

n−1 zeros

);

25: x′ ← TOEPLITZMULTIPLYE
(
û, z, x

)
; // D

26: x′ ← TOEPLITZMULTIPLYE
(
z, û, x′

)
; // DT

27: x′′ ← TOEPLITZMULTIPLYE
(
u, ũ, x

)
; // AT

28: x′′ ← TOEPLITZMULTIPLYE
(
ũ, u, x′′

)
; // A

29: for k ← 0 to n− 1 do

30: x[k]← x′′[k]− x′[k]

u[0]
; // subtract and divide by u0

31: end for
32: for k ← 0 to n− 1 do

33: x[k]← Ak ·W−
k2

2 · x[k]; // multiply by A−1Q−1

34: end for
35: return x;
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Farey sequences and ICZT singularities
This section proves that the singularities of the ICZT on the unit circle are related to the elements of the Farey sequence of
order n− 1, where n is the size of the transform.

Definition 1. A Farey sequence of order n is denoted by Fn. It consists of all rational numbers in the interval [0, 1] with an
irreducible fraction representation p/q that satisfies the inequality q ≤ n, where n is a positive integer.

A fraction p/q is irreducible if there is no other fraction a/b for which |a| < |p| or |b| < |q| such that p/q = a/b. For example,
0/1 is irreducible, but 0/5 is not. To give another example, both 2/4 and 3/6 are reducible to 1/2.

By mathematical convention, the numbers in each Farey sequence are sorted in increasing order. For example, the first five
Farey sequences are equal to:

F1 =

(
0

1
,
1

1

)
,

F2 =

(
0

1
,
1

2
,
1

1

)
,

F3 =

(
0

1
,
1

3
,
1

2
,
2

3
,
1

1

)
,

F4 =

(
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

)
,

F5 =

(
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

)
.

The Farey sequence of order n contains all elements of the Farey sequence of order n− 1 and some new elements that are
unique to Fn. Because Fn includes all elements of Fn−1 and Fn−1 includes all elements of Fn−2, it follows that Fn includes
all elements of Fn−2 as well. In fact, Fn includes all elements of F1, F2, . . . , Fn−1. This property becomes more clear if the
Farey sequences shown above are rewritten with extra space between some of the terms as shown below:

F1 =

(
0

1
,

1

1

)
,

F2 =

(
0

1
,

1

2
,

1

1

)
,

F3 =

(
0

1
,

1

3
,

1

2
,

2

3
,

1

1

)
,

F4 =

(
0

1
,

1

4
,
1

3
,

1

2
,

2

3
,
3

4
,

1

1

)
,

F5 =

(
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

)
.

This visualization also illustrates another property of Farey sequences: the number of times that a fraction p/q ∈ Fn appears in
the sequences F1, F2, . . . , Fn−1 is equal to n− q. For example, the fraction 1/3 appears 5− 3 = 2 times in F1, F2, F3, and F4.

The next definition links Farey fractions to polar angles.

Definition 2. Each angle θ that can be expressed in radians as θ = 2πp/q is a Farey angle of order n if p/q is an irreducible
fraction that is an element of the Farey sequence of order n.

Note that each Farey sequence includes two distinct elements 0/1 and 1/1. However, these two fractions map to the same
Farey angle, i.e., 0 and 2π are equivalent.

The following theorem proves that for each Farey angle the corresponding complex exponential ei2πp/q is a root of unity of
order q. The converse is also true: each root of unity corresponds to a Farey angle and the order of the root of unity determines
the order of the Farey sequence in which the fraction p/q first appears.
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Theorem 1. Let θ ∈ [0, 2π) be an angle expressed in radians. Then, θ is a Farey angle of order n if and only if there is an
integer q ∈ {1, 2, . . . , n} such that the complex exponential eiθ is a root of unity of order q for some q ≤ n.

Proof. (⇒) Suppose that θ is a Farey angle of order n. Then, θ = 2πp/q, where p/q ∈ Fn. This implies that the complex
exponential eiθ is a root of unity of order q. That is,

(eiθ)q =
(
ei2π

p

q

)q
= ei2π

pq

q = ei2πp = 1, (13)

because p is an integer.
(⇐) Suppose that the complex exponential eiθ is a root of unity of order q ≤ n, i.e.,

(eiθ)q = eiθq = 1. (14)

This equation implies that θq is an integer multiple of 2π. That is, without loss of generality, θq = 2πp, where p is a
non-negative integer between 0 and q−1. Therefore,

θ =
2πp

q
, (15)

which implies that θ ∈ Fq ⊆ Fn, as required.

The next theorem ties the Farey angles that correspond to the elements of Fn−1 to the singularities of Eq. (11), which
defines the generating vector u that is used in the closed-form expression for the inverse chirp z-transform.

Theorem 2. Let p/q ∈ Q be an irreducible fraction in the interval [0, 1]. Let n be a positive integer and let W = ei2π
p

q . If
the fraction p/q is an element of the Farey sequence of order n− 1, i.e., p/q ∈ Fn−1, then there is at least one element of the
vector u for which the denominator in Eq. (11) is zero.

Conversely, if p/q 6∈ Fn−1, then all elements of the vector u defined by Eq. (11) have finite magnitudes and are well-defined.

Proof. Because |W | = 1, the absolute value of the numerator in Eq. (11) is equal to 1 for each k ∈ {0, 1, 2, . . . , n−1}.
(⇒) Suppose that p/q ∈ Fn−1. Then, by definition, q ≤ n− 1. Therefore, there is at least one zero term in the product that
defines the denominator of the element u0. More formally,

n−1∏
s=1

(W s − 1) =

n−1∏
s=1, s 6=q

(W s − 1)

q∏
s=q

(W s − 1)

=

n−1∏
s=1, s 6=q

(
ei2π

ps

q − 1
)(

ei2π
pq

q − 1
)

︸ ︷︷ ︸
0

= 0. (16)

(⇐) Conversely, suppose that p/q 6∈ Fn−1. Then, q ≥ n. Because p and q are coprime, this implies that ps/q 6∈ Z for each
s ∈ {1, 2, . . . , n−1}. Therefore, each term in the denominator of each element uk is non-zero.

Supplementary Section S4 gives additional proofs and examples that perform the analysis using the rank of the Vandermonde
matrix W in Eq. (4) instead of the elements of the generating vector u, which is defined by Eq. (11). In other words, the
proof in this section is based on the singularities of the closed-form formula for the ICZT, which is implemented by the ICZT
algorithm. The proof in Supplementary Section S4 is based on the rank of the ICZT transformation matrix. Because the two sets
of singularities are the same, any algorithm that computes or approximates the ICZT on the unit circle will have singularities at
Farey angles that correspond to the elements of Fn−1, where n is the transform size. That is, the singularities at Farey angles
are inherent to the mathematical problem; they are not introduced by Algorithm 1.

Supplementary Section S6 includes plots of the condition numbers for the transform matrix W for chirp contours with 16
and 32 points. The results show that the condition number also spikes near Farey angles. The shapes of the condition number
plots are similar to the shapes of the numerical error plots. The condition numbers were computed from the singular value
decomposition of the matrix W . This was done using the following formula: cond(W ) = σmax/σmin, where σmax is the
largest singular value and σmin is the smallest singular value of the matrix W .
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Results
Results for 16-point contours. This subsection summarizes the results of the first experiment, which studied the properties of
the numerical error for circular chirp contours with 16 points. The number of points is too small for most practical applications,
but the lessons learned from these contours allowed us to derive the error prediction formulas described later in the paper.

Figure 3 shows three different chirp contours that lie on the unit circle. Each contour has 16 points and each point is labeled
with its index, a number between 0 and 15. The leftmost contour performs exactly one revolution. The other contours perform
between 2 and 3 complete revolutions over the unit circle. In all three cases, the contours are traversed clockwise because the
polar angle of W is positive. The reason for this is that chirp contours are defined in terms of the z-transform, which uses
negative powers (see Supplementary Section S1).
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Figure 3. Three chirp contours with 16 points on the unit circle. The contour points are numbered in increasing order to
illustrate the cases when a contour completes more than one revolution over the unit circle. From left to right, the polar angle of
the parameter W is: 22.5◦, 49.0◦, and 76.0◦.

Figure 4a shows the absolute numerical error of the CZT–ICZT procedure (see Methods) for 16-point contours on the
unit circle. Figure 4b shows the same plot, but with the numerical error predictions superimposed in red (see Eq. (21)). The
horizontal axis corresponds to the polar angles of the parameter W , which are discretized at 0.1◦ intervals, i.e., there are 3600
angles. The vertical axis shows the decimal logarithm of the absolute numerical error. For each of the 3600 angles, the error
was averaged over 10 randomly generated input vectors after computing the logarithm. The same random vectors were used to
compute the error for each point. The three red points in the plot correspond to the three chirp contours shown in Fig. 3.

Figure 5a shows a close-up view of Fig. 4a for angles between 20◦ and 46◦. The discretization step in this case is 0.005◦,
which is sufficient to reveal the finer structure of the error function. The figure shows that the numerical error spikes for angles
that are close to the elements of the set { 360

◦

15 , 360
◦

14 , 360
◦

13 , . . . , 360
◦

8 }. These angles form a subset of the harmonic sequence
( 360

◦

1 , 360
◦

2 , 360
◦

3 , . . . ), which is why we called this pattern of spikes the harmonic hedgehog. These angles correspond to
elements of the Farey sequence F15 between 1/15 and 1/8. The eight red points indicate the numerical errors for these Farey
angles. The red points were explicitly added to the figure using Algorithm 3, i.e., their corresponding Farey angles were added
to the list of discretized polar angles of W because even the finer discretization missed them. Figure 5b shows the same
plot as in Fig. 5a, but with the error predictions superimposed in red. The singularities of the transform coincide with the
discontinuities of the error prediction function. This figure also shows that the spread of the points in the empirical error plot is
due to numerical rounding and the residual randomness that is not fully mitigated by averaging over only 10 input vectors.

The absolute numerical error for the Farey angles shown in Fig. 5a is large, but finite. The reason why the error is bounded
and not infinite as predicted by the theoretical arguments in Theorem 2 is that, in practice, the IEEE-754 floating point numbers25

approximate these angles and their complex exponentials. Because π is irrational, the computational representation of all Farey
angles except 0◦ is not exact, but approximate when they are expressed in radians. The floating-point computations use numbers
that are very close, but still a tiny bit different from these Farey angles. This often leads to large, but finite, numerical errors.
Results for 32-point contours. Supplementary Section S5 shows the results for 32-point chirp contours. They are similar
to the results for the 16-point chirp contours, but the error function appears to be compressed horizontally by a factor of
two. The harmonic hedgehog can also be observed, but it is now squeezed in the interval [11◦, 23◦] instead of the interval
[22◦, 46◦] and has twice as many spikes. In this case, the ICZT singularities correspond to the Farey sequence F31 instead
of F15. Supplementary Section S6 also includes plots of the condition number of the transform matrix W for 32-point contours.
Results for 1024-point contours. The next set of experiments investigated the behavior of the numerical error of the CZT–
ICZT procedure for contours with 1024 points on the unit circle. The results show that even for large transform sizes there are
many values of W for which the ICZT can be computed accurately. These experiments also studied how the plot of the error
function is affected by the discretization step for the polar angles of W .

Figure 6a shows the absolute numerical error for 3600 polar angles of the transform parameter W . These angles were
selected using a regularly-spaced sampling grid with a step of 0.1◦. For each angle, the numerical error was averaged over 10
random input vectors (see Methods). This discretization hits many Farey angles of different orders, which leads to the stratified
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Figure 4. (a) Absolute numerical error of the CZT–ICZT procedure, as a function of the polar angle of W for 16-point chirp
contours on the unit circle. The discretization step was 0.1◦, i.e., there were 3600 angles. The three red points indicate the error
for the three contours shown in Fig. 3. (b) The plot from (a) with the error prediction from Eq. (21) superimposed in red.
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Figure 5. (a) Close-up of the harmonic hedgehog located between the first two red points in Fig. 4a. The numerical error
spikes when the polar angle of W is close to an element of the set { 360

◦

15 , 360
◦

14 , 360
◦

13 , . . . , 360
◦

8 }. The eight red points indicate
the numerical error for these Farey angles. (b) The plot from (a) with the numerical error estimate superimposed in red.

appearance of the plot. This layering effect is explained by the link between Farey sequences and the prime factorization of the
number of regularly-discretized angles. See Supplementary Section S4 for more details.

Figure 6b shows another plot with 3600 points, also for a transform of size 1024. In this case, however, the angles were
sampled at random from a uniform distribution. The resulting pattern appears to be closer to the overall shape of the error
function from the previous subsections, in which the transform size was smaller. The reason for the shape difference between
Fig. 6a and Fig. 6b is that the random sampling is unlikely to select a Farey angle where the ICZT is singular.

Figure 7 further explores the relationship between the error function and the discretization step. It shows nine plots of the
absolute numerical error, computed for 1024-point chirp contours. These plots have completely different shapes, even though
they were all computed for a transform of size 1024. In most cases, changing the number of regularly-sampled angles even a
little bit leads to a different shape of the error function. Interestingly, the error function appears stratified in all six plots in the
first two columns of Fig. 7, with different numbers and locations of the layers. This layering is absent in the last column of the
figure, because these plots are drawn for a prime number of discretized polar angles. In all three cases, the prime number is
greater than the transform size, which prevents hitting any ICZT singularities exactly.
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Figure 6. Absolute numerical error of the CZT–ICZT procedure for chirp contours with 1024 points on the unit circle. The
results in (a) are for 3600 regularly-spaced angles with a discretization step of 0.1◦. This discretization hits many Farey angles
of lower orders, which leads to the layering of the numerical error function. See also Supplementary Fig. S3. The results in (b)
are for 3600 polar angles that were randomly sampled from a uniform distribution. The random sampling is less likely to hit
Farey angles, which explains the absence of the layering effect seen in (a).

The bottom row of Fig. 7 shows three plots that were obtained by regular sampling of the polar angles of W when the
number of samples is about 4 times greater than the number of contour points. More specifically, the plots were drawn with
4096, 4098, and 4099 samples, respectively. Both 4096 and 4098 share integer factors with 1024, which explains the presence
of layers in Figs. 7g and 7h. There are more layers in Fig. 7g compared to Fig. 7h because 1024 shares more factors with 4096
than 4098. There is no layering in Fig. 7i because 4099 and 1024 are coprime. Nevertheless, for some angles in Fig. 7i, the
numerical error is high because these angles are sufficiently close to a nearby Farey angle of order less than 1024.

In other words, a plot in which the horizontal axis is discretized using a fixed step can lead to a misleading picture of the
error. The behavior of the error may be completely different between the discretized points. The shape of the plot depends both
on the sampling procedure and on the distribution of Farey angles. As shown below, the number of Farey angles where the
transform is singular grows quadratically with the size of the transform, which makes it difficult to draw a complete plot of the
error function for large values of n.

As proven in Theorem 2, the singularities of the ICZT of size n on the unit circle are related to the elements of the Farey
sequence of order n−1. Table 1 shows that as n increases the length of the Farey sequence Fn−1 also increases26. These values
imply that the number of singularities grows faster than the transform size. This growth is roughly quadratic, which follows
from the popular approximation formula |Fn| ∼ 3n2

π2 for the length of Fn (see reference 27, p. 268 and reference 28, p. 156).
The large number of singularities makes it more difficult to draw and interpret the error plots. For example, when N = 1024

there are 318453 singularities. In other words, the number of singularities is approximately two orders of magnitude larger than
the number of all points plotted in Fig. 6a. This explains why even a small change in the discretization of the angles may lead
to a completely different numerical error profile, as illustrated in Fig. 7.

Some discretizations select more Farey angles of small orders than others. For example, the discretization used in Fig. 6a
hits many of these singularities and leads to the layering of the error function (see also Fig. S3, which colors each point based
on its corresponding Farey order). The discretizations with prime number of angles shown in Figs. 7c, 7f, and 7i don’t hit any
small-order Farey angles exactly. This is true for any regular discretization in which the prime number is greater than or equal
to the transform size. The next two subsections use discretizations with 4099 angles, which is a large prime number.

n 16 32 64 128 256 512 1024 2048

|Fn−1| 73 309 1,229 4,959 19,821 79,597 318,453 1,274,563

Table 1. Length of the Farey sequence Fn−1 as a function of n. The ICZT of size n has |Fn−1| singularities when |W | = 1.
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Figure 7. Absolute numerical error as a function of the polar angle of the transform parameter W, plotted for chirp contours
with 1024 points on the unit circle. The nine plots illustrate the variety of shapes that the error function can take depending on
the choice of discretization. In all plots, the size of the transform is fixed at 1024. What varies is the number of angles, i.e.,
polar angles of W that are discretized using regularly-spaced intervals. Each point in each plot shows the average value of the
absolute error, computed with the CZT–ICZT procedure over 10 random input vectors. The top row, i.e., plots (a), (b), and (c),
shows the results for the case when the number of regularly-spaced polar angles is close to the number of points on the chirp
contour, i.e., 1024. The second and the third row show the results when the number of angles is approximately 2 times and 4
times greater than the size of the transform, respectively. The left column, i.e., plots (a), (d), and (g), shows the results for the
case when the number of angles is a power of two. The plots in the middle column are for discretizations with 1026, 2050, and
4098 angles, which are composite numbers that are not powers of two. The right column shows plots for the case when the
number of points is a prime number.
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Figure 8. Absolute numerical error for the CZT–ICZT procedure, computed with two different floating-point precisions. In
both plots, the results are for 2048-point contours on the unit circle and for 4099 polar angles of W that were discretized using
regular intervals. The results in (a) were computed with double-precision, which is implemented natively in modern CPUs (i.e.,
64-bit numbers in IEEE-754 format25). The results in (b) were computed with 128-bit floating-point numbers, i.e., quadruple
precision, implemented by GCC’s libquadmath library33 through an interface in Boost Multiprecision34.

Results for 2048-point contours. The next experiment studied the behavior of the error function for contours with 2048 points.
Our previous experience with the ICZT indicated that the numerical accuracy decreases for contours with large number of
points10. This is consistent with previous observations that Vandermonde systems can be ill-conditioned and should be solved
with double precision or higher29. Interestingly, it was also shown that some ill-conditioned Vandermonde systems can be
solved with high precision30–32. In our previous work, however, the chirp contours were off the unit circle, i.e., they were
expanding or contracting logarithmic spiral contours. We wanted to check if additional numerical precision is still needed for
contours with thousands of points that are restricted to lie on the unit circle.

Figure 8 shows the absolute numerical error of the CZT–ICZT procedure for 2048-point contours. These results are for
4099 polar angles that were discretized using regular intervals. The two plots were computed with two different floating-point
precisions. Fig. 8a shows the results for double precision, which is implemented natively in modern CPUs. Fig. 8b shows
a different plot that was computed with quadruple precision. It was generated using the libquadmath library33 through an
interface provided by Boost Multiprecision34, which makes it easier to use various floating point formats in C++. The plots
show that the numerical accuracy can be boosted by increasing the precision of the floating-point numbers. Switching from
double precision to quadruple precision reduces the error by approximately 16 orders of magnitude. The overall shape, however,
remains mostly the same.

The results also indicate that the transforms are computable for N = 2048 using only double precision. Unless the polar
angle of W is close to a Farey angle, the error is usually small when the chirp contour is on the unit circle. Nevertheless, if
additional numerical accuracy is needed, then one can switch from double to quadruple floating-point precision, which is
becoming more popular and easier to use.

Formulas for predicting the numerical error. This subsection states formulas that approximate the absolute numerical error
for the sequential applications of the forward and inverse transforms, i.e., CZT followed by ICZT and vice versa. The formulas
are given for the square case in which M = N and for chirp contours that lie on the unit circle. The error formulas for a more
general case with logarithmic spiral contours that span a 360◦ arc off the unit circle are given in reference 10.

The numerical error can be modeled using five terms: U1, U2, U3, T , and B. The first three terms are derived from the
elements of the generating vector u (see Eq. (11)). For contours on the unit circle they are equal to:

U1 = log

√√√√N−1∑
k=1

|uk|2 =
1

2
log

N−1∑
k=1

|uk|2, U2 = log

√√√√N−1∑
k=0

|uk|2 =
1

2
log

N−1∑
k=0

|uk|2, U3 = − log |u0|. (17)

The term U1 is equal to the logarithm of the Euclidean norm of the first row of the matrix D, which includes all elements of u
except u0 (see Eq. (10)). The term U2 is equal to the logarithm of the Euclidean norm of the first column of the matrix A,
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which is defined by Eq. (10). It is similar to U1, but also includes u0 in addition to all other elements. Finally, the term U3

models the division by u0 in Eq. (12). Thus, U3 is equal to the logarithm of 1
|u0| , where u0 is not equal to zero by definition.

For the error formulas to be accurate, these terms must be computed using the same numerical precision that is used by the
ICZT algorithm, preferably using the same version of the vector u.

The fourth term, T , is the sum of three simpler terms10. In this special case, however, they are all equal to 1
2 logN because

the transform parameters A and W have a magnitude of 1, i.e., |A| = |W | = 1. Thus, the term T is equal to:

T =
3

2
logN. (18)

The formulas also include an offset term, B, that depends on the size of the transform, N , and the number of precision bits,
p, used in the calculations. This offset determines the base level of the error function. It is defined as follows:

B = −p log 2 + C1 logN + C2, (19)

where C1 and C2 are implementation-dependent constants. For 64-bit and 128-bit IEEE-754 floating-point numbers25, the
value of p is set to 53 and 113, respectively.

Error formula for the CZT followed by the ICZT: The absolute numerical error for a sequential application of the CZT
followed by the ICZT is equal to the Euclidean distance between the original input vector x and the computed vector x̂. That is,

E = ‖x̂− x‖. (20)

The error values for the CZT–ICZT procedure can be analytically approximated using the following formula:

logE ≈ U1+ U2+ U3+ T+B+ log ‖x‖. (21)

Error formula for the ICZT followed by the CZT: The absolute error of the ICZT–CZT procedure is

E = ‖X̂−X‖, (22)

where X is the true output vector and X̂ is the computed output vector. The log of the error is approximately equal to:

logE ≈ U1 + U2 + U3 + T +B + log ‖X‖. (23)

Evaluation of the Error Prediction Formulas: The accuracies of Eq. (21) and Eq. (23) were evaluated using the two
procedures described above. The difference between predicted and empirically observed errors was quantified using the R2

coefficient (see Methods). Table 2 shows the means and the standard deviations of the R2 coefficients for the two experimental
procedures and for transform sizes between 16 and 2048. In all cases, the results were computed by averaging the R2 values
from 10 independent runs of the corresponding procedure, where each run used 10 random input vectors. For each value of N ,
the fits used 4099 regularly-discretized polar angles of W . The average R2 value increases with the size of the transform and
approaches 1, which indicates that the formulas predict the numerical error very well. The results also show that there is no
substantial difference between the R2 values for the two experimental procedures.

Additional results for the accuracy of the error prediction formulas are given in Supplementary Sections S7 and S8.

N
CZT–ICZT ICZT–CZT

Avg. Std. Avg. Std.
16 0.96977 3.43535×10−4 0.97642 2.94905×10−4

32 0.98703 8.90973×10−5 0.98932 1.15295×10−4

64 0.99453 3.43848×10−5 0.99520 1.75565×10−5

128 0.99656 7.65721×10−6 0.99680 1.40965×10−5

256 0.99752 5.36489×10−6 0.99758 4.72754×10−6

512 0.99823 3.00392×10−6 0.99824 2.84512×10−6

1024 0.99863 9.77751×10−7 0.99863 1.89758×10−6

2048 0.99871 8.76893×10−7 0.99871 1.55039×10−6

Table 2. R2 fits for the predicted numerical error for regularly-sampled polar angles of the transform parameter W .
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Debunking the Reverse-as-Inverse Approach for Inverting the CZT on the Unit Circle
This section shows that a naïve but surprisingly popular approach for inverting the CZT by reversing the direction of the
chirp contour is incorrect. The essence of this reverse-as-inverse approach is captured by a formula from reference 13 that is
reproduced below:

ICZT(X(k)) = [CZT(X(k)∗)]∗. (24)

The formula attempts to express the ICZT of the vector X(k) by conjugating all elements of the CZT of the vector X(k)∗,
where ∗ denotes elementwise conjugation. In matrix form, Eq. (24) can be stated as follows:

y = WAX = W AX. (25)

In this formula, y is the resulting vector, W is the matrix obtained by conjugating all elements of the Vandermonde matrix W
from Eq. (4), A is the matrix obtained by conjugating all elements of the diagonal matrix A from Eq. (3), and X is the ICZT
input vector. Instead of conjugating all elements of the two matrices, it is possible to compute the same result using the
conjugates of the transform parameters A and W . That is, the vector y in Eq. (25) can be expressed as:

y = CZT(X, M, W, A ). (26)

If the chirp contour lies on the unit circle, then this formula reflects its starting point with respect to the real axis and also
reverses its winding direction.

Reference 13 also states that Eq. (24) needs to be interpreted “to within a scaling factor” that was not specified. That is,
the equal sign denotes proportionality instead of equality. For unit-length input vectors x in the CZT–ICZT procedure (see
Methods), optimal scaling for this approach can be achieved by normalizing the vector y, i.e.,

x̂ =
y

‖y‖
. (27)

This ensures that ‖x‖ = ‖x̂‖ = 1, i.e., the norm of the input vector is always equal to the norm of the output vector. Algorithm 2
implements the reverse-as-inverse approach, i.e., Eq. (26) with the scaling factor from Eq. (27). For error plots on the log scale,
the triangle inequality implies that log10 ‖x− x̂‖ ≤ log10 2 ≈ 0.3, i.e., the absolute numerical error for the CZT followed by
Algorithm 2 can never exceed 0.3 on the log scale. Thus, this scaling is favorable to this algorithm. Unfortunately, the results
show that the algorithm has a systematic error that cannot be corrected by scaling.

The rest of this section describes three experiments that compared the accuracy of Algorithm 1 to the accuracy of Algorithm 2.
In all experiments, the value of A was equal to 1, the value of M was equal to N , and the polar angle of W was sampled using
regular discretization as described in Methods. The accuracies were measured with the CZT–ICZT procedure, also described in
Methods, but with Algorithm 2 replacing the ICZT implementation in the second condition.

Figure 9 shows the results of the first experiment, which used circular chirp contours with 16 points. Figure 9a, which is a
copy of Fig. 2, shows that Algorithm 1 accurately inverts the CZT for many polar angles of W . In contrast, Fig. 9b shows that
the reverse-as-inverse approach is accurate only when this angle is equal to −22.5◦ or 22.5◦. For all other angles the error is
consistently and unacceptably high, i.e., the absolute numerical error (before the log) is close to 1, which is the norm of the
input vector x. In both plots, the three red points correspond to the chirp contours shown in Fig. 1.

Figure 10 shows the results of the second experiment, which also used 16-point circular chirp contours. In this case,
the discretization used 3600 regularly-sampled polar angles. Figure 10a, which is a copy of Fig. 4a, shows the error using
Algorithm 1. Figure 10b shows the error using the reverse-as-inverse approach. The three red points in each plot correspond to
the three chirp contours shown in Fig. 3. Figure 10b shows that with Algorithm 2 the results are accurate only for the eight
angles that correspond to the eight primitive roots of unity of order 16 (see also Supplementary Section S2).

Finally, Fig. 11 shows the results of the third experiment, which used 2048-point circular chirp contours and 4099 regularly-
discretized polar angles of W . In contrast to Figs. 9 and 10, which show results for double precision, the computations for this
figure used quadruple precision. Figure 11a, which is a copy of Fig. 8b, shows the error using Algorithm 1. Figure 11b shows
that the error using Algorithm 2 is again consistently large and proportional to ‖x‖. Because this discretization did not hit
any primitive roots of unity of order 2048, there were no angles for which the reverse-as-inverse approach is accurate. The
increased floating-point precision also did not help to reduce its error.

To summarize, the experiments showed that Algorithm 1 is accurate for most chirp contours and the numerical error of the
CZT followed by the ICZT can be predicted using Eq. (21). In contrast, the reverse-as-inverse approach has large, systematic
errors that are not affected by the numerical precision. It is accurate only when the chirp contour points coincide with the roots
of unity of order N , i.e., only when the ICZT reduces to a permutation of the elements of the IFFT output vector. Algorithm 2
assumes that there is no interference between the frequency components, which is true only when they are orthogonal or,
equivalently, when the value of W is a primitive root of unity of order N . For all other values of W the reverse-as-inverse
approach fails to compute the ICZT.
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Figure 9. Absolute numerical error for 16-point chirp contours, shown as a function of the polar angle of W for two different
experimental procedures: (a) the CZT followed by Algorithm 1, which implements the ICZT (this is the same as Fig. 2); and
(b) the CZT followed by Algorithm 2, which uses the contour reversal approach proposed in reference 13. The angles were
discretized with a step of 360◦/2048. The three red points in both (a) and (b) correspond to the chirp contours shown in Fig. 1.
Each point in both plots represents the average error for 10 randomly generated unit-length input vectors.
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Figure 10. Visualization of the accuracy of two experimental procedures for 16-point chirp contours. This is similar to Fig. 9,
but in this case the discretization step for the polar angle of W was set to 0.1◦. The three red points in both plots correspond to
the chirp contours shown in Fig. 3. The plot in (a) is the same as in Fig. 4a.
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Figure 11. Visualization of the accuracy of two experimental procedures for 2048-point chirp contours. This is similar to
Fig. 10, but in this case the discretization used 4099 regularly-spaced polar angles of W and the results were computed using
quadruple precision (i.e., 128 bits) instead of double precision (i.e., 64 bits). The plot in (a) is the same as in Fig. 8b.
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Discussion
This paper generalized the inverse fast Fourier transform (IFFT) to work with contours that perform partial or multiple
revolutions on the unit circle. This was accomplished by analyzing the numerical error properties of the ICZT algorithm for
a special case with circular chirp contours on the unit circle. The paper also proved that the ICZT singularities are tied to
elements of Farey sequences, where the Farey order is smaller than the transform size. Formulas for predicting the numerical
error were derived as well. The experiments showed that these formulas fit the empirically-observed numerical errors very well.

The FFT and the IFFT are restricted to use orthogonal, harmonically-spaced frequency components that are generated by
the integer powers of the complex roots of unity. The CZT and the ICZT can use non-orthogonal frequency components, even
for the special case with chirp contours on the unit circle. This additional flexibility, however, comes at a cost. For some values
of the transform parameter W the ICZT could be very inaccurate. The error prediction formulas derived in this paper allow the
practitioners to avoid these singularities. For most values of W , however, the ICZT is accurate and can be computed for large
transform sizes.

The Chirp Transform Algorithm (CTA) and the Fractional Fourier Transform (FRFT) are two popular algorithms15, 16 that
can be viewed as special cases of the CZT for chirp contours on the unit circle. The corresponding inverse algorithms, however,
have not been described until now. Supplementary Section S3 states two special cases of the ICZT algorithm that invert the
CTA and the FRFT. We named these special cases the Inverse Chirp Transform Algorithm (ICTA) and the Inverse Fractional
Fourier Transform (IFRFT).

This paper analyzed the numerical error of the ICZT algorithm for chirp contours on the unit circle that can perform partial
or multiple revolutions. The numerical error for logarithmic spiral contours off the unit circle that span 360◦ was analyzed in
our previous paper10. Future work could combine the insights from these two studies to derive error prediction formulas for
logarithmic spiral contours off the unit circle that perform partial or multiple revolutions. In that case, the frequency components
are not orthogonal and can also decay or grow exponentially. Future work could also try to derive bounds for the condition
number of the transformation matrix and relate them to the error formulas derived in this paper.

Methods
This section describes the methods that were used to evaluate the ICZT algorithm for chirp contours that lie on the unit
circle. The experiments systematically varied the size of the transform and the sampling procedure for the polar angle of the
parameter W . The transform parameter A was always set to 1 because changing its polar angle is equivalent to changing the
polar angles of the elements of the ICZT output vector10, which does not affect the expected numerical error over all possible
input vectors.

CZT–ICZT procedure. The experiments measured the absolute numerical error for the sequential application of the CZT
followed by the ICZT. The following five steps were repeated ten times for each value of the transform parameterW : 1) generate
a complex input vector x by sampling its real and complex parts from a uniform distribution on the interval [−1, 1); 2) normalize
the vector x so that its length is equal to 1; 3) use the vector x as input for the CZT algorithm, which results in the output
vector X̂; 4) use the ICZT algorithm with the vector X̂ as input to compute the vector x̂; and 5) compute the Euclidean distance
between the vector x̂ and the vector x. A different random seed was used for each repetition. The absolute numerical error of
the CZT–ICZT procedure was set to the average Euclidean distance over these 10 repetitions. For experiments that varied the
polar angle of W , the same 10 input vectors were used for all angles, i.e., the vectors were generated once and then re-used.

ICZT–CZT procedure. Some of the experiments also used the ICZT–CZT procedure, in which the output of the ICZT
algorithm was used as an input to the CZT algorithm. This procedure also consisted of five steps that were repeated ten times
for each value of the transform parameter W : 1) generate a complex input vector X by sampling the real and complex parts
of each of its elements from a uniform distribution on [−1, 1); 2) normalize the vector X so that it has unit length; 3) use
the normalized vector X as input for the ICZT algorithm to compute the vector x̂; 4) use the vector x̂ as input for the CZT
algorithm to compute the vector X̂; and 5) compute the Euclidean distance between the vectors X and X̂. A different random
seed was used for each repetition. The absolute numerical error of this procedure was equal to the average Euclidean distance
for these 10 repetitions. For experiments that varied the value of W , the input vectors were re-used as described above.

Numerical error reporting. All numerical errors in this paper are reported on the log scale. For each polar angle of W ,
the Euclidean distance was averaged over 10 random input vectors after computing the logarithm. The experiments were
designed such that the magnitude of the input vector and the magnitude of the expected output vector were both equal to 1. The
results become exponentially more accurate as the error value decreases. For example, if the decimal logarithm of the absolute
numerical error is −5, then the Euclidean distance between the result vector and the expected output vector is equal to 0.00001.
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Floating-point precisions. The experiments used two different floating-point precisions: 1) double-precision with 64 bits and
2) quadruple-precision with 128 bits. The double precision is implemented natively by modern CPUs. The quadruple precision
was implemented using GCC’s libquadmath33. We used the interface from the boost multiprecision library34. In both cases the
floating-point numbers were stored in IEEE-754 format25.

Sampling of the polar angles of the transform parameter W . Two methods were used to sample the polar angles of W :
1) regularly-spaced sampling; and 2) random sampling from a uniform distribution. Both methods sampled P angles from
the interval [0◦, 360◦). The figures, however, plot the angles between −180◦ and 180◦ because the largest peak of the error is
centered at 0◦, i.e., the interval [180◦, 360◦) is plotted as negative angles in the interval [−180◦, 0◦).

The regular sampling method used the following formula to select P polar angles θ0, θ1, θ2, . . . , θP−1 to be evaluated:

θk = 2πk/P , where k ∈ {0, 1, 2, . . . , P−1}. (28)

The random sampling method selected the polar angles by drawing i.i.d. samples from a uniform distribution on [0, 2π).
Given an angle θ in radians, the transform parameter W was computed using Euler’s formula: W = eiθ = cos θ + i sin θ.

Reverse-as-Inverse algorithm. Algorithm 2 implements Eq. (24), which attempts to invert the CZT by reversing the direction
of the chirp contour. As described in the paper, this approach does not really work.

Algorithm 2. Reverse-as-Inverse algorithm with scaling.

1: REVERSE-AS-INVERSE(X, N, W, A)

2: y← CZT(X, N, W, A ); // reverse the chirp contour
3: d← 0;
4: for k ← 0 to N−1 do
5: d← d+ |y[k]|2;
6: end for
7: x̂← EMPTYVECTOR(N);
8: for k ← 0 to N−1 do
9: x̂[k]← y[k]/

√
d;

10: end for
11: return x̂;

Enumerating Farey sequences. Farey sequences28, 35–37 are related to the singularities of the ICZT when it is computed for
circular chirp contours on the unit circle. In other words, there is a connection between addition of rational numbers and
multiplication of complex numbers that lie on the unit circle. Each Farey sequence Fn is formed by all irreducible fractions
p/q ∈ [0, 1], where q ≤ n. All Farey sequences share the mediant property. That is, if a/b, p/q, and c/d are any three consecutive
elements of a Farey sequence, then p/q = (a+c) /(b+d).

The mediant property enables the enumeration of the elements of a Farey sequence by an algorithm38. Algorithm 3 shows
the pseudo-code for an efficient procedure38 that generates a Farey sequence of order n. This procedure was used for some of
the figures that explicitly included all ICZT singularities in a given subset of the parameter space.

Algorithm 3. Generates the Farey sequence Fn in O(n2).

1: LISTFAREYFRACTIONS(n)
2: F← EMPTYLIST();
3: (a, b, c, d)← (0, 1, 1, n);
4: F← APPEND

(
F, a/b

)
;

5: while c ≤ n do
6: k ←

⌊
n+b
d

⌋
;

7: (a, b, c, d)← (c, d, kc− a, kd− b);
8: F← APPEND

(
F, a/b

)
;

9: end while
10: return F;
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Computing theR2 coefficient. The accuracy of the numerical error prediction formulas was evaluated using theR2 coefficient.
That is, given two vectors a = (a0, a1, a2, . . . , am−1) and b = (b0,b1,b2, . . . ,bm−1), the R2 value was computed as follows:

R2 = 1− α/β, where α =

m−1∑
k=0

((
ak − a

)
−
(
bk − b

))2
and β =

m−1∑
k=0

(
bk − b

)2
. (29)

In this formula, a is the average of the elements in the vector a and b is the average of the elements in the vector b, i.e.,

a =
(
a0 + a1 + a2 + · · ·+ am−1

)
/m and b =

(
b0 + b1 + b2 + · · ·+ bm−1

)
/m. (30)

In other words, the R2 coefficient is equal to 1 minus the fraction of the variance of the vector b that is unexplained by the
vector a. Our approach centers the vectors (i.e., subtracts their averages) before computing R2. Thus, the constant offset b− a
does not affect the R2 value.

In the experiments, the vector a was set to the predicted logarithms of the numerical errors. The vector b was set to the
logarithms of the numerical errors that were computed by either the CZT–ICZT or the ICZT–CZT procedure.

Inversion of Toeplitz matrices. The CZT matrix is equal to the product of a Vandermonde matrix and a diagonal matrix.
Bluestein’s substitution9 expresses the Vandermonde matrix as the product of two diagonal matrices and a Toeplitz matrix.
Thus, the key to the ICZT algorithm is finding a computationally efficient way to invert this Toeplitz matrix.

The Gohberg–Semencul formula23, 24 expresses the inverse of a Toeplitz matrix as a difference between two products of
upper-triangular and lower-triangular Toeplitz matrices. These four matrices can be described by two generating vectors u
and v, but the formula does not specify how to find these vectors. The matrix used by the CZT, however, is a special case of a
symmetric Toeplitz matrix. For this matrix there is a special case of the Gohberg–Semencul formula with just one generating
vector10. Furthermore, we were able to express the elements of this vector in terms of the transform parameter W . This led to
an efficient ICZT algorithm that runs in O(n log n) time.

Efficient Toeplitz–vector multiplication. The ICZT algorithm uses fast FFT-based subroutines for multiplying a Toeplitz
matrix by a vector10. There are at least two different approaches for computing these products in O(n log n) time: 1)
embedding the Toeplitz matrix into a larger circulant matrix (see reference 39, p. 202) and 2) expressing the Toeplitz matrix as
a sum of a circulant matrix and a skew-circulant matrix of the same shape using Pustylnikov’s decomposition40, 41, see also
reference 42, p. 40 and reference 43, p. 66.

Both subroutines multiply a circulant matrix or a skew-circulant matrix44 by a vector in O(n log n) time (i.e., fast circular
convolution). The term f -circulant with f = −1 is also used in the literature to refer to skew-circulant matrices43, 45. The
required FFT sizes and the order of the operations performed by these two approaches are different. Their numerical accuracy,
however, is similar. In all experiments described in this paper we used the embedding approach.

Data availability
All data and procedures are described in the main paper or in the supplementary information.
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S1. DEFINITIONS FOR CONTOURS AND TRANSFORMS

By mathematical convention, positive angles correspond to
counter-clockwise rotations and negative angles correspond to
clockwise rotations (i.e., the right-hand rule). This conven-
tion, however, is violated for the winding direction of chirp
contours. That is, positive polar angles of W correspond to
clockwise rotations. The reason for this break with convention
is that the CZT was defined with the z-transform, which uses
negative powers, instead of the power series, which uses pos-
itive powers. The right-hand rule, however, still holds for the
polar angle of the transform parameter A. This section clarifies
these technical details using examples and explicit definitions.

A contour is a list of complex numbers that is derived from
the transform parameters. Each complex number specifies a
frequency component vector, the elements of which are equal
to the integer powers of this number. For the DFT and the
CZT, each element of the output vector is equal to the complex
inner product between the input vector and the corresponding
frequency component vector. The inverse transforms, i.e., the
IDFT and the ICZT, map the output vector back to the input
vector. A contour is shared by a matching pair of forward and
inverse transforms, i.e., when they have the same parameters.

We will start by defining the Fourier contour that is used
by the DFT and the IDFT (and, indirectly, by their fast
implementations using the FFT and the IFFT algorithms).

Definition 3. Fourier contour.
A Fourier contour consists of N points c0, c1, c2, . . . , cN−1 in
the complex plane, arranged in a counter-clockwise direction
on the unit circle starting from the point (1, 0). The coordi-
nates of the k-th point, ck , are given by the following formula:

ck = e
i2πk

N = cos

(
2πk

N

)
+ i sin

(
2πk

N

)
, (31)

for each k ∈ {0, 1, 2, . . . , N−1}.

For a DFT of size N , the Fourier contour points are equal
to the N complex roots of unity of order N . The ordering
of the contour points matches the way in which the roots are
enumerated. Also, the angle between two consecutive points
is positive, which is in agreement with the right-hand rule.

The complex inner product between two complex vectors a
and b of length N is defined as follows:

〈a,b〉 =

N−1∑
n=0

an · bn . (32)

Notice that the elements of the second vector are conjugated.
Thus, changing the order of the two vectors in the inner
product is equivalent to conjugating its value, i.e.,

〈b,a〉 = 〈a,b〉. (33)

This definition ensures that the complex inner product of a
vector with itself is always nonnegative and is zero if and
only if the vector is zero.

The DFT output vector X contains the values of N complex
inner products between the DFT input vector x and each of the

frequency component vectors v(0), v(1), v(2), . . . , v(N−1).
Each vector v(k) is defined as follows:

v(k) =
((

e
i2πk

N

)0
,
(
e
i2πk

N

)1
, . . . ,

(
e
i2πk

N

)N−1
)
. (34)

Definition 4. Discrete Fourier Transform (DFT).
Let c = (c0, c1, c2, . . . , cN−1) be the Fourier contour for
a transform of size N . Let x = (x0, x1, x2, . . . , xN−1)
be a complex input vector of length N . The DFT of the
vector x is a complex vector X, also of length N . For each
k ∈ {0, 1, 2, . . . , N−1}, the value of Xk is equal to the
complex inner product between the vector x and the k-th
frequency component vector v(k). That is,

Xk = 〈x,v(k)〉 =

N−1∑
n=0

xn

(
e
i2πk

N

)n
=

N−1∑
n=0

xn e−
i2πkn

N . (35)

Figure S1 shows two different contours that can be derived
from Eq. (35). Only the blue contour in Fig. S1a is consistent
with Definition 3. The red contour in Fig. S1b is derived from
the blue contour by conjugating all of its sampling points. This
contour traverses the unit circle in the clockwise direction. The
following color version of Eq. (35) visualizes the link between
these two contours:

Xk =

N−1∑
n=0

xn

(
e
i2πk

N

)n
=

N−1∑
n=0

xn

(
e−

i2πk

N

)n
. (36)
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Fig. S1. Two 16-point contours based on two different interpretations
of Eq. (35): (a) before the conjugation has been applied; and (b) after the
conjugation has been applied. Only the contour in (a) is consistent with
Definition 3.

Most references don’t mention the conjugation and define
the DFT using the rightmost sum in Eq. (35). Even though this
is technically correct, it obscures the link to the Fourier contour
and can lead to a lot of confusion. For example, without
the conjugation it is more difficult to explain the essence of
positive and negative frequencies and how the DFT/FFT orders
them. Definition 4 makes things more clear by formulating the
transform in terms of the complex inner product.

The IDFT inverts the DFT for the same contour. Definition 5
gives the formula for this inverse transform.

Definition 5. Inverse DFT (IDFT).
The IDFT of a complex vector X of length N is a complex

vector x, also of length N . Its n-th element is given by:

xn =
1

N

N−1∑
k=0

Xk e
i2πkn

N . (37)
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The following example illustrates the DFT of size 4. The
elements of the output vector X = (X0, X1, X2, X3) are
defined with the following four complex inner products:

X0 = 〈x,v(0)〉,
X1 = 〈x,v(1)〉,
X2 = 〈x,v(2)〉,
X3 = 〈x,v(3)〉. (38)

Using matrix notation, the output vector X can be expressed
as the matrix–vector product between the DFT matrix F and
the input vector x, i.e., X = Fx. That is,

X0

X1

X2

X3


︸ ︷︷ ︸

X

=


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9


︸ ︷︷ ︸

F


x0

x1

x2

x3


︸ ︷︷ ︸

x

, (39)

where ω = e
i2π
N = e−

i2π
N .

Each row of the matrix F can be obtained by conjugating
all elements of the corresponding frequency component vector
defined in Eq. (34). That is,

F =


v

(0)
0 v

(0)
1 v

(0)
2 v

(0)
3

v
(1)
0 v

(1)
1 v

(1)
2 v

(1)
3

v
(2)
0 v

(2)
1 v

(2)
2 v

(2)
3

v
(3)
0 v

(3)
1 v

(3)
2 v

(3)
3


=


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .
(40)

The CZT also uses a contour, but its points are no longer
restricted to lie on the unit circle. Its shape and winding
direction are defined by the parameters A, W , and M .

Definition 6. Chirp contour.
Let A and W be two complex numbers and let M be a
positive integer. A chirp contour consists of M complex points
z0, z1, z2, . . . , zM−1 that lie on a logarithmic spiral. The
starting point, z0 , is equal to A. The remaining points are
derived by multiplying the parameter A with the negative
integer powers of the parameter W . That is,

zk = AW−k, for each k ∈ {0, 1, 2, . . . ,M−1}. (41)

Each element Xk of the CZT output vector X is defined as
the z-transform of the input vector x, where the value of the
z-transform is evaluated at the corresponding contour point zk.

Definition 7. Chirp Z-Transform (CZT).
Let z = (z0, z1, z2, . . . , zM−1) be the chirp contour. Let
x = (x0, x1, x2, . . . , xN−1) be the complex input vector
of length N . Each element Xk of the CZT complex output
vector X = (X0, X1, X2, . . . , XM−1) is equal to the value
of the z-transform of the input vector x at the corresponding
contour point zk. That is,

Xk =

N−1∑
j=0

xj z−jk =

N−1∑
j=0

xj(AW
−k)−j =

N−1∑
j=0

xjA
−jW jk.

(42)

Similarly to the DFT, the CZT can also be defined using the
complex inner product. In this case, the frequency component
vectors are formed by conjugating the negative powers of the
contour points. In other words, the CZT frequency components
v̂(0), v̂(1), v̂(2), . . . , v̂(M−1) can be expressed as follows:

v̂(k) =
( (

AW−k
)−0

,
(
AW−k

)−1
, . . . ,

(
AW−k

)−(N−1)
)
,

(43)
where k ∈ {0, 1, 2, . . . ,M−1}.

Each element Xk of the CZT output vector X can be
expressed as the inner product between the CZT input vector x
and the corresponding frequency component v̂(k). That is,

Xk = 〈x, v̂(k)〉 =

N−1∑
j=0

xj v̂
(k)
j =

N−1∑
j=0

xj
(
AW−k

)−j
=

N−1∑
j=0

xj (AW−k)−j . (44)

For the case when the CZT is equivalent to the DFT, i.e.,
A = 1, W = e−

i2π
N , and M = N , the frequency components

of the CZT are equal to those of the DFT. That is,

v̂
(k)
j =

(
AW−k

)−j
=
(

1 · e
i2πk

N

)−j
= e

i2πkj

N = v
(k)
j , (45)

for each k ∈ {0, 1, . . . , N−1} and each j ∈ {0, 1, . . . , N−1}.
The chirp contour in this case matches the Fourier contour,
e.g., for M = 16 it is equal to the blue contour in Fig. S1a.

Figure S2 gives an example with two chirp contours that lie
on the unit circle. In both cases, the polar angle of A is positive
and is equal to 30◦ and 45◦, respectively. The contour shown
in Fig. S2a rotates clockwise, because the polar angle of W
is equal to 22.5◦. The contour in Fig. S2b is drawn for the
case when that angle is equal to −22.5◦. This contour rotates
counter-clockwise. These examples show that the right-hand
rule is violated for the winding direction of chirp contours.
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Fig. S2. Two 8-point chirp contours that lie on the unit circle: (a) for A =

e
iπ
6 and W = e

iπ
8 ; and (b) for A = e

iπ
4 and W = e−

iπ
8 . The contours

are drawn according to Definition 6.

The chirp contour is shared by the CZT and the ICZT that
have the same transform parameters. For the ICZT, however,
there is no expression similar to Eq. (42) that uses the contour
points to express the transform. Thus, for the ICZT it is more
useful to view the contour as a visualization of the transform
parameters A, W , and M = N .
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S2. MAPPINGS BETWEEN CZT, ICZT, FFT, AND IFFT
This section shows how the CZT and ICZT algorithms can

be used to compute the FFT and the IFFT for any N , i.e., not
just a power of 2. Because orthogonal frequency components
can be generated with either counter-clockwise or clockwise
chirp contours, there are four possible algorithms. One of
these mappings illustrates the ability to implement the IFFT
using the CZT by reversing the contour direction and scaling
the output vector. Some of the related work confused reverse
with inverse and presented the resulting approach as the ICZT
algorithm for all chirp contours that lie on the unit circle. The
main paper shows why that approach is incorrect.

Algorithm S1 shows how to compute the FFT by calling
the CZT algorithm with M = N , W = e−i2π/N , and A = 1.
This works because these parameters define a Fourier contour
with N points (see Section S1). Similarly, Algorithm S2 shows
how to compute the IFFT by calling the ICZT. The parameter
values in Algorithm S2 are the same as in Algorithm S1.

In contrast to the DFT, which uses a fixed contour that is
traversed in only one direction, both the starting point and
the contour direction can be varied with the CZT. This latter
flexibility makes it possible to traverse the roots of unity in the
clockwise direction and to compute the IFFT by calling the
CZT. Algorithm S3 gives the pseudo-code for this approach.
The CZT parameters in this case are M = N , W = ei2π/N ,
and A = 1. In addition, the algorithm scales all elements of
the output vector by dividing them by N . This scaling is an
integral part of the IFFT algorithm as well.

Similarly, the FFT can be implemented by calling the ICZT
with M = N , W = ei2π/N , and A = 1. Again, the elements
of the output vector need to be scaled. In this case, however,
they are multiplied by N . Algorithm S4 gives the pseudo-code
for this approach.

All four algorithms run in O(n log n), i.e., they have the
same computational complexity as the standard FFT and IFFT
algorithms. Their numerical accuracy, however, is somewhat
lower than the numerical accuracy of the standard algorithms.
The reason for this is that the CZT and the ICZT are
more general algorithms that perform more operations, which
increases the numerical error.

For the sake of completeness, Algorithm S5 gives the
pseudo-code for the CZT algorithm. The pseudo-code for the
ICZT is given in Algorithm 1. The dependencies for both
algorithms are described in reference 10.

There is a peculiar extension of these mappings when
the value of W is set to another primitive root of unity of
order N instead of e−i2π/N in Algorithms S1 and S2 or ei2π/N

in Algorithms S3 and S4. This leads to transforms that are still
equivalent to the FFT or the IFFT after a cyclic permutation
of the elements of the output vector.

The correspondence between these forward and inverse
mappings breaks when the value of W is not a primitive
root of unity of order N . For example, reversing the chirp
contour computes the ICZT only if the frequency components
are orthogonal, i.e., when the ICZT is equivalent to the IFFT
after shuffling its output elements. This not so subtle issue was
overlooked by some of the previous work. The main paper
explains why this approach doesn’t work.

Algorithm S1. FFT implemented using the CZT.

1: FFT-VIA-CZT(x)
2: N ← LENGTH(x);
3: X← CZT(x, N, e−

i2π
N , 1);

4: return X;

Algorithm S2. IFFT implemented using the ICZT.

1: IFFT-VIA-ICZT(X)
2: N ← LENGTH(X);
3: x← ICZT(X, N, e−

i2π
N , 1);

4: return x;

Algorithm S3. IFFT implemented using the CZT.

1: IFFT-VIA-CZT(X)
2: N ← LENGTH(X);
3: x← CZT(X, N, e

i2π
N , 1);

4: for j ← 0 to N − 1 do
5: xj ←

xj
N

;
6: end for
7: return x;

Algorithm S4. FFT implemented using the ICZT.

1: FFT-VIA-ICZT(x)
2: N ← LENGTH(x);
3: X← ICZT(x, N, e

i2π
N , 1);

4: for j ← 0 to N − 1 do
5: Xj ← N ·Xj ;
6: end for
7: return X;

Algorithm S5. CZT Algorithm. Runs in O(n log n) time.

1: CZT(x, M, W, A)

2: N ← LENGTH(x);
3: X← EMPTYARRAY(N);
4: r← EMPTYARRAY(N);
5: c← EMPTYARRAY(M);
6: for k ← 0 to N − 1 do

7: X[k]←W
k2

2 ·A−k · x[k];

8: r[k]←W−
k2

2 ;
9: end for

10: for k ← 0 to M − 1 do

11: c[k]←W−
k2

2 ;
12: end for
13: // After the next line, LENGTH(X) = M .
14: X← TOEPLITZMULTIPLYE(r, c, X);
15: for k ← 0 to M − 1 do

16: X[k]←W
k2

2 ·X[k];
17: end for
18: return X;
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S3. IMPLEMENTING ICTA AND IFRFT USING ICZT

The main paper mentioned two algorithms that generalize
the Fast Fourier Transform (FFT) on the unit circle. They
are the Chirp Transform Algorithm (CTA) and the Fractional
Fourier Transform (FRFT) algorithm, which are described in
references 15 and 16. The Chirp Z-Transform (CZT) is a
generalization of the FFT off the unit circle. As described
in this paper, however, the CZT can also be evaluated for
circular chirp contours that lie on the unit circle. Thus, the
CZT can also be viewed as a generalization of the FFT on the
unit circle. Interestingly, both the CTA and the FRFT can be
implemented with the CZT as shown below.

The corresponding inverse algorithms have not been dis-
covered yet and have not been described in the literature until
now. Both of these algorithms can be stated as special cases of
the Inverse Chirp Z-Transform (ICZT) algorithm as described
in this section. We took the liberty of naming these algorithms
by adding an ‘I’ as the first letter in both acronyms.

Algorithm S6. Chirp Transform Algorithm (CTA).

1: CTA(x, M, ω0, ∆ω)

2: (W, A)← (e−i∆ω, eiω0);
3: X← CZT(x, M, W, A);
4: return X;

Algorithm S6 shows how to implement the CTA using the
CZT. This is done by mapping the parameters of the CTA
to the parameters of the CZT. The first two parameters are
identical for both algorithms. They specify the input vector,
x, and the size of the output vector, M . The CTA defines the
starting point of the contour using the starting angle ω0. The
angular distance between adjacent contour points is given by
the parameter ∆ω. Line 2 of Algorithm S6 computes the CZT
parameters W and A from the CTA parameters ω0 and ∆ω.
Line 3 calls the CZT algorithm to compute the output vector,
which is returned on line 4. The pseudo-code for the CZT
algorithm is given in Algorithm S5. Reference 10 gives the
pseudo-code for all of its dependencies.

Historically, the chirp contour points were defined7 using the
z-transform instead of the power series (i.e., negative powers
instead of positive powers, as described in Section S1). The
CZT was also defined7 using negative powers of the parame-
ter A. More formally, the chirp contour points are set to the
M complex numbers z0, z1, . . . , zM−1 where zk = AW−k.
The value of the k-th element of the CZT output vector X is
equal to the value of the z-transform at zk of the CZT input
vector x, i.e.,

Xk =

N−1∑
j=0

xj z−jk , where k ∈ {0, 1, . . . ,M−1}. (46)

Following these traditions requires setting W to e−i∆ω and
A to eiω0 when mapping the CTA to the CZT. In other words,
a positive value of ω0 corresponds to a counter-clockwise
offset for the starting point of the chirp contour relative to
the point (1, 0) on the unit circle. Similarly, a positive value

Algorithm S7. Fractional Fourier Transform (FRFT).

1: FRFT(x, m, α)

2: (M, W, A)← (m, e−i2πα, 1);
3: G← CZT(x, M, W, A);
4: return G;

of ∆ω corresponds to a counter-clockwise winding direction
of the chirp contour15.

Algorithm S7 gives the pseudo-code for implementing the
FRFT using the CZT. Once again, this is done by mapping
the parameters of the FRFT to the parameters of the CZT. In
this case, x is the input vector, which is the same for both
algorithms. The second parameter is m, which is equivalent
to M in the CZT formulation. The last parameter, α, specifies
the angular distance between two adjacent contour points. It
maps to the parameter W through the formula W = e−i2πα.
By definition, all FRFT contours start at 1. Thus, the CZT
parameter A, which specifies the starting point of the contour,
is always set to 1. The CTA is more flexible in this respect,
because it allows the starting point of the contour to be any
point on the unit circle, i.e., by varying the parameter ω0.

Both the CTA and the FRFT can be used with contours
that perform more than one revolution on the unit circle. Both
algorithms run in O(n log n) time.

Algorithm S8. Inverse Chirp Transform Algorithm (ICTA).

1: ICTA(X, N, ω0, ∆ω)

2: (W, A)← (e−i∆ω, eiω0);
3: x← ICZT(X, N, W, A);
4: return x;

Algorithm S9. Inverse Fractional Fourier Transform (IFRFT).

1: IFRFT(G, m, α)

2: (X, N, W, A)← (G, m, e−i2πα, 1);
3: x← ICZT(X, N, W, A);
4: return x;

Algorithms S8 and S9 show how to implement the ICTA
and the IFRFT by mapping their parameters to the ICZT pa-
rameters and then calling Algorithm 1. Algorithm S8 computes
the values of W and A for the ICZT from the parameters ω0

and ∆ω and then calls Algorithm 1 to compute the transform.
Similarly, Algorithm S9 computes the ICZT parameters from
G, m, and α and then also calls Algorithm 1. Both algorithms
run in O(n log n) time and use O(n) memory.

By definition, the ICTA and the IFRFT algorithms can
work only with contours that lie on the unit circle. The ICZT
algorithm, however, can also work with logarithmic spiral
contours that lie off the unit circle10. Thus, the ICZT is more
general than both the ICTA and the IFRFT.
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S4. THE RANK OF THE MATRIX W DEPENDS ON THE
POLAR ANGLE OF THE TRANSFORM PARAMETER W

This section provides additional proofs that complement the
results from Theorem 2. In this case, the analysis is performed
using the rank of the matrix W in Eq. (4) instead of the
singularities of Eq. (11) that specifies the generating vector u.

Theorem 3. Let p/q be a rational number represented as
an irreducible fraction, i.e., p is an integer and q is a
positive integer such that gcd(p, q) = 1. Furthermore, let n
be a positive integer. Then, the number of elements in the
set S =

{
ei2π

p·0
q , ei2π

p·1
q , . . . , ei2π

p·(n−1)
q

}
is equal to the

smaller of q and n. More formally,∣∣∣{ei2π
pk
q , k ∈ {0, 1, . . . , n−1}

}∣∣∣ = min(q, n). (47)

Proof. Let k1 and k2 be two different integers that lie between
0 and min(q, n)−1. That is,

k1, k2 ∈ {0, 1, 2, . . . ,min(q, n)−1}, k1 6= k2. (48)

Then, the difference between their corresponding elements in
the set S can be expressed as follows:

ei2π
p

q k1 − ei2π
p

q k2 = ei2π
p

q k1
(
1− ei2π

p

q (k2−k1)
)
. (49)

Without loss of generality, suppose that k1 < k2. Then, the
following inequality holds:

1 ≤ k2 − k1 ≤ min(q, n)− 1 < q. (50)

Because gcd(p, q) = 1, it follows that p and q share no
prime factors. Therefore,

gcd(p(k2 − k1), q) = gcd(k2 − k1, q) ≤ k2 − k1 < q. (51)

That is, each prime factor shared by the product p(k2 − k1)
and q must be shared by k2 − k1 and q. Moreover, the value
of gcd(k2− k1, q) can’t exceed k2− k1, which is strictly less
than q. This implies that the fraction p(k2−k1)

q is not reducible
to an integer. Hence,

ei2π
p

q (k2−k1) 6= 1, (52)

which implies that:

ei2π
p

q k1 6= ei2π
p

q k2 . (53)

Therefore, the mapping from k ∈ {0, 1, 2, . . . ,min(q, n)− 1}
to ei2π

p

q k is one-to-one. Thus, there are at least min(q, n) dis-
tinct elements in the set S, which proves that |S| ≥ min(q, n).

To prove the equality in Eq. (47), it only remains to show
that |S| ≤ min(q, n). There are two possible cases: n ≤ q
and n > q. If n ≤ q, then |S| ≤ n = min(q, n) because, by
definition, the number of elements in S cannot exceed n.

If n > q, then for each k ≥ q the value of ei2π
p

q k is equal
to ei2π

p

q (k−q). In other words, the elements begin to repeat
starting with k = q. More formally,

ei2π
p(k−q)
q = ei2π

pk
q e−i2πp︸ ︷︷ ︸

1

= ei2π
pk
q , (54)

for each k ≥ q. Thus, |S| ≤ q = min(q, n).

Theorem 4. Let p/q be a rational number that is represented
using an irreducible fraction, i.e., p is an integer and q is a
positive integer such that gcd(p, q) = 1. Let M and N be two
positive integers. Also, let W be the M -by-N Vandermonde
matrix used by the CZT where W = ei2πp/q. That is,

W =


W 0·0 W 1·0 . . . W (N−1)·0

W 0·1 W 1·1 . . . W (N−1)·1

...
...

. . .
...

W 0·(M−1) W 1·(M−1) . . . W (N−1)·(M−1)

. (55)

Then,

rank(W) = min(q, n), where n = min(M,N). (56)

Proof. Without loss of generality, suppose that M ≤ N ,
which implies that n = M (otherwise, if M > N , then the
matrix W can be replaced with its transpose, which doesn’t
affect the rank). The matrix W is a Vandermonde matrix that
is generated by the vector s = (W 0,W 1,W 2, . . . ,Wn−1).
The number of distinct elements in this vector is equal
to min(q, n), which follows from Theorem 3. Thus, the
number of distinct rows in the matrix W is also equal to
min(q, n). This implies that rank(W ) ≤ min(q, n).

To prove the equality in Eq. (56) we will show that the first
r rows of W are linearly independent, where r = min(q, n).
Let V be a square sub-matrix of W that lies in the in-
tersection of its first r rows and r columns. The matrix
V is also a Vandermonde matrix that is generated by the
vector (W 0,W 1,W 2, . . . ,W r−1). Theorem 3 proved that the
number of distinct elements in this vector is equal to r.

The determinant of V is given by the following formula
(see reference 39, p. 191 or reference 43, p. 78):

det(V ) =
∏

0≤i<j≤n−1

(W j −W i) 6= 0. (57)

This implies that the matrix V is non-singular, i.e, that it has
full rank. More formally, rank(V ) = r. Because V is a sub-
matrix of W , it follows that

r = rank(V ) ≤ rank(W ). (58)

Thus, Eq. (56) holds because r ≤ rank(W ) ≤ r.

The following theorem reinterprets Theorem 4 in terms of
Farey sequences. It shows that the matrix W is singular when
the polar angle of the transform parameter W is a Farey angle
of order n−1, where n = M = N is the size of the transform.

Theorem 5. The matrix W is singular when p/q ∈ Fn−1,
i.e., p/q is a member of the Farey sequence of order n − 1.
Conversely, if p/q 6∈ Fn−1, then W is non-singular. Another
way to state these conditions is: W is singular when q < n
and nonsingular when q ≥ n, where q is a positive integer,
p ∈ {0, 1, . . . , q}, p/q ∈ [0, 1], gcd(p, q) = 1, and W = ei2πp/q.

Proof. The definition of a Farey sequence implies that all
rational numbers p/q between 0 and 1 for which q < n are
elements of Fn−1. Thus, W is singular whenever p/q ∈ Fn−1.
Conversely, if p/q 6∈ Fn−1, then q ≥ n and min(q, n) = n,
which implies that the matrix W is non-singular.
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Theorem 6. Let Fn be the Farey sequence of order n. Then,
the sequence S =

{
ei2πp/q : p/q ∈ Fn

}
lists each complex root

of unity of order 1, 2, . . . , n exactly once. Let Ω be the set of
these roots of unity. More formally,

Ω = {ωab : b ∈ {1, 2, . . . , n}, a ∈ {0, 1, 2, . . . , b−1}} ,
(59)

where ωab = ei2πa/b. Then, Ω = S.

Proof. Let p/q be an element of Fn. Then, q ∈ {1, 2, . . . , n},
and p ∈ {0, 1, . . . , q}, which implies (ei2πp/q)q = ei2πp = 1.
Thus, ei2πp/q is a q-th root of unity. Therefore, ei2πp/q ∈ Ω.
From this it follows that S ⊆ Ω.

Conversely, let ωab ∈ Ω. Then, ωab = ei2πa/b, where a ∈
{0, 1, 2, . . . , b−1} and b ∈ {1, 2, . . . , n}. Let p and q be two
integers defined as: p = a/ gcd(a, b) and q = b/ gcd(a, b).
Because gcd(a, b) ≥ 1, it follows that 1 ≤ q ≤ b ≤ n. Because
a < b and p and q are obtained by dividing a and b with the
same positive number, it follows that 0 < p < q ≤ n. Thus,
p/q ∈ Fn. Therefore, ei2πa/b = ωab = ei2πp/q ∈ S, from which
it follows that Ω ⊆ S.

Combining the two results leads to Ω = S.

The next theorem proves that using a chirp contour with
sampling points that coincide with the sampling points used
by the FFT, i.e., a chirp contour with W = ei2πk/n where
k is coprime with n, never leads to singularities in the CZT
matrix. This is done by showing that, in this special case, the
fraction k/n appears for the first time in the Farey sequence Fn.
The singularities of the CZT matrix, however, are determined
by the elements of the preceding Farey sequence Fn−1. Thus,
the singularities are avoided when the CZT reduces to the FFT.
The same argument applies to the ICZT and the IFFT.

Theorem 7. Let n be a positive integer and let ωkn = ei2π
k
n

be a primitive root of unity of order n, i.e., ωkn is not a root
of unity of any order smaller than n. Then, the following two
conditions hold:

1) the fraction k/n is an element of the Farey sequence of
order n, i.e,. k/n ∈ Fn;

2) the fraction k/n is not an element of the Farey sequence
of order n−1, i.e., k/n 6∈ Fn−1.

Proof. Without loss of generality, we can assume that k is an
integer between 0 and n−1 (otherwise, if k ≥ n or k < 0, then
we can set k to k−

⌊
k
n

⌋
n, which is between 0 and n−1, without

changing the value of ei2πk/n). Therefore, by definition, the
fraction k/n is an element of the Farey sequence of order n,
i.e., k/n ∈ Fn.

The second condition is proven by contradiction. Suppose
that k/n ∈ Fn−1. This implies that the fraction k/n is reducible,
i.e., k/n = p/q, where q is a positive integer smaller than n and
p is an integer between 0 and q−1. In turn, this reducibility
implies that ωkn is not a primitive root of unity of order n
because it is a root of unity of order q where q < n. That is,

(ωkn)q = ei2π
k
n q = ei2π

p

q q = ei2πp = 1. (60)

This contradiction proves that k/n 6∈ Fn−1, as required.
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Fig. S3. Explanation of the layering in Fig. 6a in terms of the Farey order
of each angle used in this discretization.
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Fig. S4. Another example with color-coded layers, this time from Fig. 7a,
where both the transform size and the number of regularly-discretized polar
angles were set to 1024.

Figure S3 illustrates Theorem 4 and Theorem 5. It shows
the same plot as in Fig. 6a but also colors each point based on
the Farey order of its corresponding polar angle of W . The
colors nicely explain the stratification of the error function
for this discretization, which uses a step of 0.1◦. The upper
layers, which have very large errors, correspond to lower Farey
orders. The lower layers correspond to larger Farey orders. In
general, the transform is numerically accurate for Farey orders
that exceed or are equal to the transform size. In this plot they
are drawn with blue colors.

Figure S4 gives another illustration of these effects using a
color version of the plot shown in Fig. 7a. In this case the Farey
orders can only be integer powers of two, because both the
number of regularly-discretized angles and the transform size
are equal to 1024. The four layers in this plot correspond to
Farey orders 128, 256, 512, and 1024. The numerical error for
Farey orders less than 128 is too large for computations with
double precision, leading to either NaN25 or infinite numerical
error values for those polar angles of W .
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S5. ADDITIONAL RESULTS FOR 32-POINT
CHIRP CONTOURS

This section studies the behavior of the numerical error
for 32-point chirp contours on the unit circle. The goal is to
determine if the harmonically spaced spiking pattern shown
in Fig. 5a (i.e., the “harmonic hedgehog”) can be observed
for these contours as well.

Figure S5 plots the absolute numerical error for 32-point
contours as a function of the polar angle of the transform
parameter W . The angles were discretized using a 0.1◦ step.
The overall shape of the numerical error function is similar
to the error shown in Fig. 4, but the pattern becomes more
complicated. For example, the features at the bottom of the
figure are less distinct at this resolution and appear to be
compressed by a factor of 2.

Figure S6 shows a close-up view of the numerical error
for angles between 10◦ and 23◦. The discretization interval in
this case is 0.005◦. The figure reveals another spiking pattern.
In this case, however, there are 16 spikes instead of 8. Also,
the Farey angles in this case are related to F31 instead of
F15. Furthermore, the harmonic hedgehog is now squeezed
in the interval [11◦, 23◦] instead of the interval [22◦, 46◦]
as in Fig. 5a. In addition to the discretized angles, the
plot also includes points that correspond to Farey angles in
the set { 360◦

31 , 360◦

30 , 360◦

29 , . . . , 360◦

16 }. The vertical coordinate
exceeds zero only for these sixteen Farey angles.
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Fig. S5. Absolute numerical error of the CZT–ICZT procedure for chirp
contours with 32 points on the unit circle. The discretization step for the
polar angles of W was set to 0.1◦, which resulted in 3600 angles.

The red points in Fig. S6 correspond to chirp contours with
polar angles equal to 22.2◦, 22.5◦, and 22.8◦ (see Fig. S7). The
middle red point coincides with a spike in the numerical error
because its corresponding contour has only 16 distinct sam-
pling points. That is, the contour makes exactly 2 revolutions
and the first 16 points coincide with the second 16 points.
The CZT transformation matrix for this contour is singular,
i.e., it is not invertible. Section S4 proves that the matrix W
(see Eq. (4)) is not full rank when the polar angle of W is a
Farey angle of order q and q is strictly less than the transform
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Fig. S6. The harmonic hedgehog for chirp contours with 32 points has 16
spikes. The absolute numerical error spikes when the polar angle of W is
close to an element of the set { 360

◦

31
, 360◦
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, . . . , 360◦

16
}. The three red

points indicate the error for each of the three contours shown in Fig. S7.
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Fig. S7. Three chirp contours, each with 32 points, that wrap twice around
the unit circle. From left to right, the polar angle of W is: 22.2◦, 22.5◦, and
22.8◦. The middle contour has only 16 distinct points because 22.5◦ is equal
to 360◦/16. In other words, the 16 points from the second revolution coincide
with the 16 points from the first revolution.

size n. In this case, q = 16 and n = 32, which explains why
the error spikes near this angle in Fig. S6.

The error for the other two contours from Fig. S7 is
relatively small. Each of them has 16 pairs of points that
are very close to each other but do not coincide. The left
contour corresponds to a Farey angle of order 600. The right
contour corresponds to a Farey angle of order 300. In contrast,
the middle contour corresponds to a Farey angle of order 16,
which is below the transform size that is equal to 32.

Once again, the results indicate that the numerical error
is very small for most contours that were tried. The only
exceptions are contours for which the polar angle of W is close
to a Farey angle or 0◦, which is also a Farey angle. In theory,
Theorem 2 from the main paper suggests that the error should
be infinite when the polar angle of W is a Farey angle of order
less than n. In practice, however, the error is often large but
finite for these angles. For example, even though sixteen Farey
angles were explicitly added in Fig. S6, the absolute numerical
error for these points is still between 100 and 105. This is due
to the inability of the IEEE-754 floating-point representation25,
which is used by modern computers, to represent these Farey
angles and their complex exponentials exactly.
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Fig. S8. Condition numbers for the transform matrix W , shown as a function of the polar angle of the transform parameter W for chirp contours on the unit
circle with 16 points in (a) and 32 points in (b). For both plots, the polar angles were discretized at 0.1◦ intervals, for a total of 3600 regularly-spaced angles.
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Fig. S9. (a) Close-up of the harmonic hedgehog between 20◦ and 46◦ in Fig. S8a. The eight red points indicate the condition numbers at the Farey angles in
the set { 360

◦

15
, 360◦

14
, 360◦

13
, . . . , 360◦

8
}. (b) Close-up of the harmonic hedgehog between 10◦ and 23◦ in Fig. S8b. The three red points indicate the condition

numbers for each of the three contours from Fig. S7. The condition number spikes near Farey angles in the set { 360
◦

31
, 360◦

30
, 360◦

29
, . . . , 360◦

16
}. The shapes

of these plots are similar to the shapes of the numerical error plots in Fig. 5a and Fig. S6, respectively.

S6. CONDITION NUMBERS FOR 16-POINT
AND 32-POINT CHIRP CONTOURS

Figure S8 plots the condition number of the matrix W from
Eq. (4) as a function of the polar angle of the parameter W
for 16-point and 32-point contours. For both plots, the dis-
cretization used 3600 regularly-spaced polar angles between
0◦ and 360◦, i.e., in increments of 0.1◦. The condition numbers
were computed with 64-bit floating-point numbers as follows:
cond(W ) = σmax/σmin, where σmax is the maximum and
σmin is the minimum singular value of the matrix W .

For 16-point contours, the shape of the condition number
plot in Fig. S8a is similar to the shapes of the predicted and
empirical numerical error plots shown in Fig. 4 in the main
paper. For 32-point contours, the shape of the plot in Fig. S8b
is similar to the shape of the numerical error plot in Fig. S5.
The locations of the peaks in Figure S8 are in agreement with
the theoretical results from Section S4.

Figure S9 shows close-ups of two harmonic hedgehogs.
Fig. S9a zooms in on the interval [20◦, 46◦] from Fig. S8a.
Fig. S9b focuses on the interval [10◦, 23◦] from Fig. S8b. In
both plots, the discretization interval is 0.005◦.

The red points in Fig. S9a indicate the condition numbers
for the Farey angles that correspond to the elements of the
Farey sequence F15 between 1/15 and 1/8. These angles were
explicitly added because they were missed by this discretiza-
tion. Similarly, the points that correspond to the elements
of F31 between 1/31 and 1/16 were included in Fig. S9b. The
three red points in that figure indicate the condition numbers
for the three 32-point contours from Fig. S7.

The shapes of the two harmonic hedgehogs in Fig. S9 are
similar to the numerical error plots in Fig. 5a and Fig. S6.
This suggests that the pattern of harmonically-spaced spikes
can be observed not only with the numerical error but also
with the condition number for this problem.

9



Predicted Error

-180 -135 -90 -45 0 45 90 135 180

Polar Angle of W (in degrees)

-15

0

25

50

75

100

125

lo
g

1
0
(p

re
d

ic
te

d
  
e
rr

o
r)

a
Empirical Error

-180 -135 -90 -45 0 45 90 135 180

Polar Angle of W (in degrees)

-15

0

25

50

75

100

125

lo
g

1
0
(e

m
p

ir
ic

a
l 
 e

rr
o

r)

b
Difference

-180 -135 -90 -45 0 45 90 135 180

Polar Angle of W (in degrees)

-15

0

25

50

75

100

125

lo
g

1
0
(p

re
d

ic
te

d
  
e
rr

o
r)

 -
 l
o

g
1
0
(e

m
p

ir
ic

a
l 
 e

rr
o

r)

c

Fig. S10. Visualization of the predictive accuracy of Eq. (21) for 2048-point chirp contours. The red points in (a) show the predicted numerical error for
the CZT followed by the ICZT, computed for 4099 regularly-discretized polar angles of W . The blue points in (b) show the empirically-observed numerical
error, which is averaged over 10 random input vectors. The green points in (c) show the difference between the predicted error and the empirically observed
error, i.e., (a)− (b).
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Fig. S11. Visualization of the accuracy of the error prediction formula for the CZT followed by the ICZT. These are similar to the plots in Fig. S10, but in
this case the results are shown for 4099 randomly-sampled polar angles of W .

S7. ADDITIONAL ERROR ANALYSIS RESULTS

Figure S10 visualizes the accuracy of the numerical error
predictions obtained with Eq. (21). The results are plotted for
2048-point chirp contours and for 4099 regularly-discretized
polar angles of W . The red points in Fig. S10a show the
predicted numerical error. The blue points in Fig. S10b
show the average empirically-observed error. The green points
in Fig. S10c show the difference between the predicted error
and the observed error, i.e, red minus blue. Figure S11 shows
a similar analysis for randomly-sampled polar angles.

Figures S10c and S11c plot the difference between the
logarithms of the predicted numerical error and the empirical
numerical error. In both cases, the predicted error is close to
the empirical error, which is reflected in the green horizontal
line at zero. The slight bump around 0◦ in both figures suggests
that the error prediction formula slightly overestimates the
numerical error for polar angles of W that are close to 0◦.
Because the R2 coefficient tends to 1 as additional points are
added to the chirp contour, the impact of this overestimation
effect relative to the total variance of the numerical error
diminishes as N increases.

For discretizations that hit many Farey angles, both the
predicted and the observed errors could be very large (e.g.,

see Fig. 6a). For some of these singularities, the formulas
described in the main paper underestimate the error. Section S8
analyzes these special cases in more detail and shows how to
patch the numerical error prediction formulas by modifying
the offset term B when the value of W is close to an ICZT
singularity. This change makes the predictions more accurate
for these extreme cases, but those values of W should not be
used in practice because even the original formulas predict a
very large error. This patch was not used for Figs. S10 and S11.

All algorithms described in this paper were implemented
in C++. For this implementation, the constants C1 and C2

in Eq. (19) have the following values: C1 = 1 and C2 = −1.
In our previous paper10, the algorithms were implemented
in Python using the mpmath library (see http://mpmath.org/),
which slightly boosts the precision of complex exponentiation.
There the precision was further boosted when computing all
generating vectors for the matrices used by the CZT and the
ICZT. This further decreased the numerical error so that the
value of C1 for that implementation reduced to −1 and the
value of C2 became 0. These implementation-specific details
affect only the offset term B, i.e., they only shift the error
function up or down by a fixed amount without affecting its
overall shape.
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Fig. S12. Example in which the numerical error is sometimes underestimated. The predicted numerical error is shown in (a). The empirically-observed error
is shown in (b) – this is the same plot as in Fig. 6a. The difference between (a) and (b) is shown in (c). The green points in (c) indicate all cases for which
Eq. (19) and Eq. (21) underestimate the numerical error. The red points in (a) and the blue points in (b) show the predicted and the empirically-observed
errors for these green points.

S8. ERROR ANALYSIS NEAR ICZT SINGULARITIES

This section describes a slight modification for the error
prediction formulas that makes them more accurate near ICZT
singularities. The formulas described in the main paper can
underestimate the predicted error for some of these cases.
More specifically, the offset term B given by Eq. (19), which
is used in Eq. (21) and Eq. (23), is modified here to be
more accurate near ICZT singularities. This modification is not
necessary in practice because even the underestimated error
value is already very high.

Figure S12 shows an example for a regular discretization
with a step of 0.1◦ that hits many singularities. For some
of them the predicted numerical error is underestimated,
as indicated by the green points below zero in Fig. S12c.
The empirically-observed errors for these green points are
highlighted in blue in Fig. S12b. The corresponding predicted
errors are highlighted in red in Fig. S12a. The error is
underestimated because the red points appear lower than the
blue points.

The modified offset term B is computed using three helper
terms: S1, S2, and S3. The terms S1 and S2 are equal to the
logarithms of the norms of the vectors x′ and x′′ that are
computed by Algorithm 1 on lines 25–28, i.e.,

S1 = log ‖x′‖ = log

√√√√N−1∑
k=0

|x′k|2 =
1

2
log

N−1∑
k=0

|x′k|2, (61)

S2 = log ‖x′′‖ = log

√√√√N−1∑
k=0

|x′′k |2 =
1

2
log

N−1∑
k=0

|x′′k |2. (62)

The term S3 is equal to the logarithm of the Euclidean distance
between x′ and x′′. That is,

S3 = log ‖x′ − x′′‖ =
1

2
log

N−1∑
k=0

|x′k − x′′k |2. (63)

Near ICZT singularities the difference between S3 and the
larger value between S1 and S2 captures the numerical error
offset better than the constant term −p log 2 used in Eq. (19).

Let p/q be the rational approximation of the polar angle
of W expressed as a fraction of a turn, i.e., W ≈ ei2π

p

q .
Then, the modified formula for B can be stated as follows:

B =

{
−p log 2 + C1 logN + C2, if q ≥ N,
S3 −max(S1, S2) + C3 logN + C4, if q < N,

(64)

where C3 and C4 are implementation-dependent constants.
For calculations with both double and quadruple floating-point
precision, our experiments indicate that C3 can be set to −1
and C4 to 0.

Figure S13 shows the error prediction obtained using
Eq. (21) but with the offset term B defined as in Eq. (64).
The results show that the modified formula no longer under-
estimates the numerical error. That is, the points below zero
in Fig. S12c are now in line with all other points.
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Fig. S13. Visualization of the difference between the logarithms of the
predicted and the empirical error, computed using the modified offset term B.
This is similar to Fig. S12c, but in this case all predicted errors are close to
the empirically-observed errors and all points are plotted in green.
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